POSITIVE SOLUTIONS OF SINGULAR SUBLINEAR SECOND-ORDER THREE-POINT BOUNDARY VALUE PROBLEMS

RUYUN MA* and DONAL O'REGAN**
*Department of Mathematics
Northwest Normal University
Lanzhou 730070, P R China
**Department of Mathematics
National University of Ireland
Galway, Ireland
E-mail: donal.oregan@nuigalway.ie

Abstract

We give some necessary and sufficient conditions for the existence of C or C^{1} positive solutions of the singular boundary value problem $$
\begin{aligned} & x^{\prime \prime}(t)+p(t) x^{\lambda}(t)=0, \quad t \in(0,1) \\ & x(0)=0, x(1)=\alpha x(\eta) \end{aligned}
$$ where $\eta \in(0,1), \quad \alpha \in(0,1]$ and $\lambda \in(0,1)$ are given, $p:(0,1) \rightarrow[0, \infty)$ can be singular at both ends $t=0$ and $t=1$. The main tool is the method of lower and upper solutions for singular three-point boundary value problems.

Key Words and Phrases: Singular boundary value problem, Existence, Schauder fixed point theorem, Green's function, Lower and upper solution.
2000 Mathematics Subject Classification: 34B10, 34B18.

References

[1] R. P. Agarwal, D. O'Regan, Some new results for singular problems with sign changing nonlinearities, J. Comput. Appl. Math. 113(2000), no. 1-2, 1-15.
[2] H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Analysis TMA, 44(2001), 791-809.

[^0][3] P. Habets, F. Zanolin, Upper and lower solutions for a generalized Emden-Fowler Equation, J. Math. Anal. Appl., 181(1994), 684-700.
[4] D. O'Regan, Theory of singular boundary value problems, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
[5] S. D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis TMA, 3(6)(1979), 897-904.
[6] Y. Zhang, Positive solutions of singular sublinear Emden-Fowler boundary value problems, J. Math. Anal. Appl. 185(1)(1994), 215-222.
[7] C. P. Gupta, S. K. Ntouyas, P. Ch. Tsamatos, Solvability of an m-point boundary value problem for second order ordinaray differential equations, J. Math. Anal. Appl., $189(2)(1995), 575-584$.
[8] R. Ma, Existence of positive solutions for superlinear semipositone m-point boundaryvalue problems, Proc. Edinb. Math. Soc. 46(2)(2003), 279-292.
[9] R. Ma, Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differential Equations, 34(1999), 1-8.
[10] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, Nonlinear Analysis TMA, $\mathbf{4 7}(7)(2001)$, 4319-4332.
[11] Z. Zhang and J. Wang, The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. Comput. Appl. Math. $147(1)(2002), 41-52$.

Received 19.06.2005, Revised 10.12.2005

[^0]: Supported by the NSFC (No. 10271095), GG-110-10736-1003, Spring-Sun Program (No. Z2004-1-62033), the Foundation of Excellent Young Teacher of the Chinese Education Ministry.

