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Abstract. We consider a function defined on a subset of a reflexive Banach space with some

conditions, which is weaker than that of Bregman functions, and apply it to a resolvent of

a maximal monotone operator. We obtain a weak convergence theorem with respect to a

sequence of maximal monotone operators, which also implies weak convergence of a sequence

of certain projections that generalizes the metric projections.
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1. Introduction

Let E be a reflexive Banach space and {Cn} a sequence of weakly closed
subsets of E. {Cn} is said be Mosco convergent[12] to C0 if it coincides with
both the set of limit points of {Cn} and the set of weak limit points of all
subsequences of {Cn}.

In 1984, Tsukada[16] studied relations between Mosco convergence of a se-
quence of closed convex subsets and its associated sequence of metric projec-
tions, and pointwise convergence theorems were established. In 2003, Ibaraki,
Kimura, and Takahashi[7] proved an analogous result to Tsukada’s by using
Alber’s generalized projections. This result is extended[11] to that used the
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Bregman projection, whose theory was established by Bregman[3] and has
been studied by many researchers.

On the other hand, finding zeros of maximal monotone operators is one of
the most important problems since it can be applied to many problems such
as optimization, variational inequalities, and so forth.

It is known that if the underlying space is a Hilbert space, then the strong
limit of the resolvent {Jtx} of a maximal monotone operator A as t → ∞
belongs to zeros of A, where t is a positive real number and Jt = (I + tA)−1.
Reich[14] and Kido[8] proved analogous results for an maximal monotone op-
erator on Banach spaces with different types of resolvent each other.

These results show that each type of resolvents of a maximal monotone
operator is closely connected with the associated type of projections to a closed
convex subset. Namely, Kido’s theorem is related with the metric projection,
whereas Reich’s theorem is related with the Alber’s generalized projection.

In this paper, we consider weaker conditions of the Bregman function and
apply it to the resolvents used by Kido. We obtain a weak convergence theorem
with respect to monotone operators. It also implies weak convergence of a
sequence of projections that generalizes the metric projections.

2. Preliminaries

Throughout this paper, we will always consider a real Banach space. Its
norm is denoted by ‖ · ‖ and the dual space of a Banach space E is denoted
by E∗. The dual pair of x ∈ E and x∗ ∈ E∗ is denoted by 〈x, x∗〉.

Let E be a Banach space and {Cn} a sequence of weakly closed subsets of
E. We denote by s-Lin Cn the set of limit points of {Cn}, that is, x ∈ s-Lin Cn

if and only if there exists {xn} ⊂ E such that xn ∈ Cn for all n ∈ N and {xn}
converges strongly to x. We denote by w-Lsn Cn the set of subsequential weak
limit points of {Cn}, that is, y ∈ w-Lsn Cn if and only if there exists {yni}
such that yni ∈ Cni for all i ∈ N and {yni} converges weakly to y, where {Cni}
is a subsequence of {Cn}.

Using these definitions, we define the Mosco convergence[12] of {Cn}. If C0

satisfies that

s-Li
n

Cn = C0 = w-Ls
n

Cn,
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we say that {Cn} is Mosco convergent to C0 and write

C0 = M-lim
n→∞

Cn.

Notice that the inclusion s-Lin Cn ⊂ w-Lsn Cn is always true, so that the
inclusion w-Lsn Cn ⊂ s-Lin Cn implies the existence of M-limn→∞Cn. It is
easy to see that the Mosco limit is always closed and, if each Cn is convex,
M-limn→∞Cn is also convex. For more details, see [2].

Let A be a set-valued mapping of E into E∗. We say that A is monotone if
it satisfies that

〈x− y, x∗ − y∗〉 ≥ 0

for all x, y ∈ E and x∗, y∗ ∈ E∗ with x∗ ∈ Ax and y∗ ∈ Ay. A monotone
operator A is said to be maximal if the graph of A is not a proper subset of
the graph of any other monotone operator.

Let f be a function of E into ]−∞,+∞]. A function f is said to be Gâteaux
differentiable at a point x of the interior of the domain of f , or x ∈ int dom f , if
f ′(x, y) = limt→0(f(x+ty)−f(y))/t exists for all y ∈ E. If f is proper, convex,
lower semicontinuous, and Gâteaux differentiable at x ∈ C ⊂ int dom f , then
f ′(x, ·) is linear continuous function of E into R. We denote it by ∇f(x) ∈ E∗,
that is, 〈y,∇f(x)〉 = f ′(x, y) for x ∈ C and y ∈ E.

For a proper lower semicontinuous convex function f of E into ]−∞,+∞],
a subdifferential ∂f is defined by

∂f(x) = {x∗ ∈ E : f(y) ≥ 〈y − x, x∗〉+ f(x) for all y ∈ E}

for all x ∈ E. It is an important result that ∂f is maximal monotone[15]. The
function f∗ on E∗ defined by

f∗(y) = sup
x∈E

(〈x, y〉 − f(x))

is called the conjugate of f . It is known that, if f is a proper, lower semi-
continuous, convex, and Gâteaux differentiable function on C ⊂ E, then
(∇f)−1 = ∇f∗. For more details, see, for example, [1].

Suppose that a Banach space E is reflexive. Let f : E → ]−∞,+∞] be
a lower semicontinuous convex and Gâteaux differentiable function such that
int dom f is nonempty. Let C be a subset of int dom f . We consider the
following conditions for the function f with the set C.

(1) f is strictly convex on C;



62 YASUNORI KIMURA

(2) The set Lf
α(x,C) = {y ∈ C : Df (y, x) ≤ α} is bounded for any α ≥ 0;

(3) The set Rf
α(y, C) = {x ∈ C : Df (y, x) ≤ α} is bounded for any α ≥ 0,

where Df is a Bregman distance[5], that is, Df (y, x) = f(y) − f(x) − 〈y −
x,∇f(x)〉. The Bregman distance has the following important property called
the three point identity[6]: for x, y, z ∈ int dom f , it follows that

Df (x, y) + Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉.

In [4], Butnariu and Iusem assumed the total convexity of f with the condition
(3) above and called it a Bregman function. Since the conditions (1) and (2)
are implied from the total convexity of f , a Bregman function f satisfies all
of our assumptions. We will call the function satisfying (1), (2), and (3) a
Bregman function in a weaker sense.

The following theorem is a slightly modified version of the theorem proved
by Otero and Svaiter[13]. It plays an important role to define the resolvent
operator we deal with. See also [10].

Theorem 1 (Otero-Svaiter[13]). Let E be a reflexive Banach space, C a
nonempty closed convex subset of E, and f a strictly convex, lower semicon-
tinuous and Gâteaux differentiable function on C satisfying that Rf

α(y, C) =
{x ∈ C : Df (y, x) ≤ α} is bounded for any α ≥ 0. Let A be a maximal
monotone operator of E into E∗ satisfying dom A ⊂ C and A−10 6= ∅. Then,
for any x ∈ C and λ > 0, there exists a unique element y ∈ C such that
∇f(x) ∈ ∇f(y) + λAy.

3. Lemmas

In this section, we prove some lemmas used to show our main theorems.
The following lemma guarantees well-definedness of the resolvent operator we
define below.

Lemma 1. Let E be a reflexive Banach space, C a nonempty closed convex
subset of E, a ∈ C, and f a Bregman function on C in a weaker sense. Let A

be a maximal monotone operator of E into E∗ such that A−10 is nonempty.
Suppose that C − dom A ⊂ C. Then, for each λ > 0 and x ∈ C, there exists a
unique point w ∈ dom A such that

x ∈ w +∇f∗(λAw +∇f(a)).
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Proof. Fix λ > 0 and x ∈ C arbitrarily. Define a multivalued mapping B of
E into E∗ by

By = −A(x− y)

for all y ∈ E. Since A is maximal monotone, B is also a maximal monotone
operator that satisfies

dom B = {x} − dom A ⊂ C − dom A ⊂ C.

Let w0 ∈ A−10. Then we have 0 ∈ −Aw0 = −A(x−(x−w0)) = B(x−w0) and
hence B−10 is nonempty. By Theorem 1, there exists a unique point z ∈ C

such that

∇f(a) ∈ ∇f(z) + λBz,

which is equivalent to that ∇f(a) ∈ ∇f(z)− λA(x− z). Putting w = x− z ∈
dom A, we have

∇f(a) ∈ ∇f(x− w)− λAw,

or ∇f(x − w) ∈ λAw + ∇f(a). Since (∇f)−1 = ∇f∗, we obtain x ∈ w +
∇f∗(λAw +∇f(a)), which completes the proof. �

From this lemma, we obtain that a resolvent operator (I + ∇f∗(λA +
∇f(a)))−1 is defined as a single-valued mapping of C into dom A.

For a subset K of E, the indicator function iK is defined by

iK(x) =

0 for x ∈ K,

+∞ for x /∈ K

for all x ∈ E. If D is a nonempty closed and convex set, then iK is a proper,
lower semicontinuous and convex function with dom iK = K. For such a set K,
we consider the subdifferential ∂iK of iK . It is known that ∂iK is a maximal
monotone operator[15]. The following lemma shows the relation between the
resolvent operator (I +∇f∗(λA +∇f(a)))−1 and the Bregman distance using
the subdifferential of the indicator function.

Lemma 2. Let E be a reflexive Banach space, C a nonempty closed convex
subset of E, a ∈ C, and f a Bregman function on C in a weaker sense. Let K

be a nonempty closed convex subset of E such that C−K ⊂ C. Then, for any
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λ > 0 and x ∈ C, w = (I +∇f∗(λ∂iK +∇f(a)))−1x is a unique minimizer of
Df (x− ·, a)|K , that is,

w = argmin
y∈K

Df (x− y, a).

Proof. Since w = (I +∇f∗(λ∂iK +∇f(a)))−1x is equivalent to
1
λ

(∇f(x− w)−∇f(a)) ∈ ∂iKw,

we have w ∈ K and

〈y − w,∇f(x− w)−∇f(a)〉 ≤ 0, for all y ∈ K.

Using the three point identity, we have

Df (x− y, a)−Df (x− w, a) = Df (x− y, x− w)

+ 〈w − y,∇f(x− w)−∇f(a)〉

≥ −〈y − w,∇f(x− w)−∇f(a)〉

≥ 0

for all y ∈ K, and hence w is a minimizer of Df (x − ·, a)|K . Uniqueness is
easily obtained from strict convexity of f . �

Let K be a nonempty closed convex subset of E such that C −K ⊂ C and
a ∈ C. We define a projection P f,a

K of C onto K by

P f,a
K x = argmin

y∈K
Df (x− y, a) = (I +∇f∗(∂iK +∇f(a)))−1x

for all x ∈ C.
The following lemma is an essential part of our main theorems.

Lemma 3. Let E be a reflexive Banach space, C a nonempty closed convex
subset of E, and f a Bregman function on C in a weaker sense. Let a and x

be points of C. Suppose that a sequence {An} of maximal monotone operators
satisfies C − dom An ⊂ C and A−1

n 0 6= ∅ for all n ∈ N. For a sequence {λn}
of positive real numbers, we let

xn = (I +∇f∗(λnAn +∇f(a)))−1x

for all n ∈ N. If C0 = M-limn→∞A−1
n 0 is not empty, then {xn} is bounded.

Further, if all subsequential weak limit points of {xn} belong to C0, then {xn}
converges weakly to P f,a

C0
x.
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Proof. From the definition of {xn}, we have

∇f(a)−∇f(x− xn) ∈ −λnAnxn

for each n ∈ N. Thus there exists w∗n ∈ Anxn such that

∇f(a)−∇f(x− xn) = −λnw∗n.

Fix u ∈ C0 arbitrarily. Then, since C0 = M-limn→∞A−1
n 0, there exists a

sequence {un} ⊂ E such that un ∈ A−1
n 0 for each n ∈ N and that {un}

converges strongly to u. Using the three point identity and monotonicity of
each An, we have

Df (x− xn, a) = Df (x− un, a)−Df (x− un, x− xn)

+ 〈xn − un,∇f(a)−∇f(x− xn)〉

≤ Df (x− un, a) + 〈xn − un,−λnw∗n〉

= Df (x− un, a)− λn〈xn − un, w∗n − 0〉

≤ Df (x− un, a)

for each n ∈ N. Since {Df (x − un, a)} converges to Df (x − u, a), it follows
that {Df (x− xn, a)} is bounded. Hence we have {x− xn} is bounded and so
is {xn}.

Suppose that all subsequential weak limit points of {xn} belong to C0.
Then, for any subsequence {xni} of {xn} converging weakly to x0, we have
x0 ∈ C0. Since Df (·, a) is a weakly lower semicontinuous function, we have

Df (x− x0, a) ≤ lim inf
i→∞

Df (x− xni , a) ≤ lim inf
i→∞

Df (x− uni , a) = Df (x− u, a).

Since u ∈ C0 is arbitrarily chosen, x0 is the unique minimizer of Df (x − ·, a)
on C0. Hence we have x0 = P f,a

C0
x, which implies that {xn} converges weakly

to P f,a
C0

x. �

4. Main results

Using the lemmas in the previous section, we show the following weak con-
vergence theorem of a sequence of resolvents of maximal monotone operators.

Theorem 2. Let E be a reflexive Banach space, C a nonempty closed convex
subset of E, and f a Bregman function on C in a weaker sense which satisfies
that f is bounded on any bounded set of dom f . Let a and x be points of
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C. Suppose that a sequence {An} of maximal monotone operators satisfies
C−dom An ⊂ C and A−1

n 0 6= ∅ for all n ∈ N. Let {λn} be a sequence of positive
real numbers with limn→∞ λn = ∞ and xn = (I + ∇f∗(λnAn + ∇f(a)))−1x

for all n ∈ N. Suppose

C0 = M-lim
n→∞

A−1
n 0 6= ∅

and

w-Ls
n

A−1
n y∗n ⊂ C0

for any {y∗n} ⊂ E∗ converging to 0. Then {xn} converges weakly to P f,a
C0

x.

Proof. From Lemma 3, it is sufficient to show that any weak subsequential
limit of {xn} is a point of C0. From the definition of {xn}, we have

xn ∈ A−1
n

(
∇f(x− xn)−∇f(a)

λn

)
for n ∈ N. Since f is bounded on any bounded set of C, ∇f is also bounded on
any bounded set. Therefore a sequence {(∇f(x−xn)−∇f(a))/λn} converges
strongly to 0 since {xn} is bounded by Lemma 3. Let y∗n = (∇f(x − xn) −
∇f(a))/λn for all n ∈ N. Then, using the assumption, we have y∗n → 0 strongly
and that the all weak subsequential limits of {xn} are contained by C0. Hence
{xn} converges weakly to P f,a

C0
x. �

We also obtain weak convergence of a sequence of projections to closed
convex subsets of a reflexive Banach space.

Theorem 3. Let E be a reflexive Banach space, C a nonempty closed convex
subset of E, and f a Bregman function on C in a weaker sense. Let a and
x be points of C. Suppose that a sequence {Kn} of nonempty closed convex
subsets of C satisfies C−Kn ⊂ C for all n ∈ N and K0 = M-limn→∞Kn 6= ∅.
Let

xn = P f,a
Kn

x

for all n ∈ N. Then {xn} converges weakly to P f,a
K0

x.

Proof. Consider the sequence {iKn} of indicator functions associated with
{Kn}. Then, for each n ∈ N, a subdifferential ∂iKn is a maximal mono-
tone operator. It is easy to see that (∂iKn)−10 = Kn for each n ∈ N. Thus we
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have

∅ 6= K0 = M-lim
n→∞

(∂iKn)−10

We also have that dom ∂iKn = Kn and hence C−dom ∂iKn ⊂ C for all n ∈ N.
Since

xn = P f,a
Kn

x = (I +∇f∗(∂iKn +∇f(a)))−1x

for each n ∈ N, we have xn ∈ Kn so that any subsequential weak limit point
of {xn} is contained by w-Lsn Kn = K0. Therefore, by Lemma 3, we obtain
that {xn} converges weakly to P f,a

K0
x, which completes the proof. �

Suppose that a Banach space E is smooth, strictly convex and reflexive.
Then, the function f = ‖ · ‖2/2 is a Bregman function on E in a weaker sense
and ∇f is the normalized duality mapping J of E onto E∗. In this case, a
projection P f,0

K from E onto a nonempty closed convex subset K coincides
with the metric projection PK onto K. Indeed, for x ∈ E, PKx is a unique
minimizer of Df (x− ·, 0) on K and

Df (x− y, 0) =
1
2
‖x− y‖2 − 1

2
‖0‖2 − 〈x− y − 0, J(0)〉 =

1
2
‖x− y‖2.

Letting f = ‖ · ‖2/2, we obtain the following results shown in [9] and [16].

Corollary 1 (Kimura[9]). Let E be a strictly convex, reflexive, and smooth
Banach space and J the duality mapping of E onto its dual E∗. Let {An} be
a sequence of maximal monotone operators of E into E∗ and suppose

M-lim
n→∞

A−1
n 0 = C0 6= ∅

and

w-Ls
n

A−1
n y∗n ⊂ C0

for any sequence {y∗n} ⊂ E∗ converging strongly to 0. Let {λn} be a sequence
of positive real numbers such that limn→∞ λn = ∞. Then, for an arbitrary
x ∈ E, a sequence of resolvents xn = (I + λnJ−1An)−1x converges weakly to
PC0x, where PC0 is the metric projection onto C0.

Corollary 2 (Tsukada[16]). Let E be a smooth, reflexive, and strictly convex
Banach space and C a nonempty closed convex subset of E. Let {Kn} be a
sequence nonempty closed convex subsets of C. If K0 = M-limn→∞Kn exists
and nonempty, then PKnx converges weakly to PK0x for each x ∈ C.
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