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Abstract. Let E be a locally convex space and f : E → E a mapping. We say that the

equation f(x) = 0 is almost solvable on A ⊂ E if 0 ∈ f(A). In this paper some results about

the solvability and almost solvability are given. Our results are based on some classical fixed

point theorems and on some geometrical conditions.
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1. Introduction

In the proof of Theorem 2 presented in our paper [5] we used the semi-
inner-product [·, ·] in the sense defined by G. Lumer [8] and studied by J. R.
Giles [4]. We indicated also another kind of semi-inner-product, this is the
semi-inner-product defined in a Banach space by

[x, y] = ‖y‖ · lim
x→0+

‖y + tx‖ − ‖y‖
t

and presented in the K. Deimling’s book [3].
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We note that this semi-inner-product is not linear in the first variable, as
the Lumer’s semi-inner-product, but it is only sub-linear.

However, our Theorem 2 proved in [5] is also valid when we replace the
Lumer’s semi-inner-product by the Deimling’s semi-iiner-product, because in
the proof of this theorem we used only two properties, which are valid for both
semi-inner-products.

Now, in the section 2 of this paper we give a new variant of Theorem
2 proved in [5]; some consequences of this result are also indicated. This
result is generalized in the section 3 for other kind of operators, which are not
compacts.

2. Solvability in Banach spaces

2.1. Preliminaries. Let (E, ‖ · ‖) be a Banach space, r > 0 a real number
and f : E → E a completely continuous mapping, i.e. f is continuous and for
any bounded set D ⊂ E we have that f(D) is a relatively compact set.

We denote:

Br = {x ∈ E| ‖x‖ ≤ r}; Sr = {x ∈ E| ‖x‖ = r}

We will consider in Br the equation

f(x) = 0 (2.1)

Our goal is to study the almost and the solvability of equation (2.1). We
say that equation (2.1) is almost solvable if

0 ∈ f(Br). (2.2)

The notion of almost solvability is justified by the fact that, the condition
(2.2) is equivalent with the equality

inf ‖f(x)‖ = 0, x ∈ Br (2.3)

2.2. Function G. Suppose given a mapping G : E × E → R, satisfying the
following properties:

(g1) G(x, x) ≥ 0 for all x ∈ Sr

(g2) G(λx, y) ≥ λG(x, y), for all λ > 0 and all x, y ∈ Sr.
We give some examples of functions G satisfying (g1) and (g2).
Example 1. If (E, 〈·, ·〉) is a Hilbert space, then G(·, ·) = 〈·, ·〉.
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Example 2. If (E, ‖ · ‖) is a Banach space, then G(·, ·) = [·, ·]l where [·, ·]l
is the semi-inner-product in the Lumer’s sense, or G(·, ·) = [·, ·]d where [·, ·]d
is the semi-inner-product in the Deimling’s sense.

Example 3. Let (H, 〈·, ·〉) be a Hilbert space and E = C([0, 1],H) the
normed vector space with the norm ‖x‖ = sup

t∈[0,1]
‖x(t)‖H , where ‖ · ‖H is the

norm of the space H. Then we may take

G(x, y) = sup
t∈[0,1]

〈x(t), y(t)〉

or

G(x, y) = inf
t∈[0,1]

〈x(t), y(t)〉

or

G(x, y) =
∫ 1

0
〈x(t), y(t)〉dt.

Notice that for these examples, the condition (g2) can be replaced by
(g′2) G(λx, y) = λG(x, y), λ > 0, x, y ∈ Sr.
If the function G satisfies the following property: there exists k > 0 such

that

|G(x, y)| ≤ k‖x‖‖y‖, for all x, y ∈ Br, (2.4)

then in this case, we say that the function G is subordinated to the norm ‖ · ‖.
Remark that all particular functions G defined above are subordinated to

the norm.

2.3. Main result. The main result of this section is contained in the following
theorem.

Theorem 2.1. Let (E, ‖ · ‖) be a Banach space. Suppose that
i) f : E → E is a completely continuous mapping,
ii) G : E × E → R is a mapping such that the properties (g1) and (g2) are

satisfied for a particular r > 0,
iii) the following inequality is satisfied

G(f(x), x) < 0, for any x ∈ Sr. (2.5)

Then the equation (2.1) is almost solvable in Br.
Proof. If there is x ∈ Br such that f(x) = 0, then the equation (2.1) is

solvable and, consequently, almost solvable.
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Suppose that 0 6∈ f(Br), we will show that 0 ∈ f(Br). Indeed, we suppose
the contrary, that is, we suppose that 0 6∈ f(Br). In this case we can consider
the mapping

F (x) =
r

‖f(x)‖
f(x), x ∈ Br.

We have that F : Br → E is well defined and continuous. We have also
the inclusion F (Br) ⊂ Sr ⊂ Br. As in the proof of Theorem 2 ([5]), we
can show that F (Br) is relatively compact. Therefore, applying the Schauder
Fixed Point Theorem we obtain the existence of a point x∗ ∈ Br, such that
F (x∗) = x∗, x∗ ∈ Sr. Then we have

0 > G(f(x∗), x∗) = G

(
‖f(x∗)‖

r
x∗, x∗

)
≥ ‖f(x∗)‖

r
G(x∗, x∗) ≥ 0

which is impossible. Hence, we must have that 0 ∈ f(Br) and the proof is
complete. �

We note that, if G satisfies the condition G(x, x) 6= 0 if x 6= 0 and only (g′2)
then we can replace (2.5) by

G(x, x)G(f(x), x) < 0 for all x ∈ Sr

Indeed, from x∗ = F (x∗) it follows

‖f(x∗)‖G(x∗, x∗) = rG(f(x∗), x∗), x∗ ∈ Sr

and consequently
G(x∗, x∗)G(f(x∗), x∗) ≥ 0

which contradicts the precedent inequality.

2.4. Some solvability results. It is clear that if the hypothesis of the The-
orem 2.1 are satisfied and

0 6∈ (Br) implies 0 6∈ f(Br) (2.6)

then (2.1) is solvable. Indeed, if (2.6) is valid then F has a fixed point and a
contradiction is then obtained. Using this remark we can obtain the following
corollary.

Corollary 2.1. If the hypothesis of the Theorem 2.1 are satisfies and if
there exists a > 0 such that

‖f(x)− f(y)‖ ≥ a‖x− y‖ for all x, y ∈ Br (2.7)



SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS 75

then the equation (2.1) is solvable and has a unique solution.
Proof. Suppose that the implication (2.6) is not valid, i.e. 0 6∈ f(Br) but

0 ∈ f(Br). If xm ∈ Br such that f(xm) → 0, then we have

‖xm − xp‖ ≤
1
a
‖f(xm)− f(xp)‖,

which implies that {xm} is a Cauchy sequence and consequently xm → x ∈
Br. Because f is continuous we have that f(x) = 0 which contradicts the
hypothesis. Therefore (2.6) holds. Because f is injective the solution of (2.1)
is unique. �

Now, we consider the case where (2.7) is replaced by

‖f(x)− f(y)‖ ≤ a‖x− y‖ for all x, y ∈ Br (2.8)

Set

M = sup
x∈Br

‖f(x)‖

Note that M is finite, because f is completely continuous.
Theorem 2.2. Suppose that:
i) f : Br → E is a completely continuous mapping,
ii) inequality (2.8) is satisfied,
iii) G is an inner-product subordinated to the norm ‖ · ‖, i.e.

|G(x, y)| ≤ k‖x‖‖y‖, x, y ∈ E, k > 0.

iv) the inequality

G(f(x), x) ≤ −c (2.9)

is satisfied for all x ∈ Sr, where

c = rk[ar + M ]. (2.10)

Then the equation (2.1) is solvable on Br.
Proof. Define the function g : Br → R by g(x) = G(f(x), x). By (2.9) we

have

g(x) ≤ −c < 0 for all x ∈ Sr. (2.11)

On the other hand

|g(x)− g(y)| = |G(f(x)− f(y), x) + G(f(y), x− y)| ≤

≤ k[‖f(x)− f(y)‖‖x‖+ ‖f(y)‖‖x− y‖] ≤ k[ar + M ]‖x− y‖
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therefore
|g(x)− g(y)| ≤ α‖x− y‖, x, y ∈ Br (2.12)

where
α = k[ar + M ] (2.13)

By (2.10) and (2.13) it follows that

c = rα (2.14)

Set
δk =

c

2kα
. (2.15)

It is easy to see that
∞∑

k=1

δk = r.

Because
g(x) = g(x)− g(y) + g(y) ≤ α‖x− y‖+ g(y),

it follows that for all y ∈ Sr and x ∈ Br such that

‖x− y‖ ≤ δ1 (2.16)

we have
g(x) ≤ αδ1 − c ≤ − c

2
. (2.17)

Set
r1 = r − δ1, C1 = {x ∈ Br| r1 ≤ ‖x‖ ≤ r}.

By (2.15), it follows that r1 > 0. On the other hand for every x ∈ C1 there
exists y ∈ C1 such that (2.16) hold. Consequently

g(x) ≤ − c

2
for all x ∈ C1.

Continuing this process we get

g(x) ≤ − c

2k
for all x ∈ Ck

where
Ck = {x| rk ≤ ‖x‖ ≤ rk−1}, k ≥ 1, r0 = r.

Now we suppose that (2.6) is not true, then 0 6∈ f(Br) but there is a
sequence (xm) ⊂ Br such that f(xm) → 0. Therefore

g(xm) → 0, m →∞. (2.18)
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We want to show that

xm → 0, m →∞. (2.19)

If (2.19) is not valid, there exists a subsequence, again denoted by (xm),
such that

‖xm‖ ≥ β > 0, β ≤ r.

Because rk → 0, there exists rk ≤ β. Therefore (xm) ⊂
k⋃

j=1

Cj and conse-

quently

g(xm) ≤ − c

2k
, for all m ≥ 1 (2.20)

which contradicts (2.18).
But, from (2.19) we have that f(0) = 0 which contradicts the assumption

0 6∈ f(Br). �

3. A solvability result in locally convex spaces

3.1. Preliminaries. Now we give an extension of Theorem 2.1 to locally con-
vex spaces. To do this, we need to recall the following fixed point theorem.

Theorem (Arino-Gautier-Penot) Let (E, τ) be a metrizable locally con-
vex space and let C ⊂ E be a weakly compact convex set.

Then any weakly sequentially continuous mapping from C into C has a fixed
point.

The reader can find a proof of this result in [1]. �

3.2. Functions B and G. Let E(τ) be a metrizable locally convex space.
Suppose given a continuous mapping B : E → R satisfying the following
properties:

(b1) B(x) > 0 for any x ∈ E, x 6= 0,
(b2) B(λx) = λB(x) for any x ∈ E and λ > 0, λ ∈ R.
Given r > 0, (r ∈ R) we denote by SB

r = {x ∈ E| B(x) = r}.
Suppose also given a mapping G : E×E → R satisfying conditions (g1), (g2)

where the set Sr is replaced by the set SB
r .

We recall that a mapping f : E → E is called strongly continuous if for
any sequence {xn}n∈N in E, weakly convergent to an element x∗ ∈ E, we have
that {f(xn)}n∈N is τ -convergent to f(x∗).
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3.3. Main result. We have the following result.
Theorem 3.1. Let E(τ) be a metrizable locally convex space and suppose

given a mapping B : E → R satisfying conditions (b1) and (b2) and a mapping
G : E × E → R satisfying conditions (g1), (g2) with respect to SB

r , for a
particular r. Suppose that the set DB

r = conv(SB
r ), is weakly compact.

If f : E → E is a strongly continuous mapping such that G(f(x), x) < 0, for
all x ∈ SB

r , then either there exists an element x∗ ∈ DB
r such that f(x∗) = 0

or 0 ∈ f(DB
r ).

Proof. If there exists an element x∗ ∈ DB
r , such that f(x∗) = 0, then in

this case the proof is complete.
Suppose that f(x) 6= 0 for any x ∈ DB

r . We show that in this case 0 ∈
f(DB

r ).
Indeed, suppose that 0 6∈ f(DB

r ). In this case we consider the mapping

F (x) =
r

B(f(x))
f(x), for any x ∈ DB

r .

We have that F is well defined and F (DB
r ) ⊆ SB

r ⊆ DB
r . Because 0 6∈

f(DB
r ), we can show that F : DB

r → DB
r is (w)-sequentially continuous. By

Arino-Gautier-Penot Fixed Point Theorem there exists an element x∗ ∈ DB
r ,

such that F (x∗) = x∗ ∈ SB
r . We have that

f(x∗) =
B(f(x∗))

r
x∗,

which implies that

0 > G(f(x∗), x∗) ≥
B(f(x∗))

r
G(x∗, x∗) ≥ 0

which is a contradiction. Therefore, we must have 0 ∈ f(DB
r ), and the proof

is complete. �

Remark 1. If the mapping B is also sequentially weakly continuous, then
in this case, we can suppose in Theorem 3.1 that f is sequentially continuous
from the weak to the weak topology.

Remark 2. The reader can find several continuity tests for a nonlinear
mapping f : E → E with respect to the given topology and the weak topology
in [7].
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Remark 3. In Theorems 2.1 and 3.1 we can replace the inequality
G(f(x), x) < 0 by G(f(x), x) > 0, if G is homogeneous with respect to the
first variable, since the zeros of f and of −f are the same.

3.4. Second existence result. In 1970, F. E. Browder introduced in [2]
the notion of nonlinear operator of class (S)+ and for this kind of nonlinear
mapping he defined a topological degree.

I. V. Skrypnik in [10] presented a generalization of this topological degree
and its applications to partial differential equations.

Let (E, ‖ ·‖) be a Banach space and E∗ the topological dual of E. We recall
that a mapping f : E → E∗ is demicontinuous on a set D ⊂ E if for any
sequence {xn}n∈N ⊂ D convergent in norm to x0 ∈ D, we have the equality

lim
n→∞

〈f(xn), u〉 = 〈f(x0), u〉 for all u ∈ E,

where 〈·, ·〉 is the duality between E and E∗.
Also, we say that f is of class (S)+ on D, if for any sequence {xn}n∈N ⊂ D

with {xn} weakly convergent to x0 ∈ E and such that lim sup
n→∞

〈f(xn), xn−x0〉 ≤

0, we have that {xn}n∈N is convergent in norm to x0.
Finally, we say that f : E → E∗ is ρ-strongly monotone if there exists a

continuous strictly increasing function ρ : R+ → R+ such that ρ(0) = 0 and

〈f(x)− f(y), x− y〉 ≥ ρ(‖x− y‖) for any x, y ∈ E.

We have the following result.
Theorem 3.2. Let (E, ‖ · ‖) be a separable reflexive Banach space. Let

f : E → E be a demicontinuous ρ-strongly monotone mapping.
If there exists r > 0 such that 〈f(x), x〉 > 0 for any x ∈ Sr, then the equation

f(x) = 0 has a solution in Br.
Proof. This result is a consequence of Theorem 4.4 proved in [10] (p.

47), because we take D = Br. We have 0 ∈ Br \ Sr and the assumption
〈f(x), x〉 > 0 implies also that f(x) 6= 0 for any x ∈ Sr.

Moreover, in [6] was proved that any ρ strongly monotone mapping is of
class (S)+. Therefore, all the assumption of Theorem 4.4 ([10], p. 47) are
satisfied and the theorem follows. We note that, the proof of this Theorem
4.4 is based on the Skrypnik-topological degree. �
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