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Abstract. In this paper we give Ky Fan’s best approximation theorem and then illustrate
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variational inequalities.
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The following result given in Rn is known as Ky Fan’s Best Approximation
Theorem [4].

Theorem 1. Let C be a closed bounded convex subset of Rn and f : C → Rn

a continuous function. Then there is a y ∈ C such that

‖y − fy‖ = d(fy, C) (∗)

where d(x, C) = inf{‖x− y‖ : y ∈ C} for x ∈ Rn but x /∈ C.
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Proof. We note that y is a solution of (∗) if and only if y is a fixed point
of P ◦ f , where P is the metric projection onto C. Let P : Rn → C be the
metric projection. Then P is a continuous function. Thus, P ◦ f : C → C is
a continuous function and has a fixed point in C by the Brouwer fixed point
theorem. On the other hand, if P ◦ f has a fixed point say, P ◦ fy = y, y ∈ C,
then ‖y − fy‖ = d(fy, C).

This theorem has application in fixed point theory ([1, 2]) and the Brouwer
fixed point theorem is a special case. Let f : C → C be a continuous function,
where C is a closed bounded convex subset of Rn. Then f has a fixed point.
In this case d(fy, C) = 0 and therefore, fy = y. In case f : C → Rn is a
continuous function and C is a closed bounded convex subset of Rn, then f

has a fixed point provided the following condition is satisfied:
If fy 6= y, then the line segment [y, fy] has at least two points of C.
In case the additional boundary condition f(∂C) ⊂ C is satisfied in Theo-

rem 1, then f has a fixed point (see [1]).
Theorem 1 has applications in approximation theory. For example, a closed

bounded convex subset, C, of Rn is a set of existence; that is, for each x ∈
Rn, x /∈ C, there is a y ∈ C such that ‖y−x‖ = d(x,C). We define f : C → Rn

by fy = x for all y ∈ C. Then we have ‖y − fy‖ = d(fy, C); that is,
‖y−x‖ = d(x,C). Note that ‖y−x‖ = d(x, C) is the same as < x−y, y−z >≥ 0
for all z ∈ C.

This theorem is also applicable in deriving results of variational inequalities
[2, 9].

Theorem 2. If C is a closed bounded convex subset of Rn , and f : C → Rn

is a continuous function, then there is a y ∈ C such that < fy, x− y > ≥ 0,
for all x ∈ C.

Proof. Let g = I − f . Then g : C → Rn is a continuous function and, by
Theorem 1, we have ‖y − gy‖ = d(gy, C). Thus ‖y − gy‖ ≤ ‖gy − x‖ for all
x ∈ C; that is, < gy− y, y− x >≥ 0. Hence, < fy, x− y > ≥ 0 for all x ∈ C.

We need the following preliminaries [1,2,3].

Definition 1. Let f : X → X be a map, where X is a Banach space. Then f

is said to be nonexpansive if ‖fx− fy‖ ≤ ‖x− y‖ for all x, y ∈ X.
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A nonexpansive map is of Lipscitz class. In case ‖fx − fy‖ ≤ k‖x − y‖,
where 0 < k < 1, then f is said to be a contraction map.

We state the following [12]

Theorem 3. Let C be a closed convex subset of a Hilbert space H and f :
C → H a nonexpansive map with f(C) bounded. Then there is a y ∈ C such
that ‖y − fy‖ = d(fy, C).

It is easy to see that P ◦ f has a fixed point y ∈ C and the result follows
[12], where P : H → C is a metric projection (a proximity map) and is a
nonexpansive map.
Note. If in Theorem 3 , f : C → C, then f has a fixed point. The following
theorem, proved independently by Browder [3], Gohde [6] and Kirk [10] is
derived as a corollary from Theorem 3.

If C is a closed bounded convex subset of H and f : C → C is a nonexpansive
map, then f has a fixed point.

If we take Br = {x ∈ H|‖x‖ ≤ r}, a ball of radius r and center 0, in place
of C in Theorem 3, then the following result holds [1].

A. Let f : Br → H be nonexpansive map. Then there is a y ∈ Br such
that ‖y − fy‖ = d(fy, Br).

If fy ∈ Br for y ∈ Br, then f has a fixed point. (This follows from
A.)

B. In addition, if in A we have one of the following boundary conditions,
then f has a fixed point. For y ∈ ∂Br, where ∂Br denotes the boundary
of Br.
(i) ‖fy‖ ≤ ‖y‖
(ii) < y, fy >≤ ‖y‖2

(iii) ‖fy‖ ≤ ‖y − fy‖
(iv) If fy = ky, then k ≤ 1
(v) ‖fy‖2 ≤ ‖y‖2 + ‖y − fy‖2.

For example, if < y, fy >≤ ‖y‖2, then ‖fy‖ ≤ ‖y‖ = r, implies that
fy ∈ Br. Hence, f has a fixed point.

Hartman and Stampacchia [8] proved the following interesting result of vari-
ational inequalities that is applicable in mathematical, physical and economic
problems.
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Theorem 4. Let C be a compact convex subset of Rn and f : C → Rn a
continuous function. Then there is a y ∈ C such that < fy, x− y >≥ 0 for all
x ∈ C.

The goal of the study of variational inequalities is to find a solution of the
variational inequality problem (VIP).

Note that the variational inequality problem (VIP) has a solution if and
only if P (I − f) : C → C has a fixed point.

A variant of Theorem 4 is given below, where a continuous monotone map
is taken in Hilbert space.

Theorem 5. Let C be a closed bounded convex subset of H and f : C → H a
monotone, continuous map. Then there is a y ∈ C such that < fy, x−y >≥ 0
for all x ∈ C.

Recall that f : C → H is monotone if < fx − fy, x − y >≥ 0 for all
x, y ∈ C. A very elegant proof of Theorem 5 is given by Granas [7] by using
the KKM-map principle.

An application of Theorem 5 is to prove the following [7].

Theorem 6. Let C be a closed bounded convex subset of a Hilbert space H

and f : C → C a nonexpansive map. Then f has a fixed point.

Proof. Since f is a nonexpansive map, it is continuous. Consider g : C → H,
where g = I − f . Then g is a continuous map. It is easy to see that g is
monotone, that is, < gx − gy, x − y >≥ 0. In fact, ‖fx − fy‖ ≤ ‖x − y‖, so
‖fx− fy‖2 ≤ ‖x− y‖2 + ‖gx− gy‖2.

Now,

‖fx− fy‖2 = ‖(I − g)x− (I − g)y‖2

= ‖gx− gy‖2 + ‖x− y‖2 − 2 < gx− gy, x− y > .

But ‖fx− fy‖2 ≤ ‖x− y‖2 + ‖gx− gy‖2 only if < gx− gy, x− y >≥ 0, that
is, g = I − f is monotone.

Now, g is continuous and monotone therefore by Theorem 5 there is a y ∈ C

such that < gy, x− y >≥ 0 for all x ∈ C, that is, < y − fy, x− y >≥ 0 for all
x ∈ C. Since f : C → C so by taking x = fy we get that < y−fy, fy−y >≥ 0,
that is, < y − fy, y − fy >≤ 0. But ‖y − fy‖2 ≥ 0 so y = fy.

The following is an application of Theorem 5 in [7].
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Theorem 7. A closed bounded convex subset C of a Hilbert space H is a set of
existence, that is, for each y /∈ C, there is an x ∈ C such that ‖x−y‖ = d(y, C).

Recall that if C is closed convex subset of a Hilbert space H and y /∈ C,
then there is an x ∈ C such that < y − x, x− z >≥ 0 for all z ∈ C; that is, x

is a nearest point to y.
Proof. Let f : C → H be defined by fz = z − y for all z ∈ C.

Then f is a continuous function and is monotone. It is easy to see that
< fz − fx, z − x >≥ 0. Hence by Theorem 5, there is an x ∈ C such that
< fx,w − x >≥ 0 for all w ∈ C. Thus, < x − y, w − x >≥ 0 for all w ∈ C.
That is, < y − x, x − w >≥ 0 for all w ∈ C and x is nearest to y. It follows
easily that x is unique.

In the end we discuss results on maximal elements in mathematical eco-
nomics [2, 5].

The existence of maximal elements in mathematical economics is very use-
ful in the study of fixed point theory, variational inequalities, approximation
theory and complementarity problems.

Definition 2. A binary relation F on a set C is a subset of C × C or a
mapping of C into itself. It is written yFx or y ∈ Fx to mean that y stands
in relation F to x.

Definition 3. A maximal element of F is a point x such that no point y

satisfies y ∈ Fx; that is, Fx = ∅.

The following result is due to Ky Fan [5].

Theorem 8. Let C be a nonempty compact convex subset of Rn and F : C →
2C a multifunction such that (i) x /∈ Fx, (ii) Fx is convex for each x, and
(iii) F has an open graph.

Then F has a maximal element.

The following example illustrates the application of the maximal elements
to approximation theory.

C. Let C be a compact convex subset of Rn and f : C → Rn a continuous
function. Then there is a y ∈ C such that ‖y − fy‖ = d(fy, C).
Proof. Define F on C such that for each x ∈ C, ‖y− fx‖ < ‖x− fx‖.
Then by Theorem 8 F has a maximal element since x /∈ Fx, F has an
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open graph and Fx is convex for each x ∈ C. Hence Fx = φ for some
x ∈ C and ‖x− fx‖ ≤ ‖fx− y‖ for all y ∈ C.

Now an application of approximation result is given to find a fixed
point and in turn to find zero of a polynomial equation.

D. Let C be a compact convex subset of Rn and f : C → Rn a continuous
function. Let x − rfx ∈ C for all x ∈ C and for some r > 0. Then
fx = 0 has a solution, that is, there is a z ∈ C such that fz = 0.
Proof. Let gx = x − rfx for all x ∈ C. Then g : C → Rn is a
continuous function and therefore there is a z ∈ C such that ‖z−gz‖ =
d(gz, C) by part C. Since for all x ∈ C, gx ∈ C, therefore g has a fixed
point, say gz = z and consequently, z − rfz = z, that is, fz = 0 since
r > 0.
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