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1. Introduction

Let X be a real Banach space with norm |.| and K ⊂ X be a closed cone
of X. The goal of this paper is to establish sufficient conditions for the exis-
tence of nonnegative solutions (i.e., with values in K) to the nonlinear integral
equation

u (t) =
∫ T

0
k (t, s) F (u) (s) ds, t ∈ [0, T ] (1.1)

where k : [0, T ] × [0, T ] → R and F : C ([0, T ] ; X) → C ([0, T ] ; X) is an
operator. The main tool is Krasnoselskii’s compression-expansion fixed point
theorem. This technique has been extensively applied in the literature to
scalar equations, when X = R, see [1, 2, 3, 5, 6, 8, 9, 10, 12] and references
therein. In this paper, for the first time by our knowledge, Krasnoselskii’s
Theorem is used to discuss nonlinear integral equations in Banach spaces.
Our existence theorems extend to equations in ordered Banach spaces previous
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results established for scalar equations by Meehan and O’Regan [9] and Erbe
and Wang [3].

Let us recall Krasnoselskii’s compression-expansion fixed point theorem.

Theorem 1.1. [7] Let (E, |.|) be a Banach space, and let C ⊂ E be a cone
in E. Assume that Ω1, Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2,

and let N : C ∩
(
Ω2 \ Ω1

)
→ C be a completely continuous operator such that

either
(i) |N(u)| ≤ |u| , u ∈ C ∩ ∂Ω1 and |N(u)| ≥ |u| , u ∈ C ∩ ∂Ω2; or
(ii) |N(u)| ≥ |u| , u ∈ C ∩ ∂Ω1 and |N(u)| ≤ |u| , u ∈ C ∩ ∂Ω2.

Then N has a fixed point in C ∩
(
Ω2 \ Ω1

)
.

Basic facts about ordered Banach spaces can be found in [4] and [11]. Here
we just recall a few of them. Any cone C in E induces a partial order on E.

Thus, x ≤ y if and only if y − x ∈ C. We say that the norm |.| is increasing
with respect to C if |x| ≤ |y| whenever 0 ≤ x ≤ y.

We seek solutions of (1.1) in the space C ([0, T ] ; X) of all continuous func-
tions from [0, T ] to X, which are nonnegative in the sense that their values
belong to the cone K. Hence by a nonnegative solution of (1.1) we mean a
function u ∈ C ([0, T ] ; K) satisfying (1.1). Here

C ([0, T ] ; K) = {u ∈ C ([0, T ] ; X) : u (t) ∈ K, t ∈ [0, T ]} .

Notice C ([0, T ] ; K) is a cone of C ([0, T ] ; X) and if the norm of X is increasing
with respect to K, then so is the norm |.|∞ with respect to C ([0, T ] ; K) , where
|u|∞ = maxt∈[0,T ] |u (t)| .

2. Main result

To establish the existence of a solution u in C ([0, T ] ; K) of the integral
equation (1.1) we introduce the following conditions:

(H1) For each t ∈ [0, T ] , kt = k (t, .) ∈ L1 (0, T ;R+) and the map t 7→ kt is
continuous from [0, T ] to L1 (0, T ) ;

(H2) There exists µ ∈ (0, 1) , κ ∈ L1 (0, T ) and an interval [a, b] ⊆ [0, T ] ,
a < b, such that

k (t, s) ≤ κ (s) , t ∈ [0, T ] , a.e. s ∈ [0, T ] ; and

µκ (s) ≤ k (t, s) , t ∈ [a, b] , a.e. s ∈ [0, T ] ;
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(H3) F : C ([0, T ] ; K) → C ([0, T ] ; K) and there exists φ : K → K such
that

φ (x) ≤ F (u) (t) , t ∈ [a, b]

whenever u ∈ C ([0, T ] ; K) , x ∈ K and x ≤ u (t) for all t ∈ [a, b] ;
(H4) There exists α > 0 such that

|F (u) (t)| ≤ α

sup
t∈[0,T ]

∫ T
0 k (t, s) ds

for all t ∈ [0, T ] and u ∈ C ([0, T ] ; K) with |u|∞ = α;
(H5) There exists β > 0, β 6= α and t∗ ∈ [0, T ] such that

inf {|φ (x)| : x ∈ K, |x| = µβ}
∫ b

a
k (t∗, s) ds ≥ β ;

(H6) The operator N defined by N (u) (t) =
∫ T
0 k (t, s) F (u) (s) ds is com-

pletely continuous from C ([0, T ] ; K) to C ([0, T ] ; X) .

Theorem 2.1. If (H1)-(H6) are satisfied, then (1.1) has at least one solution
u ∈ C ([0, T ] ; K) such that

µu (t) ≤ u
(
t′
)

for t ∈ [0, T ] , t′ ∈ [a, b]

and either 0 < α ≤ |u|∞ ≤ β if α < β or 0 < β ≤ |u|∞ ≤ α if β < α.

Proof. Assume α < β. To apply Krasnoselskii’s Theorem let

E = C ([0, T ] ; X) ,

C =
{
u ∈ C ([0, T ] ; K) : µu (t) ≤ u

(
t′
)

for t ∈ [0, T ] , t′ ∈ [a, b]
}

and let Ω1 and Ω2 be given by

Ω1 = {u ∈ C ([0, T ] ; X) : |u|∞ < α}

Ω2 = {u ∈ C ([0, T ] ; X) : |u|∞ < β} .

From (H1), (H3) and (H6) we have that N maps C ([0, T ] ; K) into itself and
is completely continuous.

Moreover, if u ∈ C ([0, T ] ; K) , t ∈ [0, T ] and t′ ∈ [a, b] , then from (H3) we
have

µN (u) (t) ≤ µ

∫ T

0
κ (s) F (u) (s) ds ≤

∫ T

0
k

(
t′, s

)
F (u) (s) ds = N (u)

(
t′
)
.

Consequently, N : C → C and N is completely continuous.
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Now we prove that condition (i) in Krasnoselskii’s Theorem holds. Let
u ∈ C ∩ ∂Ω1. Then u ∈ C ([0, T ] ; K) and |u|∞ = α. Using (H4) we deduce
that

|N (u) (t)| ≤
∫ T

0
k (t, s) |F (u) (s)| ds ≤ α

for all t ∈ [0, T ] . Hence |N (u)|∞ ≤ α = |u|∞ , that is (i) holds.
Next we show that (ii) is satisfied. Let u ∈ C∩∂Ω2. Then u ∈ C ([0, T ] ; K) ,

|u|∞ = β and µu (t) ≤ u (t′) for all t ∈ [0, T ] and t′ ∈ [a, b] . In particular,
µu (t0) ≤ u (t′) for all t′ ∈ [a, b] and t0 ∈ [0, T ] with |u (t0)| = |u|∞ . Now (H3)
implies that φ (µu (t0)) ≤ F (u) (s) on [a, b] . Then

N (u) (t∗) =
∫ T

0
k (t∗, s) F (u) (s) ds

≥ φ (µu (t0))
∫ b

a
k (t∗, s) ds

and since |.| is increasing with respect to K, we deduce that

|N (u) (t∗)| ≥ |φ (µu (t0))|
∫ b

a
k (t∗, s) ds.

This together with (H5) guarantees that |N (u)|∞ ≥ β = |u|∞ . Thus (ii) also
holds.

Therefore, Krasnoselskii’s Theorem applies. �

Remark 2.1. Multiple solutions to equation (1.1) are guaranteed by Theorem
2.1 if the nonlinearity F satisfies assumptions (H3)-(H5) for several disjoint
intervals [α, β] (or [β, α]).

In particular, Theorem 2.1 yields the following existence result for the ab-
stract integral equation

u (t) =
∫ T

0
k (t, s) f (u (s)) ds, t ∈ [0, T ] . (2.1)

Theorem 2.2. Assume (H1), (H2) hold and there exists t∗ ∈ [0, T ] with
ε∗ :=

∫ b
a k (t∗, s) ds > 0. In addition assume that f : K → K is completely

continuous and increasing with respect to K, there exists α > 0 such that

|f (x)| ≤ α

sup
t∈[0,T ]

∫ T
0 k (t, s) ds

(2.2)
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for all x ∈ K with |x| ≤ α, and

lim
|x|→0

|f (x)|
|x|

>
1

µ ε∗
or lim

|x|→∞

|f (x)|
|x|

>
1

µ ε∗
. (2.3)

Then (2.1) has at least one non-zero solution in C ([0, T ] ; K) .

Proof. Obviously (H3) is true with φ (x) = f (x) and (H4) is implied by (2.2).
If the first inequality in (2.3) holds, then there is δ > 0 such that |f (x)| ≥

1
µ ε∗ |x| for |x| ≤ δ. Now (H5) is true if we choose any 0 < β ≤ δ

µ with
β < α. If the second inequality in (2.3) is true, then we may find a δ > 0 with
|f (x)| ≥ 1

µ ε∗ |x| for |x| ≥ δ. So (H5) holds for any β ≥ δ
µ with β > α. Thus

Theorem 2.1 applies. �

Remark 2.2. In case that both inequalities in (2.3) hold, the existence of two
non-zero solutions u1 and u2 is guaranteed, with 0 < |u1|∞ ≤ α ≤ |u2|∞ .

Theorem 2.2 immediately yields existence results for two point boundary
value problems in Banach spaces.

As an example, we can extend to abstract equations the results from [3]
concerning the problem

u′′ (t) + q (t) f (u (t)) = 0, 0 < t < 1
A u (0)−B u′ (0) = 0
C u (1) + D u′ (1) = 0.

(2.4)

Theorem 2.3. Assume q ∈ C ([0, 1] ;R+) , q (t) > 0 on (0, 1) and A, B, C,

D ∈ R+ and CB + AC + AD > 0. In addition assume that f : K → K is
completely continuous, increasing with respect to K and

lim
|x|→0

|f (x)|
|x|

= 0 and lim
|x|→∞

|f (x)|
|x|

= ∞. (2.5)

Then (2.4) has at least one non-zero solution in C ([0, 1] ; K) .

Proof. In this case k = G, the Green’s function for the boundary value problem
−u′′ = h, 0 < t < 1
A u (0)−B u′ (0) = 0
C u (1) + D u′ (1) = 0

and [a, b] =
[

1
4 , 3

4

]
(see [3]). Also, the first equality in (2.5) implies that for

every ε > 0, there exists δε > 0 such that |f (x)| ≤ ε |x| for |x| ≤ δε. Now take
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ε = ε0 = 1

sup
t∈[0,1]

R 1
0 G(t,s)ds

and α = δε0 to obtain (2.2). Furthermore, the second

equality in (2.5) guarantees the second inequality in (2.3). Thus Theorem 2.2
applies. �
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