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About 50 years ago, the Italian mathematician Gabriele Darbo published
a fixed point theorem [25] which ensures the existence of a fixed point for so-
called condensing operators and generalizes both the classical Schauder fixed
point principle and (a special variant of) Banach’s contraction mapping prin-
ciple. Darbo’s theorem is not only of theoretical interest, but has found a
wealth of applications in both linear and nonlinear analysis. Typically, such
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applications are characterized by some “loss of compactness” which arises in
many fields: imbedding theorems between Sobolev spaces with critical expo-
nent, imbeddings over domains with irregular boundary, linear composition
operators over the complex unit disc, integral equations with strongly singular
kernels, differential equations over unbounded domains, functional-differential
equations of neutral type or with deviating argument, linear differential op-
erators with nonempty essential spectrum, nonlinear superposition operators
between various function spaces, initial value problems in Banach spaces, and
much more. In this connection, one often encounters some kind of “Golden
Rule” which states that

Loss of compactness always occurs on the boundary.

Of course, we have to explain on the boundary of what; this will become clearer
in the numerous examples which follow.

In spite of its importance, the class of condensing operators and its ap-
plications seems to be known only among some specialists in the field. We
therefore think that it might be useful to collect, in a survey which mainly
addresses to non-specialists, the basic facts on the theory, methods, and ap-
plications of this operator class. Here we restrict ourselves to the simplest,
though application-oriented, parts of the theory, disregarding more sophisti-
cated topics like topological degree, fixed point index, or bifurcation theory.
Moreover, when writing this survey, we intentionally put the main emphasis
on examples and applications, rather than abstract theorems, following the
reliable and deserving didactical motto

Only wimps do the general case, real teachers tackle examples.

In fact, we do not aim for presenting results in their most general setting,
but rather for providing a self-contained and comprehensible survey of some
typical results and methods for the “working analyst”, as well as a glimpse
of the large variety of directions in which current research in this field is still
moving.

This survey consists of a “linear part” and a “nonlinear part” and is orga-
nized as follows. Since condensing operators are intimately related to mea-
sures of noncompactness, we study first in Sections 1 and 2 general measures
of noncompactness, including some special examples which have found some
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attention in applications. As the name suggests, such measures of noncom-
pactness give an idea of the “lack of compactness” of a given set or operator,
and this leads to interesting new results, or a new look at classical results,
even in the linear case, as we shall show in Section 3. In Sections 4 and 6 this
is illustrated by means of applications to (linear) differential equations, inte-
gral equations, multiplication operators, substitution operators, and imbed-
ding theorems. There is also an important connection with classical Fredholm
theory which we will discuss in Section 5.

In Section 7 we start with the nonlinear theory, with a particular emphasis
on nonlinear superposition operators which offer a great variety of examples
and (sometimes unexpected) counterexamples. Darbo’s fixed point theorem
for condensing operators, which is the Leitmotiv of this survey, is discussed in
detail in Section 8. Combining this with the results for the linear operators
obtained above, one gets numerous existence theorems for nonlinear problems
of different type, as will be shown in Section 9. The subsequent Sections 10
and 11 are concerned with applications to initial value problems for differential
equations in Banach spaces, as well as functional-differential equations and
their periodic solutions. Fixed point free operators are discussed in Section 12;
the study of such operators leads to several characteristics, defined in Section
13, which seem to have some importance in Banach space geometry. Finally,
in the last Section 14 we briefly sketch how Darbo’s fixed point principle may
be related to the definition and study of spectra for nonlinear operators which
is a rather new field of nonlinear analysis of growing importance.

1. Measures of noncompactness and φ-norms

Let X be a Banach space over the field K ∈ {R,C}. In what follows, we
write Br(X) = {x ∈ X : ||x|| ≤ r} for the closed ball and Sr(X) = {x ∈ X :
||x|| = r} for the sphere in X around 0 with radius r > 0. In particular, we use
the shortcut B1(X) =: B(X) and S1(X) =: S(X) for the unit ball and sphere,
respectively. Sometimes we have to consider the ball of radius r centered at
x0 ∈ X, which we denote by Br(X;x0). Unless otherwise stated, all operators
considered in the sequel are assumed to be continuous.

Throughout this survey, a nonnegative function φ defined on the bounded
subsets of X will be called Sadovskij functional if it satisfies the following
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requirements (M,N ⊂ X bounded, λ ∈ K):

φ(M ∪N) = max {φ(M), φ(N)}, (1.1)

φ(M +N) ≤ φ(M) + φ(N), (1.2)

φ(λM) = |λ|φ(M), (1.3)

φ(M) ≤ φ(N) for M ⊆ N, (1.4)

φ([0, 1] ·M) = φ(M), (1.5)

φ(coM) = φ(M). (1.6)

It is natural to call (1.1) the set additivity, (1.2) the algebraic subadditivity,
(1.3) the homogeneity, (1.4) the monotonicity, (1.5) the absorption invariance,
and (1.6) the convex closure invariance of φ. We remark that these axioms
are not independent; for example, (1.4) follows from (1.1), and (1.5) follows
from (1.6) if φ({0}) = 0.

A particularly important additional property of a Sadovskij functional is

φ(M) = 0 if and only if M is precompact, (1.7)

which we call the regularity of φ. A regular Sadovskij functional is called
measure of noncompactness. This name is motivated by the fact that, loosely
speaking, the smaller φ(M), the closer is M to being precompact (i.e., hav-
ing compact closure). Apart from regularity, the most important property
which plays a crucial role in both the theory and applications is the invariance
property (1.6).

We used the name “Sadovskij functional” to emphasize the pioneering role of
the survey article [73] in the axiomatic theory of measures of noncompactness.
In the paper [15] the authors use another approach based on the Hausdorff
distance H(M,N) = max {D(M,N), D(N,M)} of two bounded sets M,N ⊂
X, where, as usual,

D(M,N) = inf {r > 0 : M ⊆ N +Br(X)}.

A nonnegative function φ defined on the family of all bounded subsets of X
is called set quantity in [15] if it satisfies (1.1), (1.2), (1.3) and (1.6). It is then
shown that φ is a Sadovskij functional (in our terminology) which satisfies a
Lipschitz condition

|φ(M)− φ(N)| ≤ φ(B(X))H(M,N)
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with respect to the Hausdorff distance on X, and so φ is uniformly continuous.
Now, suppose that N (X) is some family of bounded subsets of X with certain
“good” additional properties (e.g., N (X) is stable under finite unions, alge-
braic sums, multiplication by scalars, and passing to the convex hull). Then
it is shown in [15] that

φN (M) = dist (M,N (X)) = inf {H(M,N) : N ∈ N (X)}

is a set quantity, hence a Sadovskij functional. Clearly, φN (M) = 0 if and only
if M ∈ N (X), and so φN is a measure of noncompactness (in our terminology)
if N (X) is the family of all precompact subsets of X.

We give now a list of three important examples of measures of noncom-
pactness which arise over and over in applications. The first example is the
Kuratowski measure of noncompactness (or set measure of noncompactness)
[55]

α(M) = inf {ε > 0 : M may be covered

by finitely many sets of diameter ≤ ε},
(1.8)

the second one is the Istrăţescu measure of noncompactness (or lattice measure
of noncompactness) [47]

β(M) = sup {ε > 0 : there exists a sequence

(xn)n in M with ||xm − xn|| ≥ ε for m 6= n},
(1.9)

and the third one is the Hausdorff measure of noncompactness (or ball measure
of noncompactness) [45]

γ(M) = inf {ε > 0 : there exists a finite ε-net for M in X}, (1.10)

where by a finite ε-net for M in X we mean, as usual, a set {z1, z2, . . . , zm} ⊂
X such that the balls Bε(X; z1), Bε(X; z2), . . . , Bε(X; zm) cover M . These
measures of noncompactness are mutually equivalent in the sense that

γ(M) ≤ β(M) ≤ α(M) ≤ 2γ(M) (1.11)

for any bounded set M ⊂ X. Historically, (1.8) was the first measure of
noncompactness introduced in nonlinear analysis in connection with metric
spaces [55].

Clearly, the Hausdorff measure of noncompactness (1.10) may be viewed as
a special case of the set quantity φN mentioned above if we take for N (X) the
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family of all precompact subsets of X. Other choices of N (X) lead to other
interesting set quantities which are also useful in applications. For instance,
if N (X) is the family of all weakly precompact subsets of X, then φN is the
so-called weak measure of noncompactness introduced by De Blasi in [26]. Fur-
thermore, if N (X) denotes the family of all weakly conditionally precompact
subsets of X (i.e., every sequence in such a set admits a weak Cauchy subse-
quence), then φN is nothing else but the set quantity introduced and studied
by Falcón and Sadarangani in [34]. The paper [34] also contains some inter-
esting connections with Banach space geometry, reflexivity criteria for normed
spaces, and the “Cantor property” of nested families of subsets, which means
that a decreasing sequence (Mn)n of bounded closed subsets of X satisfying
φN (Mn) → 0 as n→∞ has always a nonempty intersection. This property is
important in Darbo’s fixed point theorem which we will prove below (Theorem
8.1).

To show that the regularity axiom (1.7) is independent of the others, we
bring a simple example of a Sadovskij functional which is not a measure of
noncompactness.

Example 1.1. Let X = Lp[0, 1] (1 ≤ p < ∞) be the Lebesgue space of
all (classes of) p-integrable real functions on [0, 1] with the usual norm, and
denote by χD the characteristic function of a measurable subset D ⊆ [0, 1]. It
is not hard to see that then

φ(M) := lim sup
mes D→0

sup
u∈M

||χDu|| (M ⊂ Lp bounded)

is a Sadovskij functional. However, φ is not a measure of noncompactness. In
fact, any set M which is bounded in Lq[0, 1] for some q > p satisfies φ(M) = 0
in X, by the Hölder inequality. Clearly, such a set need not be precompact in
X. �

The Sadovskij functional in the preceding Example 1.1 has the property
that the precompactness of M ⊂ X implies φ(M) = 0, but not vice versa. A
certain “dual example” of a Sadovskij functional φ for which φ(M) = 0 implies
the precompactness of M , but not vice versa, is given in Example 2.4 below.

We point out that in the sequel we will retain the terms “Sadovskij func-
tional” or “measure of noncompactness” also for set functions which do not
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have all the properties (1.1) – (1.7). It will become clear from time to time
which of these properties we actually need. For instance, it is sometimes use-
ful to require that the centers z1, z2, . . . , zm of the covering balls in (1.10) to
belong to the set M itself, not just to X. This leads to the set function

γ0(M) = inf {ε > 0 : there exists a finite ε-net for M in M}, (1.12)

which is usually called inner Hausdorff measure of noncompactness in the
literature. This “measure of noncompactness” does not satisfy all the above
axioms; for example, (1.1), (1.4), (1.5) and (1.6) are not true for (1.12), as the
following example shows.

Example 1.2. Let X be any Banach space. If X is finite dimensional, then
α(B(X)) = α(S(X)) = β(B(X)) = β(S(X)) = γ(B(X)) = γ(S(X)) = 0,
by (1.7) and the classical Heine-Borel theorem. If X is infinite dimensional,
however, we have

α(B(X)) = α(S(X)) = 2, γ(B(X)) = γ(S(X)) = 1. (1.13)

In fact, the equality γ(B(X)) = 1 follows from the trivial fact that B(X)
may be covered by itself, from a simple homogeneity argument using (1.3),
and from (1.6). The proof of the equality α(B(X)) = 2 is more complicated
and requires a Ljusternik-Shnirel’man type argument. Now, the inner Haus-
dorff measure of noncompactness (1.12) still satisfies γ0(B(X)) = 1; however,
γ0(S(`2)) =

√
2, for example. So γ0 is not invariant under passing to the

convex hull.

From the well-known Riesz lemma it follows that β(B(X)) = β(S(X)) ≥ 1
in every infinite dimensional Banach space X. Unfortunately, there is no “uni-
versal” formula for calculating the characteristic β(B(X)), but only formulas
or estimates which require individual arguments in every space. For example
(see [13, Theorem II.2.1 and Remark II.3.11]), one knows that β(B(`p)) = 21/p

for 1 ≤ p < ∞, β(B(Lp)) = 21/p for 1 ≤ p ≤ 2, and β(B(Lp)) = 21−1/p for
2 ≤ p <∞. Loosely speaking, one could say that, in contrast to the measures
of noncompactness α and γ, the measure of noncompactness β “feels the ge-
ometry” of the underlying space. �
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Comparing the usual and the inner Hausdorff measure of noncompactness
one easily sees that

γ(M) ≤ γ0(M) ≤ α(M). (1.14)

To get an idea of how to calculate these measures of noncompactness, we
give some examples which are taken from [37].

Example 1.3. Let X = C[0, 1] be the Banach space of all continuous real
functions on [0, 1], equipped with the usual maximum norm. By (1.13) in
Example 1.2, for M = B(X), say, we have then

γ(M) = γ0(M) = 1, α(M) = 2.

On the other hand, the set M := {u ∈ B(X) : 0 = u(0) ≤ u(t) ≤ u(1) = 1}
satisfies

γ(M) =
1
2
, γ0(M) = α(M) = 1.

Similarly, for the set M := {u ∈ B(X) : 0 ≤ u(0) ≤ 1
3 , 0 ≤ u(t) ≤ 1, 2

3 ≤
u(1) ≤ 1} we obtain

γ(M) =
1
2
, γ0(M) =

2
3
, α(M) = 1.

Finally, the (noncompact) set

M :={u ∈ B(X) : 0 ≤ u(t) ≤ 1
2

for 0 ≤ t ≤ 1
2
, and

1
2
≤ u(t) ≤ 1 for

1
2
≤ t ≤1}

satisfies

γ(M) = γ0(M) = α(M) =
1
2
.

So all possible combinations of equality and strict inequality may occur in
the estimates (1.14). �

Given two Banach spaces X and Y , a set M ⊆ X, a (linear or nonlinear)
operator A : M → Y , and a measure of noncompactness φ on X and Y , the
characteristic

[A]φ = inf {k > 0 : φ(A(N)) ≤ kφ(N) for bounded N ⊆M} (1.15)

is called the φ-norm of A. The φ-norm (1.15) has the property

[A]φ = 0 if and only if A is compact, (1.16)
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where an operator A is called compact, as usual, if A(N) ⊂ Y is precompact
for each bounded set N ⊆ M . Moreover, the φ-norm (1.15) is subadditive in
the sense that

[A+B]φ ≤ [A]φ + [B]φ (1.17)

for two operators A,B : M → Y . In infinite dimensional spaces X and Y , one
may use the equivalent formula

[A]φ = sup
{
φ(A(N))
φ(N)

: N ⊆M bounded, φ(N) > 0
}

(1.18)

for calculating the φ-norm of A. For some measures of noncompactness (or
Sadovskij functionals) φ, the φ-norm (1.15) may be connected to Lipschitz
continuity. We say that a Sadovskij functional φ is Lip-compatible, if

[A]φ ≤ Lip(A), (1.19)

where

Lip(A) = inf {k > 0 : ||A(x)−A(y)|| ≤ k||x− y|| (x, y ∈M)} (1.20)

is the minimal Lipschitz constant of A : M → Y . More generally, we say that
φ is weakly Lip-compatible, if

[A]φ ≤ cLip(A), (1.21)

for some constant c = c(φ) > 0 independent of A. For example, the φ-norms
generated by the measures of noncompactness (1.8), (1.9) and (1.12) are Lip-
compatible, but the φ-norm generated by (1.10) is only weakly Lip-compatible
with c(γ) = 2.

Clearly, if L : X → Y is a bounded linear operator, then Lip(L) = ||L||,
and so [L]φ ≤ ||L|| if φ is Lip-compatible. We will discuss this inequality in
more detail in Section 3 below.

The following example shows that there are somewhat “artificial” Sadovskij
functionals which are not even weakly Lip-compatible.

Example 1.4. Let X = c0 be the Banach space of all real sequences
converging to zero, equipped with the supremum norm. For x = (ξn)n ∈ c0
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we denote by n(x) the number of coordinates ξn ≥ 1 of the sequence x. It is
not hard to see that the set function

φ(M) :=
1

1 + min
x∈M

n(x)

is then a Sadovskij functional in X which satisfies (1.1), (1.5) and (1.6), but
not (1.2). Moreover, since (1.7) fails, φ is not a measure of noncompactness.

Now consider the linear operator L = 1
2I, where I denotes the identity.

Denoting by xk := e1 + e2 + . . .+ ek the sum of the first k basis vectors in c0,
the set Mk := {xk, xk+1, xk+2, . . .} satisfies φ(Mk) = 1

1+k . On the other hand,
the trivial fact that n(Lxk) = 0 for each k implies that φ(L(Mk)) = 1, and so
φ cannot be weakly Lip-compatible. �

We call an operator A : M → Y φ-Lipschitz if [A]φ < ∞. A particularly
important case is [A]φ < 1; in this case A is called φ-condensing. If merely
[A]φ ≤ 1, it is natural to call A a φ-nonexpansive operator. We remark that
α-condensing, β-condensing, and γ-condensing operators are also called set-
contractions, lattice-contractions, and ball-contractions, respectively, in the
literature.

Sometimes it is very easy to estimate (or even calculate) the φ-norm (1.15)
of a given operator, simply by using the properties (1.1) – (1.7) of the under-
lying measure of noncompactness φ. We illustrate this by a simple, though
important, example.

Example 1.5. Let X be a Banach space, and consider the radial retraction
ρ : X → Br(X) defined by

ρ(x) :=


x if ||x|| ≤ r,

r
x

||x||
if ||x|| > r.

(1.22)

Let φ be any measure of noncompactness on X which satisfies (1.1), (1.2),
and (1.7) (for example, φ ∈ {α, β, γ}). Then the obvious geometric fact that
ρ(M) ⊆ co (M∪{0}), for each bounded set M ⊂ X, implies that the retraction
(1.22) is φ-nonexpansive. More precisely, the fact that ρ(Br(X)) = Br(X)
implies that [ρ]φ = 1 if X is infinite dimensional, and [ρ]φ = 0 if X is finite
dimensional. �
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We point out that the radial retraction (1.22) does not satisfy the estimate
Lip(ρ) ≤ 1, but only the weaker estimate Lip(ρ) ≤ 2. So this retraction may
serve as a first example for strict inequality in (1.19).

For some problems in nonlinear analysis it is useful to consider, together
with the φ-norm (1.15), also the lower φ-norm of A : M → Y defined by

[A]−φ = sup {k > 0 : φ(F (N)) ≥ kφ(N) for bounded N ⊆M}. (1.23)

The lower φ-norm may be calculated between infinite dimensional spaces
equivalently by the formula

[A]−φ = inf
{
φ(A(N))
φ(N)

: N ⊆M bounded, φ(N) > 0
}

(1.24)

which is of course parallel to (1.18). The number (1.23) is closely related to
the class of proper operators. Recall that an operator A : M → Y is called
proper if the preimage A−1(K) of any compact subset K ⊂ Y is a compact
subset of M . Clearly, [A]−φ > 0 implies that A is proper on closed bounded
subsets of M , by (1.7). The converse, however, is not true:

Example 1.6. Let X be any infinite dimensional Banach space and A :
X → X defined by A(x) = ||x||x. A straightforward calculation shows that A
is a homeomorphism onX, hence proper. On the other hand, for the Hausdorff
measure of noncompactness (1.10), say, one has γ(Sr(X)) = r, by (1.13), and
γ(A(Sr(X))) = γ(Sr2(X)) = r2. Letting r → 0 and using (1.24) we conclude
that [A]−γ = 0. �

We remark that a detailed account of the theory and applications of mea-
sures of noncompactness and corresponding classes of condensing operators,
together with many more examples, may be found in the survey [1], the Lec-
ture Notes [14], and the more recent monographs [3,13].

2. Measures of noncompactness in special spaces

If one wants to calculate the measure of noncompactness φ(M) of some set
M in a specific Banach space X, it is sometimes easier to pass to a set function
φ∗ which is equivalent to φ in the sense that

aφ(M) ≤ φ∗(M) ≤ bφ(M) (M ⊂ X bounded) (2.1)
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for some constants a, b > 0 independent of M . The equivalence (2.1) plays
a similar role for measures of noncompactness as the equivalence of norms.
From (1.7) and (2.1) it follows, in particular, that φ∗(M) = 0 precisely for all
precompact subsets M ⊂ X.

In this section we construct such a set function γ∗ which is equivalent to
the Hausdorff measure of noncompactness (1.10) in the spaces C = C[0, 1],
Lp = Lp[0, 1], `p, c and c0. Recall that the modulus of continuity of a function
u ∈ C is defined by

ω(u, σ) = sup {|u(s)− u(t)| : |s− t| ≤ σ}. (2.2)

We have then ω(u, σ) → 0, as σ → 0, since u is uniformly continuous
on [0, 1]. More generally, if this limit relation holds uniformly for u running
over some bounded set M ⊂ C, then M is equicontinuous, and vice versa.
Therefore the following result is not too surprising:

Theorem 2.1. On the space X = C, the measure of noncompactness (1.10)
is equivalent to

γ∗(M) = lim
σ→0

sup
u∈M

ω(u, σ), (2.3)

and one even has a = b = 2 in (2.1), i.e.,

γ∗(M) = 2γ(M) (2.4)

for all bounded sets M ⊂ C.

A parallel result in the Lebesgue space Lp reads as follows:

Theorem 2.2. On the space X = Lp (1 ≤ p < ∞), the measure of
noncompactness (1.10) is equivalent to

γ∗(M) = lim
h→0

sup
u∈M

{∫ 1

0
|u(t+ h)− u(t)|p dt

}1/p

in the sense that

γ(M) ≤ γ∗(M) ≤ 2γ(M)

for all bounded sets M ⊂ Lp.
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Observe that Theorems 2.1 and 2.2 generalize (and imply) the well-known
Arzelà-Ascoli and Kolmogorov compactness criteria in the spaces C and Lp,
respectively.

We remark that, in contrast to (2.4), the equality γ∗(M) = 2γ(M) does not
hold in the space Lp, and so the claim 1.1.3 in [3] is false:

Example 2.1. Let X = Lp (1 ≤ p < ∞) and M = {uδ : 0 < δ < 1
2},

where uδ(t) := δ−1/p for 1
2 ≤ t ≤ 1

2 + δ, and uδ(t) := 0 otherwise. Then a
straightforward calculation shows that γ(M) = 1, but γ∗(M) = 21/p. So (2.4)
fails in Lp if p > 1. �

The next theorem provide equivalent measures of noncompactness in some
important sequence spaces, even with a = b = 1 in (2.1).

Theorem 2.3. On the space X = `p (1 ≤ p < ∞), the measure of non-
compactness (1.10) is equal to

γ∗(M) = lim
N→∞

sup
(ξn)n∈M

{ ∞∑
n=N

|ξn|p
}1/p

,

while on the space X = c and X = c0, the measure of noncompactness (1.10)
is equal to

γ∗(M) = lim
N→∞

sup
(ξn)n∈M

|ξN − ξ̂|,

where ξ̂ denotes the limit of the sequence (ξn)n.

Again, Theorem 2.3 contains a number of well-known compactness criteria
in the sequence spaces `p, c, and c0. Interestingly, such theorems may be
obtained in the more general setting of Banach spaces with Schauder basis.
Recall that a sequence E := (en)n of elements en ∈ S(X) is called a Schauder
basis inX if for every x ∈ X there exists a unique scalar sequence (cn(x))n such

that x =
∞∑

n=1

cn(x)en. The numbers cn(x) are usually called the coordinates

of x. To any Schauder basis E we may associate the sequence of canonical
projections

Pn : X → span {e1, e2, . . . , en}, Pnx :=
n∑

k=1

ck(x)ek;
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moreover, by Rnx := x − Pnx we denote the corresponding “remainders”.
Clearly, Pn and Rn are bounded linear operators in X. From the closed graph
theorem and the uniform boundedness theorem it follows that the sequences
(Pn)n and (Rn)n are bounded in the operator norm, and so

CE := lim sup
n→∞

||Rn|| <∞. (2.5)

The following theorem [13, Theorems II.4.2 and II.4.3] shows that one may
define two measures of noncompactness on X in terms of the operators Rn,
which are both equivalent to the three measures of noncompactness α, β and
γ discussed in the preceding section.

Theorem 2.4. The functions

µ(M) := lim sup
n→∞

sup
x∈M

||Rnx||, ν(M) := lim inf
n→∞

sup
x∈M

||Rnx|| (2.6)

are measures of noncompactness on X which satisfy

ν(M) ≤ µ(M) ≤ CEγ(M) ≤ CEν(M) (M ⊂ X bounded). (2.7)

Theorem 2.4 shows that, whenever one knows the constant (2.5) for some
Schauder basis E = (en)n in a space X, one may estimate the Hausdorff
measure of noncompactness γ (and so also the measures of noncompactness α
and β, by (1.11)) by one of the measures of noncompactness µ or ν which are
sometimes easier to calculate.

Example 2.2. In the spaces X = `p (1 ≤ p <∞) or X = c0, the canonical
sequences en := (δk,n)k form a Schauder basis E with CE = 1. Thus, for these
spaces all measures of noncompactness in (2.7) coincide, which is nothing else
but a reformulation of Theorem 2.3. On the other hand, in the space X = c

the set Ê := E ∪ {(1, 1, 1, . . .)} is a Schauder basis with ||Rn|| = 2 for each n,
and so CÊ = 2. Indeed, the equalities

γ(B(c)) = 1, µ(B(c)) = ν(B(c)) = 2

hold in this space, and so the estimates (2.7) are sharp. It is also known [12]
that, in the space X = Lp[0, 1] for 1 ≤ p < ∞ and p 6= 2, equipped with the
classical Haar system as Schauder basis, the two measures of noncompactness
µ and ν from (2.6) do not coincide. �
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We point out that the chain of estimates (1.11) may also be sharpened in
special Banach spaces. For example, it has been shown in [33] that

β(M) = 21/pγ(M) ≤ α(M) (M ⊂ `p bounded), (2.8)

and in [32] that

21/pγ(M) ≤ β(M) (M ⊂ Lp bounded), (2.9)

where equality holds in (2.9) if the set M is compact in measure. Analogous
formulas in `∞ and L∞ are not true.

Interestingly, there is a certain “asymmetry” in the last two formulas, inas-
much the `p-estimate (2.8) holds for 1 ≤ p < ∞, but the Lp-estimate (2.9)
only for 2 ≤ p <∞. The following counterexample [29] illustrates this fact.

Example 2.3. Consider the Rademacher functions yn in Lp[0, 1], and let
M := {y1, y2, y3, . . .}. The proof of Theorem X.5.2 in [13] shows that

γ(M) = 1, β(M) = 21−1/p = 21−1/pγ(M).

But 21−1/p < 21/p for p < 2, and so (2.9) fails for these values of p. �

The reason for this counterexample is that (2.9) has, for general p ∈ [1,∞),
to be replaced by the correct estimate [29]

2min{1/p,1−1/p}γ(M) ≤ β(M) ≤ 2max{1/p,1−1/p}γ(M). (2.10)

To see this, choose M0 ⊆M such that γ(M0) = γ(M) and M0 is γ-minimal
in the sense of [13, Definition III.2.1]. We can assume that M0 is also β-
minimal. From Corollary X.5.3 in [13] it follows that

γ(M)
β(M)

≤ γ(M)
β(M0)

=
γ(M0)
β(M0)

≤ 2max{−1/p,−(1−1/p)} = 2−min{1/p,1−1/p}

which proves the first estimate in (2.10). On the other hand, by [13, Theorem
III.2.10] for ε > 0 we may find Mε ⊆ M such that Mε is β-minimal and
(1 + ε)β(Mε) ≥ β(M). Again, we can assume that Mε is also γ-minimal.
Applying as above Corollary X.5.3 in [13] yields

γ(M)
β(M)

≥ γ(M)
(1 + ε)β(Mε)

≥ γ(Mε)
(1 + ε)β(Mε)

≥ 2min{−1/p,−(1−1/p)} = 2−max{1/p,1−1/p}
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which gives the second estimate in (2.10).

Observe that Example 2.3 shows that the left inequality in (2.10) is sharp
for p < 2, and the right inequality in (2.10) is sharp for p > 2 if the underlying
measure is not purely atomic. Similarly, by imbedding the canonical `p basis
into Lp one sees that (2.10) is sharp also for the remaining values of p.

Apart from the Chebyshev space C[0, 1] and the Lebesgue space Lp[0, 1],
another function space which is important in applications is the Hölder space
Cα[0, 1] (0 < α < 1) of all continuous functions u for which the norm

||u|| := max
0≤t≤1

|u(t)|+ sup
0≤s<t≤1

|u(s)− u(t)|
|s− t|α

(2.11)

is finite. Unfortunately, a simple compactness criterion in this space is not
known, let alone a formula for some measure of noncompactness. (The com-
pactness criterion given in [46, Ch. II, 4, Theorem 1] is false.) However, in
the so-called little Hölder space Cα

0 [0, 1] of all u ∈ Cα[0, 1] satisfying

lim
|s−t|→0

|u(s)− u(t)|
|s− t|α

= 0, (2.12)

the situation is different.

Theorem 2.5. On the space X = Cα
0 , the measure of noncompactness

(1.10) is equivalent to

γ∗(M) = lim
|s−t|→0

sup
u∈M

|u(s)− u(t)|
|s− t|α

= 0,

in the sense that
γ(M) ≤ γ∗(M) ≤ 2γ(M)

for all bounded sets M ⊂ Cα
0 .

Theorem 2.5 implies, in particular, that a bounded set M ⊂ Cα
0 is precom-

pact if and only (2.12) holds uniformly for u ∈M . For example, any bounded
subset M ⊂ Cβ for β > α is precompact in both Cα and Cα

0 . This shows
that the space Cβ is compactly imbedded into the space Cα for β > α; this is
in contrast to the space Lq which is only continuously imbedded into Lp for
q > p.

We point out that sometimes it is useful to introduce other measures of
noncompactness in special spaces which take into account special properties
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of solutions of a certain problem. For example, if one is interested in monoton-
ically increasing continuous solutions, one may use the following construction
due to [16].

Example 2.4. In the space X = C, consider the function

φ(M) := γ∗(M) + δ(M) (M ⊂ X bounded), (2.13)

where γ∗(M) is defined as in (2.3), and δ(M) by

δ(M) := sup
u∈M

sup {|u(t)− u(s)| − u(t) + u(s) : 0 ≤ s ≤ t ≤ 1}.

It is not hard to see that (2.13) is a Sadovskij functional which has all
properties (1.1) – (1.6) (with λ > 0 in (1.3)), and that δ(M) = 0 if and only
if M consists only of increasing functions. Of course, the equality φ(M) = 0
implies γ∗(M) = 0, and so M is precompact. On the other hand, the converse
is not true, since φ({u}) > 0 for any non-increasing continuous function. This
shows that (2.13) is not a measure of noncompactness in the sense of (1.7).

To give an idea of how to calculate the Sadovskij functional (2.13), consider
the sets M := {u1, u2, u3, . . .} and N := {v1, v2, v3, . . .}, where un(t) := tn and
vn(t) := (1− t)n. A simple calculation shows then that

γ(M) = γ(N) =
1
2
, γ∗(M) = γ∗(N) = 1, δ(M) = 0, δ(N) = 2,

and so φ(M) = 1 and φ(N) = 3. �

3. Linear φ-Lipschitz operators

Let X and Y be two Banach spaces and L : X → Y a bounded linear
operator. Apart from the φ-norm (1.15), there is another characteristic which
measures how far the operator L is from being compact, namely its essential
norm

|||L||| := inf {||L−K|| : K : X → Y compact}. (3.1)

Of course, (3.1) is nothing else but the distance of L from the closed two-
sided ideal K(X,Y ) of all compact operators in the Banach space L(X,Y )
of all bounded linear operators; in particular, |||L||| = 0 if and only if L is
compact. Equivalently, the number (3.1) may be viewed as norm of the class
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of L in the Calkin algebra L(X,Y )/K(X,Y ). From the algebraic subadditivity
(1.17) of the φ-norm and the compactness of the zero operator it follows that

[L]φ ≤ |||L||| ≤ ||L|| (3.2)

for any Lipschitz-compatible measure of noncompactness φ. Of course, every
nonzero compact operator may serve as a trivial example for strict inequality
in the second estimate in (3.2). The problem of finding an example of strict
inequality in the first estimate is much harder; the following example for φ = γ

is taken from [45].

Example 3.1. Consider the product space X = `2 × c of all pairs (x, y) of
square summable sequences x = (ξ1, ξ2, ξ3, . . .) and convergent sequences y =
(η1, η2, η3, . . .), equipped with the Euclidean norm ||(x, y)||2 = ||x||2 + ||y||2,
and let L(x, y) := (0, x). It is evident that L ∈ L(X,X) with ||L|| = 1. We
claim that

|||L||| = 1, [L]γ =
1√
2
. (3.3)

In fact, since the space X has a Schauder basis (en)n, it suffices to show
that ||L−K|| ≥ 1 for any one-dimensional operator K ∈ K(X,X). But every
such operator has the form

K(x, y) =

( ∞∑
n=1

αnξn

)
x0,

where (αn)n ∈ `2 and x0 ∈ X are fixed; for this K we have K(en, 0) =
|αn|x0 → 0, as n→∞.

On the other hand, the second equality in (3.3) follows from the fact that
[L]γ = γ(M), where M = {(0, y) : y ∈ B(c)}. It remains to note that for each
(0, y) ∈M we can find a finite sequence ỹ such that ||y− ỹ|| ≤ 1/

√
2, and the

subset M̃ = {(0, ỹ) : y ∈M} is a compact 1/
√

2-net for M in X. �

It may also happen that |||L||| = ||L|| for some operator L ∈ L(X,Y ). By
(3.2) this means that L is “as noncompact as a linear operator may be”. We
give two examples of this type.

Example 3.2. Given a continuous function a : [0, 1] → R, consider the mul-
tiplication operator A defined by Au(t) = a(t)u(t). Obviously, this operator is
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continuous in the space C, equipped with the ususal maximum norm, and has
norm ||A|| = ||a||. Moreover, since Anu(t) = a(t)nu(t) and ||an|| = ||a||n, the
norm ||A|| of A coincides with its spectral radius r(A). Finally, we have the
equalities

[A]γ = |||A||| = ||A|| = ||a|| (3.4)

for this operator. To see this, suppose that, without loss of generality, a(t) 6≡ 0,
fix ε ∈ (0, ||a||), and choose an open interval I ⊂ [0, 1] such that |a(t)| ≥ ||a||−ε
for t ∈ I. Putting b(t) := 1/a(t) on I and extending b constant outside
I, we may consider the multiplication operator Bv(t) := b(t)v(t) with norm
||B|| = ||b||.

The set M := {u ∈ B(C) : u(t) ≡ 0 for t ∈ [0, 1] \ I} is not precompact,
and so 0 < γ(M) ≤ 1. For u ∈M we have BAu = u, by definition of B, hence

γ(M) = γ(B(A(M))) ≤ ||B||γ(A(M)) = ||b||γ(A(M)) ≤ γ(A(M))
||a|| − ε

.

This implies that [A]γ ≥ ||a|| − ε, and so (3.4) is proved, since ε > 0 was
arbitrary. �

The equalities (3.4) show that the multiplication operator generated by
a continuous function is “extremely noncompact”; in particular, it may be
compact only in the trivial case when a(t) ≡ 0.

Of course, an analogous result holds when a ∈ L∞ and the operator A is
considered in the Lebesgue space Lp (1 ≤ p ≤ ∞). In this case A is compact
if and only if a(t) = 0 almost everywhere in [0, 1].

In the following example we discuss another “extremely noncompact” linear
operator in this sense which plays a prominent role in complex analysis.

Example 3.3. Let D = {z ∈ C : |z| < 1} be the open complex unit disc,
and S1 = ∂D its boundary. Recall that the Hardy space H2 = H2(D) is defined
as set of all complex functions u ∈ L2(S1) for which the norm

||u|| := lim
r↑1

(
1
2π

∫ 2π

0
|û(reiτ )|2 dτ

)1/2

= sup
r<1

(
1
2π

∫ 2π

0
|û(reiτ )|2 dτ

)1/2
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makes sense and is finite; here û is the harmonic extension of u to D defined
through the classical Poisson kernel by

û(z) =
1
2π

∫ 2π

0
u(τ)Re

eiτ + z

eiτ − z
dτ.

Equivalently, one may characterize u ∈ H2 by the property that all Fourier
coefficients of u on S1 with negative indices vanish (and thus û is analytic in
D).

Given a function ϕ : D → D (which we may consider as “change of vari-
ables”), the linear operator Cϕ := u ◦ ϕ, i.e., Cϕu(z) = u(ϕ(z)), is called the
composition operator (or substitution operator) generated by ϕ. It is easy to
see that its inverse (if it exists!) is given by C−1

ϕ = Cϕ−1 ; so Cϕ is invertible if
and only if ϕ ∈ Aut(D). For example, the substitution operator Cϕ generated
by the Möbius transform

ϕ(z) =
a− z

1− az
(a ∈ D) (3.5)

coincides with its inverse, since ϕ−1 = ϕ.

It turns out that one may estimate (or even calculate) the norm and the
essential norm (3.1) of the operator Cϕ in the Hardy space H2(D) completely
in terms of the corresponding function ϕ. Clearly, ||Cϕ|| ≥ 1, since Cϕ keeps
every constant function fixed. Moreover, the norm satisfies the two-sided
estimate [89]

1
2

(
1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

≤ ||Cϕ|| ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

;

in particular, ||Cϕ|| = 1 if ϕ(0) = 0. One may show that in the special case of
the Möbius transform (3.5) the equality

||Cϕ|| =
(

1 + |a|
1− |a|

)1/2

(3.6)

holds; this means that the “size” of the norm is determined by the distance
of a to the boundary of D, and may actually attain any value in the interval
[1,∞).

To calculate the essential norm (3.1) and α-norm (1.15) of Cϕ, we have
to recall a notion from geometric function theory. The Nevanlinna counting
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function Nϕ of ϕ : D → D is defined by

Nϕ(w) :=
∑

0<|z|<1
ϕ(z)=w

log
1
|z|

(w ∈ D).

Now, the “size” of the essential norm (3.1) of Cϕ essentially depends on the
asymptotic behaviour of Nϕ(w) as w approaches the boundary; more precisely,
the equality (see [62,77,89])

[Cϕ]α = |||Cϕ||| = lim
|w|↑1

(
Nϕ(w)
log 1

|w|

)1/2

(3.7)

holds. In particular, for the Möbius transform (3.5) one hasNϕ(w) = logϕ(w),
and so

[Cϕ]α = |||Cϕ||| =
(

1 + |a|
1− |a|

)1/2

.

A comparison with (3.6) shows that the essential norm and the usual norm
of Cϕ coincide for ϕ as in (3.5), and so the composition operator generated by
a Möbius transform is as “noncompact” as a linear operator may be. On the
other hand, for the function ϕ(z) := 1

2(z + 1), say, we have

||Cϕ|| =
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

=
√

3, [Cϕ]α = |||Cϕ||| = lim
r↑1

log(2r − 1)
log r

= 2,

while for the function ϕ(z) := 1
3(z + 1) we have

||Cϕ|| =
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

= 2, [Cϕ]α = |||Cϕ||| = 0.

In general, one may show that Cϕ is compact if the image ϕ(D) of D under
ϕ is bounded away from S1. �

Formula (3.7) shows that the composition operator Cϕ is compact in the
Hardy space H2 if and only if Nϕ(w) = o(log 1/|w|) as |w| ↑ 1. There is a gen-
eralization to Hardy spaces Hp which reads as follows [78]: In case p ≤ q, the
operator Cϕ : Hp → Hq is bounded if and only if Nϕ(w) = O([log 1/|w|]2q/p) as
|w| ↑ 1, and Cϕ : Hp → Hq is compact if and only if Nϕ(w) = o([log 1/|w|]2q/p)
as |w| ↑ 1.

Many linear compact operators may be represented as matrix operators in
sequence spaces or integral operators in function spaces. While we will treat
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integral operators in the next section, we will briefly discuss matrix operators
in `p the following theorem and example. Suppose that a linear operator
A : `p → `q (1 ≤ p, q ≤ ∞) is given by some infinite matrix (αij)ij , i.e.,
A(ξ1, ξ2, ξ3, . . .) = (η1, η2, η3, . . .) with

ηi =
∞∑

j=1

αijξj (i = 1, 2, 3, . . .).

In this case one may consider the mixed norms

[α]p,q := ||(||(αij)j ||p′)i||q, [α]∗p,q := ||(||(αij)i||q)j ||p′ (3.8)

of this matrix, where p′ = p/(p − 1) as usual. It is well-known that A ∈
L(`p, `q) if one of the numbers in (3.8) is finite; moreover, the smaller of these
numbers may serve as an upper bound for the norm of A. In some cases
one of the numbers in (3.8) are even equal to the norm of A; for example,
||A||`1→`q = [α]∗1,q for 1 ≤ q ≤ ∞, and ||A||`p→`∞ = [α]p,∞ for 1 ≤ p ≤ ∞.

Concerning the compactness of the operator A which corresponds to the
matrix (αij)ij , we use the abbreviation

γp,q(α) :=



inf
k,m

sup
j≥m

∞∑
i=k

|αij |q if p = 1 and 1 ≤ q <∞,

inf
k,m

sup
j≥m

sup
i≥k

|αij | if p = 1 and q = ∞,

inf
k,m

sup
i≥k

∞∑
j=m

|αij |p
′

if 1 ≤ p <∞ and q = ∞.

(3.9)

We summarize with the following

Theorem 3.1. Suppose that one of the numbers in (3.8) is finite. Then the
operator A given by the matrix (αij)ij is always compact between `p and `q in
case 1 < p ≤ ∞ and 1 ≤ q <∞. In all the other cases the estimate

[A]γ ≤ γp,q(α)

holds, with γp,q(α) given by (3.9). In particular, A is compact if γp,q(α) = 0.
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Example 3.4. We illustrate Theorem 3.1 by means of the matrix operator

Aτ :=



1 τ τ2 τ3 τ4 ...

1− τ 2(1− τ)τ 3(1− τ)τ2 4(1− τ)τ3 . ...

(1− τ)2 3(1− τ)2τ 6(1− τ)2τ2 . . ...

(1− τ)3 4(1− τ)3τ . . . ...

(1− τ)4 . . . . ...

. . . . . ...

. . . . . ...


generated by a fixed real number τ ∈ (0, 1). For simplicity, we restrict ourselves
to the cases p = q = 1 and p = q = ∞. Since the increasing diagonals of this
matrix contain the binomial expansion of ((1− τ) + τ)n = 1, the sum of each
column is 1/τ , and the sum of each row is 1/(1− τ). So from our calculation
above we see that

||A||`1→`1 = [α]∗1,1 = sup
j

∑
i

|αij | =
1

1− τ
,

||A||`∞→`∞ = [α]∞,∞ = sup
i

∑
j

|αij | =
1
τ
.

Moreover, by Theorem 3.1 we get for the γ-norm of A in `1 the estimate

[A]γ ≤ γ1,1(α) = inf
k,m

sup
j≥m

∞∑
i=k

αij = inf
k,m

sup
j≥m

τ j−1

(j − 1)!

∞∑
i=k

(i+ j − 2)!
(i− 1)!

(1− τ)i−1,

and in `∞ the estimate

[A]γ ≤ γ∞,∞(α) = inf
k,m

sup
i≥k

∞∑
j=m

αij = inf
k,m

sup
i≥k

(1− τ)i−1

(i− 1)!

∞∑
j=m

(i+ j − 2)!
(j − 1)!

τ j−1.

The remaining cases for p and q may be treated taking into account the
monotonicity behaviour of the expression

αi+1j+1 =

(
i+ j

j

)
(1− τ)iτ j =

(i+ j)!
i!j!

(1− τ)iτ j

with respect to i and j, and using the corresponding mixed norms (3.8). �
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Similarly, one may show that a matrix operator A is bounded from c0 into
itself if and only if ||A|| = [α]∞,∞ <∞ and

lim
i→∞

αij = 0 (j = 1, 2, 3, . . .).

Moreover, building on Theorem 2.3 one may give upper estimates for the
γ-norm [A]γ of A, and hence sufficient compactness criteria, in terms of as-
ymptotic properties of the matrix elements αij .

To conclude this section, we briefly compare the φ-norm of a linear operator
L ∈ L(X,Y ) and its adjoint operator L∗ ∈ L(Y ∗, X∗) defined, as usual, by
the duality 〈Lx, y∗〉 = 〈x, L∗y∗〉 for x ∈ X and y∗ ∈ Y ∗.

Theorem 3.2. For L ∈ L(X,X), the estimates

1
2
[L]φ ≤ [L∗]φ ≤ 2[L]φ (φ ∈ {α, β, γ}) (3.10)

and
[L∗]α ≤ [L]γ , [L]α ≤ [L∗]γ

hold in every Banach space X. If X is a Hilbert space, one has

[L∗]φ = [L]φ, [L]φ = [L∗L]1/2
φ (φ ∈ {α, β, γ}), (3.11)

and so [L]α ≤ [L]γ. Finally, if X is a Hilbert space and L is normal, one even
has

[L]φ = lim
n→∞

[Ln]1/n
φ (φ ∈ {α, β, γ}).

We do not present the proof of this theorem (see [31, Chapter 1]) which
in part relies on the fact that the φ-norm of a linear operator may be simply
calculated by [L]φ = φ(L(S(X))). Instead, we use the operator from Example
3.1 to show that the numbers [L]φ and [L∗]φ, in contrast to the norms ||L||
and ||L∗||, in general do not coincide.

Example 3.5. Let L : `2 × c→ `2 × c be defined as in Example 3.1. Then
the adjoint operator L∗ : `1 × `2 → `1 × `2 is given by L∗(x, y) = (0, Ux),
where U ∈ L(`2, `2) is the left-shift operator U(ξ1, ξ2, ξ3, . . .) = (ξ2, ξ3, ξ4, . . .).
It is readily seen that

[L∗]γ = γ(B(`1)) = 1 >
1√
2

= [L]γ ,
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by (3.3), and so (3.11) may fail in Banach spaces which are not Hilbert. �

Considering the operator L from Example 3.1 in X = `p×c, for p arbitrarily
large, and its adjoint L∗ in X∗ = `1 × `p/(p−1), one may show by a similar
reasoning that [L∗]γ ≥ 21/p[L]γ , and so the second estimate in (3.10) is sharp.
Likewise, replacing L by L∗ we may conclude that [L]γ ≥ [L∗∗]γ ≥ 21/p[L∗]γ ,
and so the first estimate in (3.10) is sharp as well.

We remark that, apart from the φ-norm (1.15) and the essential norm (3.1),
there are other possibilities to measure the “noncompactness” of a bounded
linear operator. For instance, in Section 2.4 of [3] the authors consider the
so-called λ-norm

[L]λ := inf
codim U<∞

||L|U ||, (3.12)

where the infimum runs over all subspaces U of X of finite codimension. How-
ever, it is also shown in [3, Theorem 2.5.2] that

[L]λ = [L∗]γ ,

so the definition (3.12) does not give any new information on L. From Theorem
3.2 it follows, in particular, that [L]λ = [L∗]λ in any Hilbert space X.

4. Applications to imbeddings and integral operators

In this section we show that even for linear operators one may get inter-
esting information based on the φ-norm (1.15) which characterizes the “non-
compactness” of these operators. We start with imbeddings between Sobolev
spaces.

Given some bounded domain Ω ⊂ RN , by W k
2 = W k

2 (Ω) we denote the
Sobolev space of all measurable functions u : Ω → R whose (distributional)
derivatives Dαu belong to L2 = L2(Ω) for 0 ≤ |α| ≤ k. For 0 ≤ m ≤ k, the
imbedding JΩ : W k

2 (Ω) ↪→Wm
2 (Ω) is a bounded linear operator with norm

||JΩ|| = sup

 ∑
|α|≤m

(∫
Ω
|Dαu(x)|2 dx

)1/2

: ||u||W k
2 (Ω) ≤ 1

 . (4.1)

Now, if the boundary ∂Ω of Ω is sufficiently smooth, the imbedding JΩ is
even compact in case m < k. Conversely, there are examples of “irregular”
domains Ω for which JΩ is not compact, hence α(JΩ) > 0. Of course, since
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the imbedding cannot have norm greater than 1, one has the simple upper
estimate α(JΩ) ≤ 1. So the question arises how to get more precise estimates
for α(JΩ) building on the “geometry” of ∂Ω.

This problem was completely solved by Amick [6] in the following way.
Given ε > 0, denote by Ωε the “boundary layer” consisting of all x ∈ Ω with
dist (x, ∂Ω) < ε, and define ΓΩ(ε) > 0 by

ΓΩ(ε) := sup

 ∑
|α|≤m

(∫
Ωε

|Dαu(x)|2) dx
)1/2

: ||u||W k
2 (Ω) ≤ 1

 . (4.2)

So the only difference to (4.1) is that the integral is taken only over the
boundary layer Ωε instead of Ω, and so ΓΩ(ε) ≤ ||JΩ|| for sufficiently small
ε > 0. Clearly, the function (4.2) is monotonically increasing in ε, and so the
limit

ΓΩ := lim
ε↓0

ΓΩ(ε) (4.3)

exists. It turns out that the number (4.3) is zero if and only if the imbedding
JΩ is compact. More generally, in [6] the following remarkable formula has
been proved.

Theorem 4.1. With ΓΩ as in (4.3), the equality

[JΩ]α = ΓΩ

holds, where α denotes the Kuratowski measure of noncompactness (1.8).

In the paper [6] one may also find an example of an extremely “badly
behaved” domain Ω for which the worst case ΓΩ = 1 is true. There is also
an interesting connection with the well-known Poincaré inequality: one has
ΓΩ < 1 (i.e., the imbedding JΩ is α-condensing) if and only if the Poincaré
inequality holds over Ω. By the way, the fact that only the boundary layer
Ωε has an influence on the behaviour of ΓΩ(ε) from (4.2) illustrates what we
meant with our “Golden Rule” in the Introduction.

We pass now to the second group of applications, viz. linear integral oper-
ators. It is well-known that Volterra-type integral operators of the type

Ku(s) =
∫ s

0
k(s, t)u(t) dt (0 ≤ s ≤ 1) (4.4)
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are often compact, provided that the generating kernel function k is sufficiently
“well-behaved”. However, if k exhibits some singular behaviour near the end-
points 0 or 1 of the underlying interval, the operator K may be noncompact,
and so the problem arises to estimate or even calculate its measure of noncom-
pactness. As a sample result, we consider an operator with degenerate kernel
function.

Example 4.1. Consider the Volterra operator (4.4) with kernel function
k(s, t) = σ(s)τ(t), i.e.

Ku(s) = σ(s)
∫ s

0
τ(t)u(t) dt (0 ≤ s ≤ 1). (4.5)

For 1 < p <∞ and 0 ≤ a ≤ b ≤ 1, put

ωa,b(s) :=
(∫ b

s
|σ(t)|p dt

)1/p(∫ s

a
|τ(t)|p′ dt

)1/p′

,

where p′ = p/(p− 1), and

ω := sup
0<s<1

ω0,1(s).

In [48] it was shown that the norm of the operator (4.5) in the space Lp

satisfies the two-sided estimate

ω ≤ ||K|| ≤ p1/p(p′)1/p′ω,

and these estimates are sharp. Moreover, let

ω0 := lim
ε↓0

[
sup

0<s<ε
ω0,ε(s) + sup

1−ε<s<1
ω1−ε,1(s)

]
. (4.6)

In [79] (for p = 2) and [48] (for general p) it was shown that the γ-norm of
the operator (4.5) in Lp can be estimated by

2−(1+1/p)ω0 ≤ [K]γ ≤ p1/p(p′)1/p′ω0; (4.7)

in particular, K is compact in Lp if and only if ω0 = 0. In other words, only
the “boundary behaviour” of the function ω0,1 decides on the compactness or
noncompactness of the operator (4.5), again in accordance with our “Golden
Rule” stated in the Introduction. �
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In the next example we consider another noncompact integral operator
which is of fundamental importance in Fourier analysis and distribution the-
ory.

Example 4.2. Consider the (truncated) singular Hilbert transform

Hu(s) =
1
π

∫ 1

−1

u(t)
s− t

dt (−1 ≤ s ≤ 1). (4.8)

The operator H in (4.8) is bounded in any Lebesgue space Lp[−1, 1] for
1 < p < ∞, but neither in L1 nor in L∞. To the best of our knowledge, the
most precise upper and lower estimates for its norm ||H||p in the space Lp

which are presently known are [60]

− cot
π

p
≤ ||H||p ≤ tan

π

2p
if 1 < p ≤ 4

3
,

1 ≤ ||H||p ≤ tan
π

2p
if

4
3
≤ p ≤ 2,

1 ≤ ||H||p ≤ cot
π

2p
if 2 ≤ p ≤ 4,

cot
π

p
≤ ||H||p ≤ cot

π

2p
if 4 ≤ p <∞.

(4.9)

Observe, in particular, that

||H||2 = min {||H||p : 1 < p <∞} = 1

and

lim
p→1

||H||p = lim
p→∞

||H||p = ∞. (4.10)

On the other hand,

[H]α = [H]γ ≡ 1, (4.11)

no matter what p is. This discrepancy between the α-norm (4.11) of H and the
fact that its norm “blows up” if we want to consider this operator either in a
particularly “large” Lebesgue space (i.e., for p close to 1), or in a particularly
“narrow” Lebesgue space (i.e., for p very large), may become important in
applications (see Example 9.3 below).
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5. Fredholm operators and essential spectra

Recall that an operator L ∈ L(X,Y ) is called right semi-Fredholm (L ∈
Φ+(X,Y )) if its nullspace N(L) = {x ∈ X : Lx = 0} is finite dimensional
and its range R(L) = {Lx : x ∈ X} is closed. Similarly, L is called left semi-
Fredholm (L ∈ Φ−(X,Y )) if its range R(L) is closed and has finite codimen-
sion. Every operator L ∈ Φ(X,Y ) := Φ+(X, y)∩Φ−(X,Y ) is called Fredholm
operator, the number indL := dimN(L)− codimR(L) ∈ Z its index.

The following theorem establishes a connection between Fredholmness and
the lower φ-norm (1.23). We restrict ourselves to the Kuratowski measure
of noncompactness (1.8). As before, L∗ denotes the adjoint operator L∗ ∈
L(Y ∗, X∗) of L ∈ L(X,Y ).

Theorem 5.1. One has L ∈ Φ+(X,Y ) if and only if [L]−α > 0, and L ∈
Φ−(X,Y ) if and only if [L∗]−α > 0. Consequently, L is a Fredholm operator if
and only if both [L]−α > 0 and [L∗]−α > 0.

The proof of Theorem 5.1 uses the fact that the finite dimensional sub-
space N(L) has a closed complemented subspace X0, and that the canonical
isomorphism L|X0 : X0 → R(L) has a positive lower α-norm [L|X0 ]

−
α .

Fredholm operators may also be characterized by another construction
which may be found in [73] or [3]. Given a Banach space X with norm || · ||,
let us denote by BX the Banach space of all bounded sequences (xn)n in X,
equipped with the norm

||(xn)n|| := sup
n

||xn||.

Clearly, the subset KX of all sequences (xn)n ∈ BX whose range
{x1, x2, x3, . . .} is precompact in X is a closed subspace of BX, and so we
may consider the quotient space X# := BX/KX with the natural norm

||(xn)n +KX||# := inf {||(x̃n)n|| : (xn − x̃n)n ∈ KX} = dist ((xn)n,KX).

It is not hard to see that then ||(xn)n + KX||# = γ({x1, x2, x3, . . .}), i.e.,
the quotient norm of a sequence (xn)n ∈ BX in X# is nothing else but the
measure of noncompactness of its range in X. More generally, every measure
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of noncompactness φ on X induces in a natural way a norm || · ||#φ on X# by
means of the formula

||(xn)n +KX||#φ := φ({x1, x2, x3, . . .}). (5.1)

It turns out that the functorial map X 7→ X# may be used to give an easy
characterization of Fredholm operators. Given two Banach spaces X and Y

with corresponding quotient spaces X# and Y #, respectively, we associate to
each operator L ∈ L(X,Y ) an operator L# : X# → Y # by putting

L#((xn)n +KX) := (Lxn)n +KY.

Since L maps BX into BY and KX into KY , the operator L# is well-
defined. It is not hard to see that the map L 7→ L# is a covariant additive
functor, i.e., (L1 + L2)# = L#

1 + L#
2 and (L2L1)# = L#

2 L
#
1 . The following

theorem may be regarded as a refomulation of Theorem 5.1 in terms of the
map L 7→ L#, by (5.1); the proof of this theorem may be found in Section 2.3
of [3].

Theorem 5.2. One has L ∈ Φ+(X,Y ) if and only if L# : X# → Y # is
injective, and L ∈ Φ−(X,Y ) if and only if (L∗)# : (Y ∗)# → (X∗)# is injective.
Consequently, L is a Fredholm operator if and only if L# : X# → Y # is
bijective.

Now we recall a well-known connection between Fredholm operators and
essential spectra. Let X be a Banach space and L ∈ L(X,X). The es-
sential spectrum σe(L) is the spectrum of L induced in the Calkin algebra
L(X,X)/K(X,X) over X, i.e.,

σe(L) =
⋂

Kcompact

σ(L−K). (5.2)

Equivalently, the scalars λ ∈ K \ σe(L) are characterized by the property
that λI − L is a Fredholm operator of index zero; therefore, the set (5.2) is
sometimes called the Fredholm spectrum of L. Likewise, it is reasonable to call
the number

re(L) := sup {|λ| : λ ∈ σe(L)}

the essential spectral radius or Fredholm spectral radius of L. Interestingly, this
radius satisfies a Gel’fand-type formula, as the usual spectral radius, with the
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norm ||L|| replaced by the α-norm (1.15). In fact, if X is a complex Banach
space and L ∈ L(X,X), then the equalities

re(L) = inf
n

[Ln]1/n
α = lim

n→∞
[Ln]1/n

α (5.3)

is true; for a short proof see [27]. If X is a real Banach space one has to pass
to the so-called complexification XC of X which consists, by definition, of all
ordered pairs (x, y) ∈ X ×X, written usually x+ iy. The set XC is equipped
with the algebraic vector space operations (x+iy)+(u+iv) := (x+u)+i(y+v)
and (µ+ iν)(x+ iy) := (µx− νy) + i(νx+ µy) (µ, ν ∈ R). A natural norm on
XC is the so-called projective tensor norm defined by

||x+ iy|| := inf
n∑

k=1

|λk| ||zk||,

where the infimum is taken over all possible representations of the form x+iy =
λ1z1 + . . . + λnzn with λ1, . . . , λn ∈ C and z1, . . . , zn ∈ X. Equivalently [54],
one may define a norm on XC by

||x+ iy|| := max
0≤t≤2π

||(cos t)x+ (sin t)y||.

Given a real Banach space X and an operator L ∈ L(X,X), one may extend
L to an operator LC ∈ L(XC, XC) putting L(x+ iy) := Lx+ iLy. It is readily
seen that then

||LC|| = ||L||, [LC]α = [L]α, [LC]−α = [L]−α ,

and so L and LC have the same essential spectral radius, by (5.3).

It is well-known that, although the spectral radius r(L) of a bounded linear
operator L may be strictly less than its norm, for any ε > 0 one may always
find a norm || · ||∗ which is equivalent to the original norm || · || on X and such
that r(L) ≤ ||L||∗ ≤ r(L) + ε, where ||L||∗ denotes the operator norm of L in
(X, || · ||∗). Roughly speaking, this means that one may interpret the spectral
radius of an operator L ∈ L(X,X) in the form

r(L) = inf {||L||∗ : || · ||∗ ∼ || · ||},

where the infimum is taken over all norms which are equivalent to the original
norm on X. There is a parallel result for the essential spectral radius (5.3)
called Leggett’s theorem [56] which states that for any ε > 0 one may always
find a norm || · ||∗ which is equivalent to the projective tensor norm || · || on
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XC and such that re(L) ≤ [LC]∗α ≤ re(L)+ ε, where [LC]∗α denotes the α-norm
(1.15) of LC in (XC, || · ||∗), and re(L) is given by (5.3).

There is another characteristic for bounded linear operators which is of some
interest in spectral theory. Given L ∈ L(X,X), the number

oLo :=

 ||L−1||−1 if L is bijective,

0 otherwise

is called inner norm of L (see [3]). This number is closely related to the inner
spectral radius

ri(L) := inf {|λ| : λ ∈ σ(L)},

inasmuch as the formula

ri(L) = lim
n→∞

oLno1/n (5.4)

holds true, which is of course the analogue to the classical Gel’fand formula
for the spectral radius. In fact, for any bijection L ∈ L(X,X) we have

ri(L) = inf {|λ| : λ ∈ σ(L)}

=
1

sup {|λ|−1 : λ ∈ σ(L)}
=

1
sup {|µ| : µ ∈ σ(L−1)}

=
1

r(L−1)
=

1

lim
n→∞

||L−n||1/n
= lim

n→∞
||L−n||−1/n = lim

n→∞
oLn o1/n .

If L is not bijective, then Ln is not bijective either for any n, and both sides
in (5.4) are zero.

We illustrate our discussion by means of a classical integral equation which
involves a nice “interaction” between complex analysis, Fredholm theory, and
essential spectra.

Example 5.1. We denote by L1(R,C) the usual Banach space of complex
integrable functions on the real line. Given k, v ∈ L1(R,C), consider the
Wiener-Hopf equation

λu(s)−
∫ +∞

−∞
k(s− t)u(t) dt = v(s) (−∞ < s <∞), (5.5)
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where λ ∈ C is fixed. We may rewrite (5.5) as operator equation λu−Lu = v,
where L is the linear operator defined by the integral term in (5.5). Applying
the Fourier transforms to both sides of (5.5) yields

λû(σ)− k̂(σ)û(σ) = v̂(σ) (−∞ < σ <∞), (5.6)

since the Fourier transform maps convolutions into pointwise products. Now,
from the continuity of k̂ and the fact that

k̂(±∞) := lim
σ→±∞

k̂(σ) = 0

it follows that Γλ := {λ − k̂(σ) : −∞ ≤ σ ≤ +∞} is a closed contour in the
complex plane. Clearly, in case k̂(σ) 6= λ equation (5.6) may be solved to get
û and, subsequently, u, provided we know the antitransform of the function
σ 7→ v̂(σ)/(λ − k̂(σ)). In fact, it may be shown that λI − L is a Fredholm
operator on L1(R,C) if and only if k̂(σ) 6= λ for all σ ∈ [−∞,+∞]. For the
index of this operator we get then the nice formula

ind (λI − L) = −w(Γλ, 0)

involving the winding number w(Γλ, 0) of Γλ around the origin. Moreover, one
may show that

σ(L) = σe(L) = {k̂(σ) : −∞ ≤ σ ≤ +∞}

and so

re(L) = max {|k̂(σ)| : −∞ ≤ σ ≤ +∞}.

For the special example k(s) = e−|s|, say, we have k̂(σ) = 2/(σ2 + 1) and
thus σ(L) = σe(L) = [0, 2], since Γλ does not wind around the origin for
λ ∈ C \ [0, 2].

From Theorem 5.1 it follows that [λI − L]−α > 0 for λ 6∈ [0, 2], while from
Theorem 5.2 it follows that the operator (λI − L)# = λI − L# is a bijection
for λ 6∈ [0, 2]. Unfortunately, these two conditions are hard to verify directly
even in this simple example. �

Our discussion suggests that there might be a relation between the essential
spectrum of an invertible operator, on the one hand, and the φ-norm of its
inverse, on the other. This is in fact true; we illustrate this in the simplest
case of a Hilbert space X. Let L ∈ L(X,X) be a self-adjoint (i.e., 〈Lu, u〉 =
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〈u, Lu〉), densely defined (i.e., D(L) = X) and positive (i.e., 〈Lu, u〉 ≥ 0)
operator, and suppose that 0 6∈ σ(L), so the inverse operator R = L−1 exists
on the range R(L) of L. Under these hypotheses, the essential spectrum of L
has the form σe(L) = [σ0,∞), with a suitable σ0 > 0. Now, since 0 6∈ σ(L), we
may consider the inverse operator R = L−1 in X. Let {Eλ}λ be the spectral
decomposition of L, and fix 0 < ε < σ0. We have then

R =
∫ +∞

−∞
λ−1 dEλ =

∫
|λ|>ε

λ−1 dEλ +
∫
|λ|≤ε

λ−1 dEλ =: R1 +R2. (5.7)

But ||R1|| ≤ 1/ε, by construction, and R2 is finite dimensional, hence com-
pact. This implies that

[R]γ ≤ [R1]γ + [R2]γ ≤ ||R1||+ 0 ≤ 1
ε
.

Since ε < σ0 was arbitrary, we conclude that

[L−1]γ ≤
1

inf σe(L)
. (5.8)

This result is very suggestive: the smaller the essential spectrum of L, the
“more compact” the inverse operator L−1. This “quantifies” the classical re-
sult that, loosely speaking, the operators with purely discrete spectrum (i.e.,
σe(L) = ∅) are those which have compact resolvents. Some applications of
this result to differential operators will be given in the next section.

6. Applications to differential operators

As we have seen, estimating or calculating the measure of noncompactness
of the inverse of a differential operator amounts to estimating or calculating
the infimum of the essential spectrum of this operator. We consider now some
special examples where this may be made more precise.

Example 6.1. Consider the second order Sturm - Liouville operator

Lu(t) =
d

dt
p(t)

d

dt
u(t) + q(t)u(t) (0 ≤ t < 1)

in the Hilbert space L2 = L2[0, 1]. Here we assume that p is twice differentiable
and singular near t = 1 in the sense that∫ 1

0

dt√
p(t)

= ∞;
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thus, the coefficient function p may not be removed by means of the classical
Liouville transform. As a consequence, the essential spectrum of L has the
form σe(L) = [σ0,∞), where

σ0 = lim
t→1

{
1
4
p′′(t)− 1

16
p′(t)2

p(t)
+ q(t)

}
(see, e.g., [30, p. 1500]). Now, if σ0 > 0 and 0 6∈ σ(L), the operator R = L−1

exists and satisfies [R]α ≤ 1/σ0, by (5.8). �

Example 6.2. Consider the symmetric differential operator of order 2m

Lu(t) =
m∑

k=0

(−1)kak
d2k

dt2k
u(t) = a0u(t)− a1u

′′(t) +− . . .+ (−1)mamu
(2m)(t)

(−∞ < t <∞), with constant real coefficients a0, a1, . . . , am. Here the essen-
tial spectrum of L in L2 = L2(R) has the form σe(L) = [σ0,∞), where

σ0 = inf
τ>0

m∑
k=0

akτ
2k,

(see, e.g., [61]). In particular, if all coefficients a0, a1, . . . , am are nonnegative,
we simply have σe(L) = [a0,∞). In other words, all terms containing deriva-
tives of u do not affect the compactness behaviour of L−1 (if it exists). �

Example 6.3. The preceding scalar examples also extend to some ordinary
differential operators with variable coefficients, and even to elliptic partial
differential operators. As a model example, consider the Schrödinger type
operator

Lu(x) = −∆u(x) + q(x)u(x) (x ∈ RN ), (6.1)

where the potential q is assumed to be bounded away both from 0 and ∞,
i.e., 0 < c ≤ q(x) ≤ C < ∞. By adoperating the classical technique of Weyl
sequences, one may calculate the number σ0 = inf σe(L) also in this case, and
then apply the estimate (5.8) for the γ-norm of L−1 in case 0 6∈ σ(L).

In a physical interpretation, the eigenvalues of L (= “ground states” or
“bound states”) form the discrete part, and the elements in σe(L) (= “scat-
tering states”) the essential part of the whole spectrum. So the resolvent
operator R = L−1 is “more” compact (i.e., [R]γ is small) if there are only
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“high energy scattering states” (i.e., inf σe(L) is large). If there are no scat-
tering states at all (i.e., σe(L) = ∅), then the resolvent of L is compact, and
one only has a sequence of discrete energy levels of finite multiplicity. �

Many other more sophisticated examples of type (6.1) in which it is possi-
ble to give lower estimates for the essential spectrum of L, may be found in
Chapter 10 of the book [31].

7. Nonlinear φ-Lipschitz operators

In this section we start with the “nonlinear part” of this survey. Many
nonlinear problems in function spaces may be written as operator equation

Lu = F (u), (7.1)

where L is some linear operator (e.g., a differential operator), and F denotes
the Nemytskij operator (or superposition operator)

F (u)(x) := f(x, u(x)) (7.2)

generated by some function of two variables f : Ω × R → R, with Ω being
some suitable domain in RN . Important examples have been given in Section
6, where L is an (ordinary or partial) differential operator on some function
space, and so (7.1) may be regarded as an (ordinary or partial) differential
equation. We will discuss such problems in Section 9 below.

Now, suppose that the operators L and F are continuous between two Ba-
nach spaces X and Y , and the linear part L is invertible on its range. Then
equation (7.1) may be equivalently transformed into the equation

u = L−1F (u), (7.3)

which is a fixed point problem for the operator A = L−1F in the space X.
Later (see Theorems 8.1 and 8.2 below) we will see that, loosely speaking, this
fixed point problem has a solution whenever the φ-norms [L−1]φ and [F ]φ are
not “too big”, where φ is a suitable measure of noncompactness on X. So we
are led to the problem of estimating (or even calculating) the φ-norm [L−1]φ
in terms of the coefficients of the differential operator L, as well as the φ-norm
[F ]φ in terms of the generating function f . The first problem has been solved
in part in Section 6 for some differential operators. In this section we will
focus on the problem of calculating [F ]γ for the Nemytskij operator (7.2).



MEASURES OF NONCOMPACTNESS 193

To this end, we consider, apart from the Lipschitz constant

Lip(F ) = inf {k > 0 : ||F (u)− F (v)|| ≤ k||u− v|| (u, v ∈ X)}

of the operator F : X → X, the Lipschitz constant

Lip(f(x, ·)) := inf {k > 0 : |f(x, u)− f(x, v)| ≤ k|u− v| (x ∈ Ω; u, v ∈ R)}

of the scalar function f(x, ·) : R → R. It is not hard to see that, in case
of the function spaces X = C[0, 1] or X = Lp[0, 1], the estimate Lip(F ) ≤
Lip(f(x, ·)) is true. However, the following result [7,8] is not completely trivial:

Theorem 7.1. In the function spaces X = C[0, 1] and X = Lp[0, 1] for
1 ≤ p ≤ ∞, the equality

[F ]γ = Lip(F ) = Lip(f(x, ·)) (7.4)

is true.

Of course, one has to prove here only the estimate [F ]γ ≥ Lip(f(x, ·)), and
this may be done by constructing special sets M ⊂ X for which γ(M) = 1
and γ(F (M)) = Lip(f(x, ·)) (see [7]).

One might ask whether or not the equality (7.4) holds in all function spaces.
This is far from being true. In the following two theorems we give results which
are in sharp contrast to Theorem 7.1; for the proof see Chapters 7 and 8 of
the book [11]. Here we consider the space C1 = C1[0, 1] of all continuously
differentiable real functions u, equipped with the norm

||u|| := max
0≤t≤1

|u(t)|+ max
0≤t≤1

|u′(t)|,

and the Hölder space Cα = Cα[0, 1] (0 < α < 1) equipped with the norm
(2.11).

Theorem 7.2. In the function space X = C1, one has [F ]γ <∞ whenever
f is continuously differentiable with bounded derivatives. More precisely, in
this case the estimate

[F ]γ ≤ sup
−∞<u<∞

max
0≤t≤1

∣∣∣∣∂f(t, u)
∂u

∣∣∣∣
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holds. On the other hand, one has Lip(F ) < ∞ if and only if the function f

has the form
f(t, u) = a(t) + b(t)u (7.5)

with two functions a, b ∈ C1.

Theorem 7.3. In the function space X = Cα, one has [F ]γ <∞ whenever
the function f satisfies a Lipschitz condition in both variables. On the other
hand, one has Lip(F ) < ∞ if and only if the function f has the form (7.5)
with two functions a, b ∈ Cα.

Theorems 7.2 and 7.3 exhibit a striking “degeneracy” phenomenon of the
Nemytskij operator in the spaces C1 and Cα (which, by the way, holds in
many other function spaces): the Nemytskij operator (7.2) satisfies a Lipschitz
condition in the norm of these spaces only if the function f(t, ·) is affine. So,
if one wants to apply the Banach-Caccioppoli contraction mapping theorem
in these spaces to some problem involving Nemytskij operators, one can do
so only if this problem is actually linear! On the other hand, Theorems 7.2
and 7.3 also show that, in contrast, a more general fixed point theorem which
we will discuss in the next section, applies to a fairly large class of nonlinear
problems in these spaces.

8. The Darbo fixed point theorem

Probably the most important fixed point theorems in nonlinear analysis are
the Schauder fixed point theorem and the Banach-Caccioppoli fixed point theo-
rem. The first one states that a compact operator A which maps a nonempty,
closed, convex, bounded subset M of a Banach space into itself, has a fixed
point in M . The second states (in a special form) that the same is true if
the compactness requirement on A is replaced by the condition Lip(A) < 1,
see (1.20), which means that A is a contraction. In this case, one even has
uniqueness of the fixed point in M , and the fixed point may be constructed
explicitly by means of the usual successive approximations.

These two fixed point theorems are apparently completely independent of
each other, since the crucial condition on A is quite different: in Banach’s
theorem the operator A has to decrease distances, but may map balls into
(smaller) “massive” balls, while in Schauder’s theorem the operator A may
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enlarge distances, but must map balls into strongly “rarefied” subsets, i.e.
without interior points. It turns out, however, that both theorems may be
regarded as special cases of another fixed point theorem which “bridges” their
apparently quite different character: this is Darbo’s celebrated fixed point
theorem which he formulated in 1955 for the case of the Kuratowski measure
of noncompactness [25]:

Theorem 8.1. Let X be a Banach space, M ⊂ X a nonempty, closed,
convex, bounded subset, and A : M → M an α-condensing operator, i.e.,
[A]α < 1. Then A has a fixed point in M .

Since Theorem 8.1 is at the very heart of this survey, we briefly sketch the
idea of the proof. Define a sequence (Mn)n of subsets of M by putting

M1 := coA(M), M2 := coA(M1), . . . ,Mn+1 := coA(Mn),

and let M∞ denote the intersection of all sets Mn. It is easy to see that M∞

is compact and A(M∞) ⊆ M∞. The only nontrivial part is to show that
M∞ 6= ∅; this follows from a Cantor type intersection property of the measure
of noncompactness α which was proved in [55]. So Schauder’s fixed point
theorem implies that A has a fixed point in M∞ ⊆M as claimed.

Let us make some remarks on Theorem 8.1. First of all, the difficulty in
proving M∞ 6= ∅ may be overcome by fixing in advance a point x0 ∈ M and
defining the sequence (Mn)n alternatively by

M1 := co [A(M) ∪ {x0}], M2 := co [A(M1) ∪ {x0}], . . . ,

Mn+1 := co [A(Mn) ∪ {x0}].

We also point out that, in case M = B(X), one may assume without loss of
generality that A vanishes on the boundary S(X). In fact, from A : B(X) →
B(X) one may pass to the operator Ã : B(X) → B(X) defined by

Ã(x) :=


1
2A(2x) if ||x|| ≤ 1

2 ,

(1− ||x||)A
(

x
||x||

)
if 1

2 < ||x|| ≤ 1.

Clearly, this operator satisfies [Ã]α = [A]α and, in addition, Ã(x) ≡ 0 on
S(X). It is easy to see that Ã cannot have fixed points x∗ of norm ||x∗|| > 1

2 ,



196 J. APPELL

since for any such x∗ we would have

1
2
< ||x∗|| = (1− ||x∗||)

∣∣∣∣∣∣∣∣A( x∗

||x∗||

)∣∣∣∣∣∣∣∣ ≤ 1
2

∣∣∣∣∣∣∣∣A( x∗

||x∗||

)∣∣∣∣∣∣∣∣ ≤ 1
2
.

So we see that the homeomorphism x 7→ 2x is a 1-1 correspondence between
the fixed points of Ã in B1/2(X) and the fixed points of A in B(X). This fact
will be used in Section 14 below in connection with nonlinear spectral theory.

A scrutiny of the proof of Theorem 8.1 shows that we did not use the
special definition of the Kuratowski measure of noncompactness α, but only its
regularity (1.7), its homogeneity (1.3), and its convex closure invariance (1.6).
So Theorem 8.1 holds true for any measure of noncompactness φ satisfying
these conditions, in particular, for the measures of noncompactness (1.9) and
(1.10). Moreover, we even did not use the full regularity of the underlying
measure of noncompactness φ, but merely the “only if” part of (1.7), i.e., the
fact that φ(M) = 0 implies the precompactness of M . An application of this
type will be given in Example 9.5 below.

Since both contracting and compact operators are condensing, Theorem 8.1
unifies the Banach-Caccioppoli fixed point theorem and Schauder’s fixed point
principle. The common aspect of these two fixed point principles becomes
transparent only after introducing the notions of measures of noncompactness
and condensing operators. By the way, one may realize the methodological
combination of Banach’s and Schauder’s theorems also in the proof of Theo-
rem 8.1: the crucial role of compactness (borrowed from Schauder’s theorem)
comes with the definition of γ(M), while the method of considering successive
iterations (borrowed from Banach’s theorem) comes with the definition of the
sequence (Mn)n.

Darbo’s fixed point theorem contains two ingredients: first, one has to check
the estimate [A]α < 1 (which is a topological condition), and then one has to
find an invariant closed convex bounded set M ⊂ X (which is a geometrical
condition). Following an idea of Ioan A. Rus, one may also combine these two
conditions, replacing (1.15) by the characteristic

[A]	φ := inf {k > 0 : φ(A(N)) ≤ kφ(N) for boundedN ⊆M with A(N) ⊆ N}.
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The proof of Theorem 8.1 shows that all subsets arising in the construction
of M∞ are invariant under A, and so one actually needs the condition [A]	α < 1
which is weaker, at least formally, than [A]α < 1. In other areas of nonlinear
analysis (like nonlinear spectral theory, see below), however, one needs the
stronger condition [A]φ < 1.

There is a certain generalization of Theorem 8.1 to a larger class of operators
which was proved in case of the Hausdorff measure of noncompactness (1.10)
in [69]. Let us call an operator A : M → Y weakly φ-condensing if

φ(A(N)) < φ(N) (N ⊆M bounded, φ(N) > 0). (8.1)

There are in fact operators which are weakly condensing, but not condensing
(see Example 12.1 below). So the following fixed point theorem which is due
to Sadovskij [69,72] is a proper extension of Theorem 8.1.

Theorem 8.2. Let X be a Banach space, M ⊂ X a nonempty, closed,
convex, bounded subset, and A : M → M a weakly γ-condensing operator in
the sense of (8.1). Then A has a fixed point in M .

Interestingly, although the class of weakly condensing operators is strictly
larger than that of condensing operators, one may prove Theorem 8.2 by means
of Theorem 8.1 (see the last remark in Section 12).

We may summarize our discussion as follows: Schauder’s theorem extends
Brouwer’s theorem (from RN to infinite dimensional Banach spaces), Darbo’s
theorem extends Schauder’s theorem (from compact to condensing operators),
and Sadovskij’s theorem extends Darbo’s theorem (from condensing to weakly
condensing operators). Nevertheless, since each of these theorems may be
proved by means of the preceding one, they are actually all equivalent.

In the following example we discuss a special class of condensing operators
which frequently arises in applications. In fact, a linear variant of this has
already been considered in problem (5.7).

Example 8.1. Suppose that A is a continuous operator in a Banach space
X which admits a representation as a sum A = A1+A2, where A1 is a contrac-
tion and A2 is compact. If φ is a Lip-compatible measure of noncompactness
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on X, see (1.19), we get for every bounded subset M ⊂ X

φ(A(M)) ≤ φ(A1(M)) + φ(A2(M)) ≤ [A1]φφ(M) ≤ Lip(A1)φ(M),

which shows that A is condensing. More generally, one may show that an
operator of the form A(x) = Ψ(x, x) is condensing, if Ψ : X × X → X is
continuous, Ψ(x, ·) is compact for each x ∈ X, and Ψ(·, y) is a contraction
(with contraction constant Lip(Ψ(·, y)) < 1 independent of y) for each y ∈ X.
This will be applied later (see Example 10.2 below) to initial value problems
in infinite dimensional Banach spaces. �

Interestingly, there exists a certain converse of Example 8.1 for linear op-
erators ([76], see also Section 2.6 of [3]) which states that, roughly speaking,
the linear condensing operators are all of the form “contraction + compact”:

Theorem 8.3. Let L ∈ L(X,X) with [L]γ < 1. Then L admits a represen-
tation as a sum L = L1 + L2, where r(L1) < 1 and L2 is compact.

We remark that the proof of Theorem 8.3 is even constructive. Indeed,
it builds on the fact that the set {λ ∈ σ(L) : |λ| > [L]γ} consists only of
finitely many eigenvalues of L of finite multiplicity [5]. So if we fix ρ > 0 with
re(L) < ρ < 1, the operator

P =
1

2πi

∫
|λ|=ρ

(λI − L)−1 dλ

has a finite dimensional range. Consequently, the operator L1 := LP satisfies
r(L1) = r(LP ) < re(L) < 1, while the operator L2 := L(I − P ) is compact,
having finite rank. In the special case of a self-adjoint positive operator in a
Hilbert space, we have employed a similar reasoning in (5.7).

The condition r(L1) < 1 in Theorem 8.3 may appear weaker than the
corresponding condition ||R1|| < 1 in (5.7). However, as we already mentioned,
one may always pass to an equivalent norm || · ||∗ on X such that the norm
of L1 in the space (X, || · ||∗) is strictly less than 1, and the compactness of
the other operator L2 is not affected by this change of norms. In this way we
arrive at an exact converse of Example 8.1.
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We return now to the above fixed point theorems for condensing and weakly
condensing operators. In view of Theorem 8.2, we point out that an analo-
gous generalization of the Banach-Caccioppoli fixed point theorem to weak
contractions, i.e., operators A satisfying

||A(x)−A(y)|| < ||x− y|| (x, y ∈M, x 6= y) (8.2)

is false, as the following Example 8.2 shows. This is simply due to the
somewhat surprising fact that a weak contraction is not necessarily weakly
α-condensing, although a contraction is of course α-condensing, see (1.19).

Example 8.2. Let X = c0 be the Banach space of all sequences x = (ξn)n

converging to zero with the supremum norm. The operator A defined by

A(x) = A(ξ1, ξ2, ξ3, . . . , ξn, . . .) =

(1
2(1 + ||x||), 3

4ξ1,
7
8ξ2, . . . , (1− 2−n)ξn−1, . . .) (8.3)

maps the ball B(c0) into itself and is a weak contraction in the sense of (8.2).
However, A has no fixed point. Indeed, if x̂ = (ξ̂1, ξ̂2, ξ̂3, . . .) were a fixed point
of A in B(c0), then

ξ̂1 = 1
2(1 + ||x̂||), ξ̂2 = 1

2
3
4(1 + ||x̂||), ξ̂3 = 1

2
3
4

7
8(1 + ||x̂||), . . .

and, in particular, ξ̂n ≥ 1
2 for all n. So the point x̂ cannot belong to the space

X.

From Theorem 8.2 it follows that the operator (8.3) cannot be weakly γ-
condensing. This may also be verified directly by observing that A(en) =
e1 + (1− 2−(n+1))en+1, with (en)n being the canonical basis in X. �

We give another example of this type which is even more surprising, since
it is linear.

Example 8.3. In the Banach space X = C[0, 1], consider again the second
set from Example 1.3, i.e.,

M = {u ∈ B(X) : 0 = u(0) ≤ u(t) ≤ u(1) = 1},

which is clearly closed, bounded, and convex. The linear operator A : M →M

defined by Au(t) = tu(t) maps M into itself and satisfies [A]γ = ||A|| = 1, by
(3.4). Actually, as was observed in [88], A is even a weak contraction. On the
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other hand, the zero function u(t) ≡ 0 is the only fixed point of A, but does
not belong to M . So from Theorem 8.2 it follows that the operator A cannot
be weakly γ-condensing. �

9. Applications to nonlinear problems

Building on our calculations of the φ-norm of various (linear or nonlinear)
operators in the preceding sections, we give now a series of examples to il-
lustrate these calculations. We start with a nonlinear integral equation of
Volterra-Hammerstein type.

Example 9.1. Consider the nonlinear integral equation

u(s) = σ(s)
∫ s

0
τ(t)f(t, u(t)) dt (0 ≤ s ≤ 1) (9.1)

in the space Lp[0, 1] for 1 < p < ∞. The operator A defined by the right
hand side of (9.1) may be written as composition A = KF of the nonlinear
Nemytskij operator (7.2) and the linear Volterra operator (4.5). Consequently,
a sufficient condition for this operator to be γ-condensing, say, is [K]γ [F ]γ < 1.
But we have already estimated these two numbers in the space Lp, see (4.7)
and (7.4). As a result, we see that the γ-norm of A satisfies the two-sided
estimate

2−(1+1/p)ω0k ≤ [A]γ ≤ p1/p(p′)1/p′ω0k,

where ω0 is defined by (4.6), and

k := sup
0≤t≤1

sup
u 6=v

|f(t, u)− f(t, v)|
|u− v|

is the smallest Lipschitz constant of the scalar function f(t, ·). �

In the next problem we combine Theorem 7.1 with Example 6.3 and get an
existence result for a nonlinear Schrödinger equation.

Example 9.2. Consider the nonlinear stationary Schrödinger type equation

−∆u(x) + q(x)u(x) = f(x, u(x)) (x ∈ RN ) (9.2)

in the space L2(RN ), where the potential q is supposed to fulfill the same
assumptions as in Example 6.3. Writing equation (9.2) in the form (7.3),
with L given by (6.1) and F given by (7.2), we already know that [L−1]γ ≤
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(inf σe(L))−1 and [F ]γ = Lip(f(x, ·)). So the crucial estimate [L−1]γ [F ]γ < 1
means precisely that

sup
x∈RN

sup
u 6=v

|f(x, u)− f(x, v)|
|u− v|

< inf σe(L). (9.3)

This condition exhibits an interesting “interaction” between the linear left
hand side and the nonlinear right hand side of (9.2): the asymptotic slope of
the nonlinearity has to remain strictly below the essential spectrum of the lin-
ear part. We point out that a similar phenomenon is known for the “discrete
part” of the spectrum under the name non-resonance condition: whenever
the asymptotic slope of the nonlinearity does not “hit” an eigenvalue of the
linear part, one has existence (and sometimes even uniqueness) of solutions;
conversely, hitting an eigenvalue leads to such unpleasant phenomena like bi-
furcation or non-existence. Condition (9.3) (which could be called, by analogy,
essential non-resonance) shows that it is not really important to avoid eigen-
values: what really matters is to keep away from the essential spectrum! In a
physical interpretation this means that the “oscillations” of the nonlinearity
in (9.2) have to stay strictly below the scattering states of the system. �

The next example involves the Hilbert transform (4.8) whose α-norm and
γ-norm is given by (4.11).

Example 9.3. Consider the nonlinear strongly singular integral equation

u(s) =
1
π

∫ 1

−1

f(t, u(t))
s− t

dt (−1 ≤ s ≤ 1) (9.4)

in the space Lp[−1, 1] for 1 < p < ∞. Writing the operator A defined by
the right hand side of (9.4) again as composition A = HF of the nonlinear
Nemytskij operator (7.2) and the linear Hilbert transform (4.8), we see that the
condition [H]γ [F ]γ < 1 is equivalent to the condition Lip(f(t, ·)) < 1, by (4.11)
and Theorem 7.1. So if this condition is fulfilled, and we find an invariant
closed ball for the operator A, we get existence of solutions, by Darbo’s fixed
point theorem, no matter what p is. On the other hand, if we look for solutions
of (9.4) either in a particularly “large” Lebesgue space (i.e., for p close to 1),
or in a particularly “narrow” Lebesgue space (i.e., for p very large), it becomes
more and more difficult to apply Banach’s contraction mapping principle, by
(4.10). This problem is not as artificial as it may seem at first glance. In
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fact, one usually tries to prove existence of solutions in a possibily narrow
space, and uniqueness in a possibly large space; if one is interested in both
existence and uniqueness, one has to find some kind of “compromise”, and the
unpleasant “blow up relation” (4.10) may become important. �

We may summarize our discussion in the preceding example as follows:
the operator A defined by the right hand side of (9.4) is a contraction in
Lp if Lip(f(t, ·)) < ||H||−1

p , where ||H||p may be estimated by (4.9), and it
is condensing if just Lip(f(t, ·)) < 1. Of course, the first condition severely
restricts the class of admissible nonlinearities f , but there are of course plenty
of nonlinear functions f satisfying this condition. In the next example this is
not the case.

Example 9.4. Consider again the nonlinear strongly singular integral equa-
tion (9.4), but now in the Hölder space Cα[−1, 1]. One knows various sufficient
conditions under which the Hilbert transform (4.8) maps this space into itself
and is bounded (see, e.g., Chapter 5 of the monograph [46]). Moreover, upper
estimates of the γ-norm [F ]γ of the Nemytskij operator (7.2) in the Hölder
space Cα are also known (see [11, Chapter 7]). So one may prove existence
of Hölder continuous solutions of (9.4), by Darbo’s fixed point theorem, for a
fairly large class of nonlinear functions f .

On the other hand, from Theorem 7.3 we see that only affine functions
f generate Lipschitz continuous Nemytskij operators in the space Cα. This
means that one can never prove existence of Hölder continuous solutions of
(9.4), adopting Banach’s contraction mapping principle, unless equation (9.4)
is actually linear. �

We conclude this section by considering an example of a nonlinear integral
equation, where one may use the Sadovskij functional φ from Example 2.4 in
order to derive the existence of increasing continuous solutions. In a more
general setting, this and many related examples may be found in the thesis
[21].
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Example 9.5. Consider the nonlinear integral equation of Uryson-Volterra
type

u(s) = a(s) +
∫ s

0
k(s, t, u(t)) dt (0 ≤ s ≤ 1). (9.5)

Here a : [0, 1] → R is continuous and increasing, and k : [0, 1]×[0, 1]×R → R
is continuous and such that k(·, t, u) is increasing for all (t, u) ∈ [0, 1]×R. The
crucial hypothesis is the growth condition

|k(s, t, u)| ≤ κ(|u|) (0 ≤ s, t ≤ 1, −∞ < u <∞)

for the nonlinear kernel function in (9.5), where κ : R+ → R+ is increasing.
The author of [21] shows then that the integral operator defined by the right-
hand side of (9.5) is condensing with respect to the Sadovskij functional (2.13)
and leaves some closed ball Br(X) in the space X = C[0, 1] invariant, provided
that ||a||+κ(r) ≤ r. So Darbo’s fixed point theorem (Theorem 8.1 for φ instead
of α) implies that equation (9.5) has a continuous increasing solution u. �

10. Initial value problems in Banach spaces

LetX be a real Banach space, x0 ∈ X fixed, and f : [−a, a]×Br(X;x0) → X

a continuous function. It is well-known that then the initial value problem

ẋ(t) = f(t, x(t)), x(0) = x0 (10.1)

need not have a solution if X is infinite dimensional, and so the classical
Cauchy-Peano theorem does not carry over to infinite dimensions. We recall
one of the first examples of this type which is due to Dieudonné [28]:

Example 10.1. In the Banach space X = c0, consider the initial value
problem

ξ̇k =
√
|ξk|+

1
k
, ξk(0) ≡ 0 (k = 1, 2, 3, . . .). (10.2)

One can show that this initial value problem has no solution in the space
c0. This is not a peculiarity of the space c0; indeed, Godunov [40] has proved
that a similar example can be constructed in any infinite dimensional Banach
space. The best result in this direction has been proved by Saint-Raymond
[74]: given an arbitrary infinite dimensional Banach space X, there exists a
continuous function f : R×X → X such that the initial value problem (10.1)
has no solution in a neighbourhood of zero for any initial value x0 ∈ X.
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It turns out that, in order to get a Cauchy-Peano type existence theorem
in arbitrary Banach spaces, one has to impose some compactness condition on
the right-hand side f of (10.1). For instance, if the function f(t, ·) maps every
ball into a precompact set, then (10.1) is locally solvable, precisely as in the
finite dimensional case. More generally, the following is true:

Theorem 10.1. Let f : [−a, a]×Br(X;x0) → X be a continuous function
which satisfies

α(f(t,M)) ≤ kα(M) (|t| ≤ a; M ⊆ Br(X;x0)). (10.3)

Then the initial value problem (10.1) has a solution x : [−h, h] → X, where
0 < h ≤ min {a, r/C, 1/k} and C := sup {||f(t, x)|| : |t| ≤ a, ||x− x0|| ≤ r}.

The idea of the proof of Theorem 10.1 is almost the same as in the finite
dimensional case. The problem of looking for solutions of the initial value
problem (10.1) is replaced by the equivalent problem of finding fixed points of
the Picard operator

A(x)(t) = x0 +
∫ t

0
f(s, x(s)) ds (−h ≤ t ≤ h)

in the space X̂ := C([−h, h], X). In order to apply Darbo’s fixed point princi-
ple (Theorem 8.1), one uses the fact that the Kuratowski measure of noncom-
pactness α̂(M) of a bounded equicontinuous subset M ⊂ X̂ may be calculated
by

α̂(M) = sup
−h≤t≤h

α(M(t)),

where M(t) := {x(t) : x ∈ M}, and α denotes the Kuratowski measure
of noncompactness in X (see [4]). We illustrate Theorem 10.1 by means of
another initial value problem, again in the sequence space c0:

Example 10.2. In the Banach space X = c0, consider the initial value
problem

ξ̇k = ξk+1

√
|ξ1|+

1
k
, ξk(0) ≡ 0 (k = 1, 2, 3, . . .). (10.4)

For r > 0, define ψ : c0 ×Br(c0) → c0 by

ψ((ξ1, ξ2, ξ3, . . .), (η1, η2, η3, . . .)) := (ξ2
√
|η1|+1, ξ3

√
|η1|+ 1

2 , ξ4
√
|η1|+ 1

3 , . . .).
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It is not hard to see that ψ is continuous, ψ(x, ·) is compact for any x ∈
Br(c0), and ψ(·, y) is Lipschitz continuous with Lip(ψ(·, y)) ≤

√
r for each

y ∈ c0. Thus, from the last part of Example 8.1 we conclude that the function
f : Br(c0) → c0 defined by f(x) := ψ(x, x) satisfies [f ]γ ≤

√
r. Consequently,

the initial value problem (10.4) has a solution x : [−h, h] → c0 for 0 < h ≤
min {a, r/C, 1/

√
r} and C := sup {||ψ(x, x)|| : ||x|| ≤ r}, by Theorem 10.1. �

The following existence result is slightly more general than Theorem 10.1
and was proved in [71].

Theorem 10.2. Let f : [−a, a]×Br(X;x0) → X be a continuous function
which satisfies

α(f(t,M)) ≤ L(t, α(M)) (|t| ≤ a; M ⊆ Br(X;x0)), (10.5)

where L : [−a, a] × R → R is such that the only solution of the scalar initial
value problem

u̇(t) = L(t, u(t)), u(0) = 0 (10.6)

is u(t) ≡ 0. Then the assertion of Theorem 10.1 holds.

Obviously, Theorem 10.2 contains Theorem 10.1 as a special case, since the
initial value problem u̇ = ku, u(0) = 0 has only the trivial solution u(t) ≡ 0.
It would be interesting to have an example of an initial value problem to which
Theorem 10.2 applies, but Theorem 10.1 does not. As far as we know, such
an example has not yet been given in the literature.

11. Functional-differential equations

In this section we discuss applications of Darbo’s fixed point theorem to
equations of the form

ẋ(t) = f(t, xt, ẋt), (11.1)

where the subscript t denotes the shift by t ∈ R, i.e., xt(s) = x(t + s) and
ẋt(s) = ẋ(t + s). The real function f on the right-hand side of (11.1) is
supposed to be defined on R × C[−h, 0] × C[−h, 0] for some h > 0. Since
the equation in (11.1) contains derivatives of the unknown solution x as well
as of the shifted solution xt, it is called functional-differential equation (more
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precisely, functional-differential equation of neutral type). This equation is
supposed to hold in the “future”, i.e., on some interval [0, T ]; on the other
hand, instead of the usual “pointwise” initial condition in the Cauchy problem,
here the suitable initial condition for (11.1) involves the values of the solution
in the “past”, i.e., has the form

x(t) = ϕ(t) (−h ≤ t ≤ 0). (11.2)

Here ϕ ∈ C[−h, 0] is a given initial function. If one is interested in classical
(i.e., C1-) solutions of (11.1)/(11.2), the initial function ϕ has to satisfy in the
“present”, i.e. for t = 0, the “glueing condition”

lim
t↑0

ϕ̇(t) = f(0, ϕ, ϕ̇). (11.3)

We will assume throughout this section that the glueing condition (11.3) is
fulfilled; this may always be achieved by passing, if necessary, from f(t, xt, ẋt)
to the function

g(t, xt, ẋt) := f(t, xt, ẋt) + ντ (t)
[
lim
t↑0

ẋ(t)− f(0, x, ẋ)
]
,

where ντ (t) = 1− t/τ for 0 ≤ t ≤ τ and ντ (t) ≡ 0 for t ≥ τ , with τ > 0 being
sufficiently small.

The fact that the equation (11.1) contains the shift functions xt and ẋt

means, physically speaking, that the “reaction” of the system described by
(11.1) occurs with a certain time delay. There are many problems in mechan-
ics, physics, engineering, chemistry, and biology which lead to such type of
equations.

To solve the problem (11.1)/(11.2), one tries as usual to associate to this
problem a nonlinear (e.g., integral) operator in such a way that every solution
of (11.1)/(11.2) is a fixed point of this integral operator, and vice versa. How-
ever, there is an essential difference between ordinary differential equations
like (10.1) and functional-differential equations like (11.1). In fact, ordinary
differential equations lead to compact integral operators, at least in finite di-
mensional spaces. (This is the reason why we considered equation (10.1) in
infinite dimensional spaces.) On the other hand, the fact that the right-hand
side of equation (11.1) depends on the “prehistory” of the hypothetic solution
leads to noncompact integral operators, even in the scalar case. This explains
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the fact that such problems are good examples for illustrating the applicability
of Darbo’s fixed point principle, where Schauder’s fixed point principle fails.
A detailed description of the theory and applications of problem (11.1)/(11.2)
may be found in [2] or Section 4.3 of [3]. Here we restrict ourselves to some
typical methods, results and examples.

For every y ∈ C[−h, 0] and fixed ϕ ∈ C1[−h, 0] we denote by ỹ the C1-
function defined by

ỹ(t) := ϕ(0) +
∫ t

0
y(s) ds.

By means of the map y 7→ ỹ, we define a nonlinear operator A by

A(y)(t) :=

 ϕ̇(t) + f(0, ỹ, y)− ϕ̇(0) for − h ≤ t ≤ 0,

f(t, ỹt, yt) for 0 ≤ t ≤ T
(11.4)

on the Banach space X := {y ∈ C[−h, T ] : y(t) ≡ ϕ̇(t) for − h ≤ t ≤ 0}.
With this terminology, the following equivalence holds.

Theorem 11.1. If x is a solution of problem (11.1)/(11.2), then y := ẋ is
a fixed point of the operator (11.4) in X. Conversely, if y ∈ X is a fixed point
of the operator (11.4), then x := ỹ is a solution of problem (11.1)/(11.2).

Now, by using the explicit formulas for the Hausdorff measure of noncom-
pactness in the space C[−h, T ] which we derived in Section 2 (see Theorem
2.1), one may show that the operator A given by (11.4) is in fact condensing
on every bounded subset of X. So, if one finds an invariant closed convex
bounded subset for this operator, Darbo’s fixed point principle implies that
problem (11.1)/(11.2) has a solution. For details we refer to the papers [65,73],
see also [2].

From the viewpoint of applications it is more interesting to study existence
of periodic solutions of the functional-differential equation (11.1). There are
several ways to connect the existence problem for periodic solutions to fixed
points of condensing operators; we describe three of them.

Let us suppose first that problem (11.1)/(11.2) has, for any initial function
ϕ ∈ C1[−h, 0], a unique solution x ∈ C1[−h, T ] for some fixed T > 0; we
denote this solution by x(ϕ; ·) to emphasize the dependence on ϕ. Then one
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may define the shift operator (along the trajectories of (11.1)) UT : C1[−h, 0] →
C1[−h, 0] by

UT (ϕ)(s) := x(ϕ; s+ T ), (11.5)

i.e., UT associates to each initial function ϕ the value of the corresponding
solution at time T . Then the existence problem for T -periodic solutions of
(11.1) is equivalent to the problem of finding fixed points of UT . In fact, if
x(ϕ; ·) is T -periodic, then clearly UT (ϕ)(s) = x(ϕ; s + T ) ≡ x(ϕ; s) for all
s ∈ [−h, 0]. Conversely, from x(ϕ; ·) = UT (ϕ) = xT (ϕ; ·) and our uniqueness
assumption it follows that x(ϕ; ·) is T -periodic on [−h, 0].

We point out that the shift operator of an ordinary differential equation
in Rn, say (which associates to each initial point x0 ∈ Rn the value of the
corresponding solution at time T ), is compact, because it acts in a finite di-
mensional space. In case of a functional-differential equation, however, we deal
with initial functions, and so the shift operator acts in an infinite dimensional
function space. It is therefore not surprising that the operator (11.5) is usu-
ally not compact; so the question arises whether or not it is condensing with
respect to some measure of noncompactness.

This is in fact true, as was shown in [52] by means of the following special
construction. Let α denote the usual Kuratowski measure of noncompactness
(1.8) in the space C[−h, 0]. For fixed k > 1 we define a special measure of
noncompactness α̃k on C1[−h, 0] by

α̃k(M) := α({y : y(t) =
1
h

((k − 1)t+ hk) ẋ(t) (x ∈M)}

(M ⊂ C1[−h, 0] bounded).
One may then show that the shift operator UT is condensing with respect

to this measure of noncompactness, and so one may apply Darbo’s fixed point
principle to find T -periodic solutions of (11.1).

The second method joining T -periodic solutions of (11.1) to fixed points of
a certain condensing operator goes as follows. Suppose that the right hand
side of (11.1) is T -periodic in the first argument, i.e., f(t+T, y, z) ≡ f(t, y, z).
By CT (R) resp. C1

T (R) we denote the vector space of all continuous resp.
continuously differentiable T -periodic real functions equipped with the usual
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maximum norm. Denoting by

[y] :=
1
T

∫ T

0
y(s) ds

the integral mean of y ∈ CT (R), we define an operator J : CT (R) → C(R) by

J(y)(t) :=
∫ t

0
y(s) ds− [y]t,

an operator F : R× CT (R) → C(R) by

F (a, y)(t) := f(t, a+ (J(y))t, yt) (a ∈ R),

and an operator Φ : R× CT (R) → R× CT (R) by

Φ(a, y) := (a− [y], F (a, y)). (11.6)

Then the T -periodic solutions of equation (11.1) and the fixed points of the
operator (11.6) are related in the following way:

Theorem 11.2. If x is a T -periodic solution of problem (11.1), then the
pair (x(0), ẋ) is a fixed point of the operator (11.6) in R×CT (R). Conversely,
if the pair (a, y) ∈ R × CT (R) is a fixed point of the operator (11.6), then
x := J(y) + a is a T -periodic solution of problem (11.1) with x(0) = a.

So again we have to show that the operator (11.6) is condensing with respect
to a suitable measure of noncompactness, in order to guarantee the existence
of T -periodic solutions of (11.1). For instance, it may be shown that

γ̃(M) := γ({y : (a, y) ∈M for some a ∈ R}) (M ⊂ CT (R) bounded)

is such a suitable measure of noncompactness, where γ denotes the Hausdorff
measure of noncompactness in the space CT (R).

Finally, suppose now that x ∈ C1
T (R), and let

Ψ(x)(t) := x(0) +
∫ t

0
f(s, xs, ẋs) ds−

(
t

T
− 1

2

)∫ T

0
f(s, xs, ẋs) ds. (11.7)

It is not hard to see that the operator (11.7) maps the space C1
T (R) into

itself. Moreover, the fixed points of this operator are again T -periodic solutions
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of (11.1) in C1
T (R), and vice versa. In fact, for a T -periodic solution x of (11.1)

we have ∫ T

0
f(s, xs, ẋs) ds =

∫ T

0
ẋ(s) ds = x(T )− x(0) = 0,

and so

x(t) = x(0) +
∫ t

0
ẋ(s) ds

= x(0) +
∫ t

0
f(s, xs, ẋs) ds−

(
t

T
− 1

2

)∫ T

0
f(s, xs, ẋs) ds = Ψ(x)(t).

Conversely, from x = Ψ(x) it follows that

x(0) = x(T ) = Ψ(x)(T ) = x(0) +
1
2

∫ T

0
f(s, xs, ẋs) ds.

Consequently, the last integral vanishes, and so

x(t) = x(0) +
∫ t

0
f(s, xs, ẋs) ds,

which upon differentiation yields the conclusion.

Now, here one may show that

γ̂(M) := γ({ẋ : x ∈M}) (M ⊂ C1
T (R) bounded)

is a measure of noncompactness in C1
T (R), which makes the operator (11.7)

condensing , where γ denotes again the Hausdorff measure of noncompactness
in the space CT (R). This gives still another method to reduce the problem
of T -periodic solutions to applying Darbo’s fixed point principle in functions
space with an appropriate measure of noncompactness. For details and proofs
we refer to the papers [65, 70-73].

12. Operators without fixed points

In Section 8 we have seen that γ-condensing and, more generally, weakly γ-
condensing operators which map the closed unit ball B(X) of a Banach space
X into itself, have fixed points. Now we want to compare these and related
classes of operators from the viewpoint of their “size”. To be more precise, we
denote by Γk(X) the set of all operators A : B(X) → B(X) with [A]γ ≤ k; in
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particular, Γ1(X) consists of all γ-nonexpansive operators. Furthermore, we
put

Γ−1 (X) =
⋃
k<1

Γk(X),

and by Γ(X) we denote the class of all weakly γ-condensing operators. So we
have the trivial inclusions

Γ−1 (X) ⊆ Γ(X) ⊆ Γ1(X). (12.1)

If we equip Γ1(X) with the natural metric

D(A1, A2) = sup
||x||≤1

||A1(x)−A2(x)||,

we may easily show that (Γ1(X), D) is a complete metric space, and Γk(X) is
closed in Γ1(X) for any k ≤ 1.

Before studying these classes of operators, we first show by means of two
examples that both inclusions in (12.1) are strict. The first example is due to
Nussbaum [64], the second one to Kakutani [51].

Example 12.1. Let X be any infinite dimensional Banach space, and let
A : B(X) → B(X) be defined by

A(x) = (1− ||x||)x.

Then A 6∈ Γ−1 (X), as may be seen by letting r → 0 in the estimate

γ(A(Br(X))) ≥ γ(Br(1−r)(X)) = r(1− r) = (1− r)γ(Br(X)).

However, A is weakly γ-condensing. In fact, for any M ⊆ B(X) with
γ(M) > 0 and 0 < r < 1

2γ(M) we have

γ(A(M ∩Br(X))) ≤ γ(M ∩Br(X))) ≤ γ(Br(X)) = 2r < γ(M),

on the one hand, and

γ(A(M \Br(X))) ≤ γ(co [(1− r)M ∪ {0}]) = (1− r)γ(M) < γ(M),

on the other. Applying (1.1) we obtain

γ(A(M)) = max {γ(A(M ∩Br(X))), γ(A(M \Br(X)))} < γ(M),

and so A ∈ Γ(X) as claimed. �
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Example 12.2. Let X = `2 be the space of all square-summable sequences,
and let A : B(X) → B(X) be defined by

A(x) = A(ξ1, ξ2, ξ3, . . .) = (
√

1− ||x||2, ξ1, ξ2, . . .).

We may write A as a sum A = A1 +A2 of the linear isometry (“right shift
operator”)

A1(x) = A1(ξ1, ξ2, ξ3, . . .) = (0, ξ1, ξ2, . . .)

and the nonlinear compact map

A2(x) = A2(ξ1, ξ2, ξ3, . . .) = (
√

1− ||x||2, 0, 0, . . .).

So by (1.17) we have [A]γ ≤ ||A1|| = 1, i.e., A ∈ Γ1(X). On the other hand,
A cannot belong to the class Γ(X), since A has no fixed point in B(X). �

The following theorem gives an idea about the “smallness” of the class
Γ−1 (X) in Γ(X) and of the class Γ(X) in Γ1(X). The proof of this theorem,
as well as some other results of this type, may be found in the book [13].

Theorem 12.1. The class Γ−1 (X) is both dense and of first category in
Γ1(X), while the set Γ1(X) \ Γ(X) is both dense and of type Fσ in Γ1(M).

Theorem 12.1 shows that Example 12.1 is “generic” from the viewpoint of
category, while Example 12.2 is typical from the viewpoint of density, but
not vice versa. Of course, it is no paradox that a certain set is “small” from
one point of view, but “large” from another. Theorem 12.1 also means, in a
certain sense, that Theorem 8.2 is an essential extension of Theorem 8.1, and
the difference between the classes Γ−1 (X) and Γ(X) is not as harmless as it
may seem.

As we have seen, a γ-nonexpansive operator need not have fixed points.
However, one may show that such an operator has “almost” fixed points. To
make this precise, for an operator A : B(X) → B(X) we introduce the number

η(A) := inf
||x||≤1

||x−A(x)|| (12.2)

which is usually called the minimal displacement of A (on B(X)). Of course,
the condition that A maps the ball B(X) into itself trivially implies that
η(A) ≤ ||A(0)|| ≤ 1. If A has a fixed point in B(X), then trivially η(A) = 0.
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The converse is not true; for instance, the fixed point free operator A in
Example 12.2 satisfies η(A) = 0.

The following remarkable estimate was proved first in [41] for the minimal
Lipschitz constant (1.20), and afterwards in [37] for the Hausdorff measure of
noncompactness (1.10). As we will show later, this estimate is in a certain
sense sharp.

Theorem 12.2. For any map A : B(X) → B(X) with [A]γ <∞ one has

η(A) ≤ max
{

1− 1
[A]γ

, 0
}
. (12.3)

In particular, η(A) = 0 if A is γ-nonexpansive.

As a matter of fact, Theorem 12.2 is simply a consequence of Darbo’s fixed
point theorem. Indeed, if [A]γ < 1 then A has a fixed point, by Theorem 8.1.
On the other hand, if [A]γ ≥ 1 we may fix ε > 0 with ε[A]γ < 1. Then the
operator εA : B(X) → Bε(X) ⊆ B(X) is γ-condensing and thus has a fixed
point x̂. So we obtain

||A(x̂)− x̂|| = ||A(x̂)− εA(x̂)|| = (1− ε)||A(x̂)|| ≤ 1− ε,

hence η(A) ≤ 1 − ε. Since ε ∈ (0, 1/[A]γ) was arbitrary, we conclude that
η(A) ≤ 1− 1/[A]γ as claimed.

Interestingly, the estimate (12.3) allows us to show the equivalence of The-
orems 8.1 and 8.2. To see this, let A : B(X) → B(X) be weakly condensing.
Then η(A) = 0, by (12.3), and so we may find a sequence (xn)n in B(X) with
||xn−A(xn)|| → 0 as n→∞. Now, since the set M = {x1, x2, x3, . . .} satisfies
γ(A(M)) = γ(M), it must be precompact, and so the sequence (xn)n has a
convergent subsequence whose limit is of course a fixed point of A.

The discussion of this section suggests the following general question: Which
metric spaces have the “fixed point property” for one of the classes of maps
discussed above? One knows many partial answers to this question in special
classes of metric (or even topological) spaces, but of course a complete answer
is not known (and seems very unlikely). A discussion of this and related
questions, based on the axiomatic setting of fixed point structures, may be
found in a series of papers of Ioan A. Rus (e.g., [66-68]).
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13. Some Banach space constants

Example 12.2 is typical, inasmuch as in each infinite dimensional Banach
space X one may find a fixed point free map A : B(X) → B(X). By Darbo’s
fixed point theorem (Theorem 8.1), such a map necessarily satisfies [A]α ≥ 1.
On the other hand, a quite remarkable result by Lin and Sternfeld [59] (see also
[17,38]) states that such a map may always be chosen Lipschitz continuous,
and so [A]α ≤ Lip(A) <∞.

The existence of fixed point free self-maps is closely related to the existence
of other “pathological” objects in infinite dimensional Banach spaces, e.g.,
retractable balls. Recall that a set M ⊂ X is a retract of a larger set N ⊃M

if there exists a map ρ : N →M with ρ(x) = x for x ∈M ; this means that one
may extend the identity from M by continuity to N . For instance, Example
1.4 shows that every ball Br(X) is a retract of the whole space, where the
corresponding retraction may even be chosen α-nonexpansive.

The problem of finding a retraction of the unit ball B(X) onto its bound-
ary S(X) is much more complicated and, in fact, in sharp contrast to our
geometric intuition. It turns out that the existence (resp., non-existence) of
fixed points of self-maps of the unit ball is closely related to the non-existence
(resp., existence) of such retractions. The following Theorem 13.1 which is
fundamental in topological nonlinear analysis makes this more precise.

Theorem 13.1. The following two statements are equivalent in a Banach
space X:

(a) each operator A : B(X) → B(X) has a fixed point;

(b) S(X) is not a retract of B(X).

It is a striking fact that both assertions of Theorem 13.1 are true if dimX <

∞, but false if dimX = ∞. The first example of a fixed point free self-map
on B(X) has been given in the sequence space X = `2 by Kakutani [51] and
is our Example 12.2 above. Moreover, it has been shown by Leray [57] that
in the space X = C[0, 1] the identity map on the unit sphere S(X) may be
homotopically deformed into a constant map; this is still another property
which is equivalent to (a) and (b).
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We point out that the proof of Theorem 13.1 is in a certain sense construc-
tive. In fact, if ρ : B(X) → S(X) is a retraction, then A : B(X) → S(X) ⊂
B(X) defined by

A(x) := −ρ(x) (13.1)

is certainly fixed point free. Conversely, if one is given a fixed point free
operator A : B(X) → B(X), one may use A to construct a retraction ρ :
B(X) → S(X) by a geometric reasoning [38]. For example, if X is a Hilbert
space with scalar product 〈·, ·〉, and A : B(X) → B(X) has no fixed point,
one may define ρ : B(X) → S(X) by ρ(x) := A(x) + τ(x)(x − A(x)), where
τ = τ(x) is the unique positive solution of the quadratic equation

τ2 + 2τ
〈A(x), x−A(x)〉
||x−A(x)||2

+
||x||4 − ||x||2

||x−A(x)||2
= 0. (13.2)

Geometrically, ρ(x) is the unique point where the ray starting from A(x)
and passing through x hits the boundary S(X). Clearly, ρ(x) = x if x belongs
to this boundary, and so ρ is a retraction.

We will return to the equivalence stated in Theorem 13.1 below. As a first
application we will state a result from [24] in the following Example 13.1. This
result shows that in a separable Hilbert space one may find a retraction of the
unit ball onto its boundary which is “invariant” with respect to certain finite
dimensional subspaces. This fact is used in [24] to prove a Rabinowitz type
saddle point theorem in critical point theory.

Example 13.1. Let X be an infinite dimensional separable Hilbert space
which admits a representation as direct sum X = U ⊕ V with U being finite
dimensional. Also let W 6= {0} be a finite dimensional subspace of V . We
claim that there exists a retraction ρ : B(X) → S(X) which satisfies the
additional inclusion

ρ(B(U)) ⊆ S(U ⊕W ).

To see this, we choose first a basis {e1, . . . , en}, say, in U , extend it first to
a basis {e1, . . . , em} (m > n) in U ⊕W , and then to a Schauder basis (en)n

in the whole Hilbert space X. In particular, by associating to each x ∈ X its
coordinates in this basis, we may identify X with the sequence space `2.

Consider now the fixed point free map A : B(`2) → B(`2) from
Example 12.2. Since x = (ξ1, . . . , ξn, 0, 0, . . .) ∈ U implies A(x) =
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(
√

1− ||x||2, ξ1, . . . , ξn, 0, 0, . . .) ∈ U ⊕ Ren+1, we see that A(B(U)) ⊆ S(U ⊕
W ), provided that W ⊆ V is one-dimensional. More generally, if W is k-
dimensional, we simply replace A by its k-th iterate Ak and get Ak(B(U)) ⊆
S(U ⊕W ). Now, if ρ : B(`2) → S(`2) is the retraction constructed from A

as above, the fact that ρ(x) belongs to the subspace spanned by x and A(x)
implies that ρ(B(U)) ⊆ S(U ⊕W ) as well, and the assertion follows. �

In view of Theorem 13.1, the two characteristics

F (X) = inf {k > 0 : there exists a fixed point free map

A : B(X) → B(X) with Lip(A) ≤ k}
(13.3)

and
R(X) = inf {k > 0 : there exists a retraction

ρ : B(X) → S(X) with Lip(ρ) ≤ k}
(13.4)

have found some interest in the literature; we call (13.3) the fixed point constant
and (13.4) the retraction constant of the spaceX. These constants give an idea,
roughly speaking, how “well-behaved” the maps A and ρ arising in Theorem
13.1 may be.

Surprisingly, the calculation of the characteristic (13.3) is completely trivial:
one has F (X) = 1 in each infinite dimensional space X, which is the best
(or worst, depending on your point of view) value, by the classical Banach-
Caccioppoli fixed point theorem. In fact, by the result from [59] mentioned
above we have F (X) < ∞ in every infinite dimensional Banach space X.
Now, if A : B(X) → B(X) satisfies Lip(A) > 1, we fix ε ∈ (0, Lip(A)− 1) and
consider the map Aε : B(X) → B(X) defined by

Aε(x) := x+ ε
A(x)− x

Lip(A)− 1
.

A straightforward computation shows then that every fixed point of Aε is
also a fixed point of A, and that Lip(Aε) ≤ 1 + ε, hence F (X) ≤ 1 + ε.

On the other hand, calculating or estimating the characteristic (13.4) is
highly nontrivial and requires rather sophisticated individual constructions in
each space X (see [18-20,22,23,35,42,53,58,63,81,82,87]). To cite a few sample
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results, one knows that R(X) ≥ 3 in any Banach space, while 4.5 ≤ R(X) ≤
31.45... if X is Hilbert. Moreover, the special upper estimates

R(`1) < 31.64..., R(c0) < 35.18..., R(L1[0, 1]) ≤ 9.43...,

R(C[0, 1]) ≤ 23.31...

are known; a survey of such estimates and related problems may be found in
the book [44] or, more recently, in [43].

Now let φ be some measure of noncompactness (for example, φ ∈ {α, β, γ}).
Parallel to (13.3) and (13.4), we introduce the characteristics

Fφ(X) = inf {k > 0 : there exists a fixed point free map

A : B(X) → B(X) with [A]φ ≤ k},
(13.5)

and
Rφ(X) = inf {k > 0 : there exists a retraction

ρ : B(X) → S(X) with [ρ]φ ≤ k}.
(13.6)

From Darbo’s fixed point principle (Theorem 8.1) it follows immediately
that Fφ(X) ≥ 1 in every infinite dimensional space X and φ ∈ {α, β, γ}. On
the other hand, Fφ(X) ≤ F (X), if φ is Lip-compatible, and so Fφ(X) = 1 in ev-
ery infinite dimensional space X, by what we have observed before. Similarly,
Rφ(X) ≤ R(X), whenever φ is a Lip-compatible measure of noncompactness.

We point out that the paper [84] is concerned with characterizing some
classes of spaces X in which the infimum Fφ(X) = 1 is actually attained,
i.e., there exists a fixed point free φ-nonexpansive selfmap of B(X). This is a
nontrivial problem which is solved in Theorem 13.2 below.

In [83] it was shown that Rα(X) ≤ 6, Rγ(X) ≤ 6, and Rβ(X) ≤ 4 +
β(B(X)). (Recall that the lattice measure of noncompactness of the unit ball
B(X) is highly sensitive with respect to the geometry of the space X and has
to be calculated in every space individually.) It was also shown in [83] that
Rφ(X) ≤ 4 for separable or reflexive spaces X, and that even Rφ(X) ≤ 3
if X contains an isometric copy of `p with p ≤ (2 − (log 3/ log 2))−1 ≈ 2.41.
Observe that, by our construction of A through ρ in (13.1), we always have
the estimate

1 = Fφ(X) ≤ Rφ(X) (φ ∈ {α, β, γ}). (13.7)
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Later (see Theorem 13.3 below) we will discuss a class of spaces in which
the inequality sign in (13.7) also turns into equality.

The following Theorem 13.2 [10] shows that the fixed point free map A :
B(X) → B(X) may always been chosen with [A]φ = 1 and [A]−φ arbitrarily
close to 1, see (1.23). This means, in particular, that the infimum in (13.5) is
actually a minimum, and that fixed point free φ-nonexpansive operators may
be chosen proper.

Theorem 13.2. Let X be an infinite dimensional Banach space and ε > 0.
Then there exists a fixed point free map A : B(X) → B(X) satisfying [A]φ = 1
and [A]−φ ≥ 1− ε for φ ∈ {α, β, γ}. Moreover, if X contains a complemented
infinite dimensional subspace with a Schauder basis, it may be arranged in
addition that Lip(A) ≤ 1 + ε.

We give now more precise estimates for the characteristic (13.6) in a special
class of spaces. Recall that a Banach space X with Schauder basis E = (en)n

is said to have a monotone norm (with respect to E) if

|ξk| ≤ |ηk| for all k ∈ N implies

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=1

ξkek

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
∞∑

k=1

ηkek

∣∣∣∣∣
∣∣∣∣∣ (13.8)

for all sequences (ξk)k and (ηk)k for which the two series on the right hand
side of (13.8) converge.

For example, the sequence spaces `p (1 < p < ∞) and c have a monotone
norm with respect to the usual bases. Interestingly, one may characterize this
property by an intrinsic property [10]: a basis E = (en)n on a Banach space X
is unconditional (i.e., any rearrangement of E is also a basis) if and only if one
may pass to an equivalent norm on X which is monotone with respect to E.
This shows that there are many spaces which do not have a monotone norm
with respect to any basis. For instance, no space with the so-called Daugavet
property has a monotone norm [49,50], and even does not imbed into a space
with a monotone norm. In particular, C[0, 1] and L1[0, 1] (and all spaces into
which they imbed) do not possess a monotone norm.
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Theorem 13.3. Let X be an infinite dimensional Banach space X whose
norm is monotone with respect to some basis. Then the equality

Rφ(X) = 1 (φ ∈ {α, β, γ}) (13.9)

holds true.

Theorem 13.3 is of course in sharp contrast to the fact that, as mentioned
above, one has R(X) ≥ 3 in every Banach space X. This shows that in many
spaces it is possible to find retractions of the unit ball onto its boundary which
are “almost φ-nonexpansive”, but there are no retractions which are “almost
nonexpansive”. The problem whether or not there exists a space X in which
actually [ρ]φ = 1 for some retraction ρ : B(X) → S(X) is still open.

Let us return now to the minimal displacement (12.2) of an operator A :
B(X) → B(X). Taking into account the estimate (12.3), it seems reasonable
to introduce the characteristic

D(X) = inf
{

k
kδ+1 : k ≥ 1, δ ≥ 0, there exists an operator

A : B(X) → B(X) with η(A) > δ and Lip(A) ≤ k} ,
(13.10)

which we call the displacement constant of X, and the parallel characteristic

Dφ(X) = inf
{

k
kδ+1 : k ≥ 1, δ ≥ 0, there exists an operator

A : B(X) → B(X) with η(A) > δ and [A]φ ≤ k}
(13.11)

for some Lip-compatible measure of noncompactness φ. Observe that the
function (k, δ) 7→ k

kδ+1 is increasing in k, but decreasing in δ. Clearly, for
δ = 0 the numbers (13.10) and (13.11) simply reduce to the characteristics
(13.3) and (13.5), respectively. On the other hand, for δ > 0 the estimate
(12.3) shows then that Dφ(X) ≥ 1 in every Banach space X. Conversely, in
[83] it was shown that, given any infinite dimensional space X, k > 1, and
ε > 0, one may find A : B(X) → B(X) with [A]φ ≤ k and

η(A) ≥ 1
2
− 1
k
− ε. (13.12)

Since ε > 0 is arbitrary, this gives the upper estimateDφ(X) ≤ 2. Moreover,
in spaces X with the so-called “separable retraction property” (e.g., reflexive
or separable spaces), the constant 1

2 in (13.12) may be replaced by 1 for φ = γ,
and so one even has Dγ(X) = 1. A similar result holds for spaces X which



220 J. APPELL

contain an isometric copy of `p or c0; in this case, one may also for φ = α

and φ = β replace the constant 1
2 in (13.12) at least by 2(1−p)/p and obtains

Dα(X), Dβ(X) ≤ 2(p−1)/p.

However, we can do much better. From all maps occuring in our definitions,
the retraction ρ : B(X) → S(X) is the most “powerful” map. In fact, each
such retraction can be used to construct a continuous operator A : B(X) →
B(X) with minimal displacement η(A) = δ < 1 as close to 1 as we want:

Example 13.2. Given an infinite dimensional Banach space X, choose a
retraction ρ : B(X) → S(X) with Lip(ρ) < ∞. Fix δ ∈ (0, 1) and define
A : B(X) → B(X) by

A(x) :=


−ρ
(x
r

)
if ||x|| ≤ r,

− x

||x||
if ||x|| > r,

(13.13)

where r := 1− δ. This operator satisfies [A]φ ≤ [ρ]φ/r = [ρ]φ/(1− δ), because

φ(A(M)) = max {φ(A(M ∩Br(X))), φ(A(M \Br(X)))}

≤ max
{
φ
(
ρ(1

rM)
)
, φ
(
[0, 1] · 1

rM
)}
.

Moreover, since ρ is Lipschitz continuous, A is Lipschitz continuous as well.
More precisely, we have the estimate

Lip(A) ≤ max
{
Lip(ρ)
r

,
2
r

}
=
Lip(ρ)
r

=
Lip(ρ)
1− δ

,

since Lip(ρ) ≥ 3, as mentioned before. In fact, in case ||x|| < r < ||y||, let
z ∈ Sr(X) be a convex combination of x and y and observe that

||f(x)− f(y)|| ≤ Lip(ρ)
r

(||x− z||+ ||z − y||) =
Lip(ρ)
r

||x− y||.

Using the shortcut k := Lip(A) and c := Lip(ρ), with A given by (13.13),
we have, in particular,

k

kδ + 1
=

1
δ + 1−δ

c

→ 1 (δ ↑ 1),

and so we get the surprising consequence that

D(X) = Dφ(X) = 1
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in every infinite dimensional normed space! This means in a sense that the
estimate (12.3) in Theorem 12.2 becomes “arbitrarily sharp” in each space if
η(A) is sufficiently close to 1, even if we replace [A]γ by Lip(A).

14. Nonlinear spectral theory

In view of the importance of spectral theory in functional analysis, operator
theory and quantum mechanics, it is not surprising at all that various attempts
have been made to define and study spectra also for nonlinear operators. A
detailed account of nonlinear spectral theory and its applications may be found
in the recent monograph [9]. In this final section we discuss a particularly
interesting nonlinear spectrum which was introduced by Väth in [85,86] and
is closely related to fixed point theory for condensing operators.

First some definition are in order. An operator A : Br(X) → X is called
0-epi [39] if A(x) 6= 0 on Sr(X) and, given any compact map C : Br(X) → X

which vanishes on Sr(X), one may find a solution x ∈ Br(X) of the coincidence
equation

A(x) = C(x). (14.1)

More generally, if this equation still has a solution for every C satisfying
[C]φ ≤ k for some measure of noncompactness φ, then F is called k-epi [80].
In this terminology, Schauder’s fixed point principle states that the identity
operator is 0-epi on every ball, while Darbo’s fixed point principle states that
the identity operator is k-epi on every ball for k < 1, see Theorem 8.1 and the
following remark.

A trivial example of a k-epi map (for any k) is every scalar function f :
[−r, r] → R satisfying f(−r)f(r) < 0, by the intermediate value theorem (or,
equivalently, Brouwer’s fixed point theorem). It was an open problem for some
time to find a Banach space X and a map A which is 0-epi on B(X), but not
k-epi for any k > 0. (The authors of [80] claim to give an example of this type,
but their example does not have the required properties.) This problem was
solved only quite recently by Furi [36]; we report Furi’s example in a slightly
more general setting in the following

Example 14.1. Let X be an infinite dimensional Banach space which has
a monotone norm with respect to some basis. We claim that the operator A
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from Example 1.6 is 0-epi on B(X), but not k-epi for any k > 0. In fact, since
A is a homeomorphism from B(X) onto itself, the coincidence equation (14.1)
is equivalent to the fixed point equation x = A−1(C(x)), and this equation is
solvable for all compact operators C : B(X) → X with C(x) ≡ 0 on S(X), by
Schauder’s theorem.

However, there is no k > 0 such that A is k-epi on B(X) for φ = α,
say. To see this, suppose that A is k-epi on B(X) for some k > 0, and
let ρ : B(X) → S(X) be a retraction with [ρ]α ≤ 1 + ε, whose existence is
guaranteed by Theorem 13.3. Fix r ∈ (0, 1) such that r(2+ε) < k and consider
the operator

C(x) :=

 A(x)−A (rρ(x/r)) if ||x|| ≤ r,

0 if r < ||x|| ≤ 1.

This operator is continuous, since ρ(x
r ) = x

r for x ∈ Sr(X), but not compact.
Moreover, for each set M ⊆ Br(X) we have

α(C(M)) ≤ α(A(M))+α(A(rρ(1
rM))) ≤ rα(M)+r[ρ]αα(M) ≤ (2+ε)rα(M),

since ||A(x)|| = ||x||2. This shows that [C]α ≤ (2+ε)r < k. So, by assumption
we find a solution x∗ of equation (14.1). But this implies that ||x∗|| ≤ r and
A
(
rρ(x∗

r )
)

= 0, hence ρ(x∗

r ) = 0 which is impossible. �

Of course, an analogous reasoning shows that the operator A from Example
14.1 is 0-epi, but not k-epi on every ball Br(X).

Furi’s example shows that being 0-epi on Br(X) and different from zero
on Sr(X) is not a stable property of a nonlinear operator. Therefore a more
suitable property is the following. We say that an operator A : Br(X) → X is
strictly epi on Br(X) if A is k-epi on Br(X) for some k > 0 and, in addition,
if

dist (0, A(Sr(X))) = inf
||x||=r

||A(x)|| > 0. (14.2)

Of course, condition (14.2) is stronger than just A(x) 6= 0 on Sr(X), at least
in infinite dimensional spaces. However, a remarkable theorem due to Väth
[86] states that, whenever A is just 0-epi and satisfies [A]−α > 0, where [A]−α
denotes the lower α-norm (1.23) of A, then A is actually strictly epi. Indeed,
from [A]−α > 0 it follows that A maps closed bounded sets into closed sets. In
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particular, A(Sr(X)) is closed, and so (14.2) holds true whenever A(x) 6= 0 on
Sr(X). It is therefore not accidental that the operator A from Example 14.1
satisfies [A]−α = 0, as we already observed in Example 1.6.

From Väth’s theorem it follows, in particular, that being epi and being
strictly epi is equivalent for operators of the form A = I −K with [K]α < 1,
i.e., for condensing perturbations of the identity. In fact, this is an immediate
consequence of the simple estimate [A]−α ≥ 1− [K]α > 0.

There is a perturbation result of “Rouché type” which illustrates the use-
fulness of the notion of strictly epi operators. Suppose that A : Br(X) → X is
strictly epi on Br(X), and B : Br(X) → X is another operator which satisfies
the two conditions

sup
||x||=r

||B(x)|| < inf
||x||=r

||A(x)||, [B]α < [A]−α . (14.3)

Then one may show that A+B is strictly epi on Br(X) as well. In particular,
if λI − A is strictly epi on Br(X) for some λ ∈ K, and µ ∈ K is sufficiently
close to λ in the sense that

|λ− µ| < min
{

1
r

inf
||x||=r

||λx−A(x)||, [λI −A]−α

}
, (14.4)

then µI −A is also strictly epi on Br(X).

We are now ready for defining an important spectrum for nonlinear opera-
tors. Given a Banach space X over the field K and A : X → X, we put

ρ(A) := {λ ∈ K : λI −A is strictly epi on Bρ(X) for some ρ > 0} (14.5)

and
σ(A) := K \ ρ(A), (14.6)

and call (14.6) the Väth spectrum of A ([85], see also [75]). The most important
properties of this spectrum are summarized in the following

Theorem 14.2. The Väth spectrum is σ(A) closed and, in case [A]α <∞,
also bounded, hence compact. Moreover, for linear operators it coincides with
the familiar spectrum.

The closedness of the spectrum σ(A) is essentially a consequence of the
above Rouché type perturbation result which implies that, if λ ∈ ρ(A) for
some λ ∈ K, then also µ ∈ ρ(A) for µ as in (14.4). If A : Br(X) → X satisfies
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[A]α < ∞, then the spectrum σ(A) is bounded in the complex plane by the
number 1

r sup {||A(x)|| : ||x|| ≤ r}, hence compact.

The last assertion of Theorem 14.2 may be proved as follows. If L : X → X

is linear and strictly epi on some ball Bρ(X), condition (14.2) implies that L
has a trivial nullspace and thus is injective. But L is also surjective, as can
easily be seen as follows. Suppose that there is some y ∈ X which is not in
the range R(L) of L. Then R(L) does not contain the whole ray {µy : µ ∈ K}
either. In particular, equation (14.1) (with A = L) has no solution for the
compact operator C(x) := dist (x, Sρ(X))y which clearly vanishes on Sρ(X).
This contradicts the hypothesis on L to be strictly epi on Bρ(X).

Conversely, if L is a linear isomorphism on X, then clearly [L]−α > 0, since
X is infinite dimensional. Moreover, let C : X → X be any compact map
satisfying C(x) ≡ 0 on Sρ(X) for some ρ > 0. Then the coincidence equation
(14.1) is equivalent to the fixed point problem x = L−1C(x), and the latter
equation has a solution in Bρ(X), by Schauder’s fixed point theorem. From
Väth’s theorem it follows that L is strictly epi on Bρ(X).

Replacing L by λI − L, we have proved that λ ∈ ρ(L), with ρ(L) given by
(14.5), if and only if λI − L is a linear isomorphism, and so ρ(L) and σ(L)
coincide with the familiar resolvent set and spectrum of L, respectively.

Example 14.2. Let us calculate the Väth spectrum for the nonlinear
operator A from Example 1.6, i.e., A(x) = ||x||x. We claim that

σ(A) = {0}.

To see this, suppose first that λ 6= 0. Then λI − A : B|λ|/2(X) → X is
injective and open with 0 ∈ (λI − A)(B|λ|/2(X)) and [λI − A]−α > 0, and so
λI − A is strictly epi on B|λ|/2(X), hence λ ∈ ρ(A). On the other hand, the
operator A itself cannot be strictly epi on any ball Bρ(A), as we have shown
in Furi’s Example 14.1. �

Let us make some remarks on the definition of the spectrum (14.6) in con-
nection with Example 14.2. In case of a bounded linear operator L we have
0 ∈ ρ(L) if and only if L is an isomorphism. So it seems to be a tempting
idea to define the resolvent set and spectrum for nonlinear operators A in
precisely the same way: just let λ ∈ ρ(A) if λI − A is a homeomorphism on
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X, and λ ∈ σ(A) otherwise. However, this definition is too “naive” to be of
any use. First, such a spectrum does not share any of the familiar proper-
ties with the usual spectrum, as simple examples show [9], and so there is no
analogue to Theorem 14.2. Second, in contrast to Väth’s spectrum (14.6), or
similar spectra in the literature (see Chapters 6-7 in [9]), it does not admit
significant applications. Third, such a definition does not take into account
important compactness properties, as Väth’s spectrum does. For instance, the
operator A from Example 14.1 and 14.2 is a homeomorphism on every infinite
dimensional space, and so quite “regular” from the viewpoint of continuity.
Nevertheless, the fact that [A]−α = 0 shows that A behaves badly from the
viewpoint of compactness, and this is one of the reasons why 0 belongs to the
Väth spectrum of this operator.

Acknowledgement. The author expresses his deep gratitude to Tomás
Domı́nguez Benavides, Ioan A. Rus, Kishin Sadarangani, Boris Nikolaevich
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