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Abstract. The aim of this work is to establish an existence theorem for solutions of Mc-

Shane’s stochastic systems, applying Schauder’s fixed point theorem. Also, we give new

conditions relative to the coefficients for the continuity of solution with respect to the initial

condition and respectively, the problem of parametric dependence of the solution process on

the coefficients in McShane stochastic integral equations, generalizing the results of [1], [3],

[4]. A short comment on continuous dependence of the solution on the disturbance and on

modelling problems is given.
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1. The mathematical modelling of several real-world problems leads to
differential systems that involve radomness due to ignorance or uncertainties.

In the formulation of a mathematical model for a physical, biological or
economical problems, we make errors in constructing the coefficients and errors
in the initial conditions. For theoretical purposes it is sufficient to know that
the change in the solution can be made arbitrary small by making the change
in the coefficients and the initial values sufficiently small.

We consider families of stochastic integral equation systems of McShane
type

Xi
λ(t, ω) = αi

λ(t, ω) +
r∑

j=1

∫ t

0
gi
λ,j(s,Xλ(s, ω))dzj(s, ω)+
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+
r∑

j,k=1

∫ t

0
hi

λ,jk(s,Xλ(s, ω))dzj(s, ω)dzk(s, ω), i = 1, 2, ..., n, (1)

t ∈ [0, a], ω ∈ Ω, (Ω,F , P ) being some complete probability space, the coeffi-
cients depend on some parameter λ ∈ Λ, Λ being an open and bounded subset
of Rn, and the integrals as McShane’s stochastic belated integrals.

The continuous dependence of solutions on the parameter and respec-
tively on the initial conditions (t0, X0) in McShane’s stochastic integral equa-
tions were given by J.M.Angulo Ibáñez and R.Gutiérrez Jáimez [2] and
A.Constantin [4].

Under the hypothesis of a weaker condition than the Lipschitz conditions
on gi

λ,j and hi
λ,jk we prove the existence of solutions and the continuity with

respect to the initial condition. Also, we consider the problem of parametric
dependence of the solution process on the coefficients, generalizing the results
of [2] and [4].

2. Let {Ft}0≤t≤a, a ∈ R+, be a family of complete σ−subalgebras of F
such that if 0 ≤ s ≤ t, then Fs ⊂ Ft.

Let L2 be the space of all random variables y : Ω → R with finite L2-norm
||.|| and let Ln

2 be the space of all random vectors x : (Ω,F , P ) → Rn with the

norm ||.||n, ||x||2n =
n∑

i=1
||xi||2, x = (x1, ..., xn) ∈ Ln

2 . Let us denote also for

each Rn-valued process X(t, ω) the norm

|||X||| = = sup
t∈[0,a]

||X(t)||n.

Let C([0, a]) denote the space of all processes x : [0, a] → Ln
2 which are

continuous and adapted to {Ft}t∈[0,a].
A solution to the equation (1) on [0, a] is a process x ∈ C([0, a]) which

satisfies (1) on [0, a].
Let us assume that:
(H1) the noise processes zj , j = 1, ..., r, are defined on [0, a] into R, Ft-

measurable (i.e., adapted to the filtration {Ft}t∈[0,a]) process, satisfying for
some positive constant K the inequalities:

|E{[z(t, ω)− z(s, ω)]/Fs}| ≤ K(t− s),

E([z(t, ω)− z(s, ω)]r/Fs) ≤ K(t− s), r = 2, 4,

a.s., whenever 0 ≤ s ≤ t ≤ a;
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(H2) if ϕλ is any one of the functions gi
λ,j , hi

λ,jk : [0, a] × Ln
2 → L2, i =

1, 2, ..., n; j, k = 1, ..., r, λ ∈ Λ, fixed, then ϕλ(s, x) is continuous in x on Ln
2

for every s ∈ [0, a], and for any xλ ∈ C([0, a]), the process t → ϕλ(t, xλ(t)) is
measurable and Ft- adapted with t → ||ϕλ(t, xλ(t))||2 bounded on [0, a];

(H3) the initial condition αλ belongs to C([0, a]).
It is known that if f : [0, a] → L2 is a measurable process Ft- adapted and

if t → ||f(t)||2 is Lebesgue integrable on [0, a] then ([18], [19]) if z1 and z2

satisfy the hypothesis (H1) the McShane integrals∫ a

0
f(s)dz1(s),

∫ a

0
f(s)dz1(s)dz2(s)

exist and the following estimates are true:

||
∫ a

0
f(s)dz1(s)|| ≤ C{

∫ a

0
||f(s)||2ds}

1
2 ,

||
∫ a

0
f(s)dz1(s)dz2(s)|| ≤ C{

∫ a

0
||f(s)||2ds}

1
2 ,

where C = 2Ka
1
2 + K

1
2 .

We give the following result:
Theorem 1. Let u be a continuous function on [0, a] with u(0) = 0, u(t) > 0

for t > 0 and having non-negative derivative u′ ∈ L1((0, a]) such that if ϕλ is
any one of the function gi

λ,j and hi
λ,jk, then

||ϕλ(t, x)− ϕλ(t, y)||2 ≤ u′(t)
αu(t)

w(||x− y||2n), t ∈ [0, a], x, y ∈ Ln
2 , (2)

with λ ∈ Λ, fixed, α = 2nAC2(r + r2)(1 + r + r2), w ∈ C(R+, R+) monotone
nodecreasing function, w(0) = 0, w(t) > 0 for t > 0 and having bounded
derivative on R+, with sup

t∈R+

|w′(t)| = A.

Further, let

||gi
λ,j(t, x)||2 + ||hi

λ,jk(t, x)||2 ≤ β(t)(||x||2n + 1), t ∈ [0, a], ||x||n ≤ M, M > 0
(3)

for x ∈ Ln
2 , λ ∈ Λ, fixed, β > 0 a continuous function on (0, a] with

lim
t→0+

β(t)
u′(t) = 0.

If the hypotheses (H1) − (H3) are satisfied for λ ∈ Λ, fixed, the functions
gλ,j, hλ,j,k and the integrators zj are common, then the family (1) of systems
has a unique solution Xλ(t, αλ(t)) ∈ C([0, b]), with b ∈ (0, a].
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If lim
m→∞

|||αλ,m − αλ||| = 0, for αλ, αλ,m ∈ C([0, a]), we have that

lim
m→∞

|||Xλ,m −Xλ||| = 0 (4)

for every λ fixed in Λ, Xλ ∈ C([0, a]) is the solution of equation (1) and Xλ,m

is the solution of (1) with the initial condition αλ,m ∈ C([0, a]), m ∈ IN.
Proof. Let us first prove the existence of a solution on some interval (0, b]

with b ∈ (0, a]. We will made a reasoning similar to Ladde and Seikkala [16]
and A. Constantin [7].

We consider the operator T defined on C([0, a]) by

TXλ(t) = αλ(t) =
r∑

j=1

t∫
0

gλ,j(s,Xλ(s))dzj(s)+

+
r∑

j,k=1

hλ,jk(s,Xλ(s))dzj(s)dzk(s), 0 ≤ t ≤ a.

By the hypotheses, these integrals exist and T maps C([0, a]) into itself.
Let q ∈ IN be such that

√
u(a) ≤ (q − 1) ‖α(t)‖n+1√

nC(r+r2)
and denote Q1 =

q(‖α(t)‖n+1). Let b ∈ (0, a] be such that ‖x‖n ≤ Q1 implies ‖ϕλ(t, x)‖2 ≤ u′(t)
for t ∈ [0, b] and for every ϕλ of the form gi

λ,j , hi
λ,jk.

The set

B = {Xλ ∈ C([0, b]); ‖Xλ(t)‖n ≤ Q1 for t ∈ [0, b]}

is a closed bounded and convex subset of the Banach space (C([0, b]), |||.|||).
If Xλ ∈ B we have that

‖
∫ t

0
gi
λ,j(s,Xλ(s))dzj(s)‖ ≤ C{

∫ t

0
‖gi

λ,j(s,Xλ(s))‖2ds}
1
2 ≤

≤ C{
∫ t

0
u′(s)ds}

1
2 = C

√
u(t), j = 1, r, 0 ≤ t ≤ b,

and

‖
∫ t

0
hi

λ,jk(s,Xλ(s))dzj(s)dzk(s)‖ ≤ C
√

u(t), j, k = 1, r, 0 ≤ t ≤ b.

Then we obtain that

‖TXλ‖n ≤ ‖αλ(t)‖n +
√

nC(r + r2)
√

u(t), 0 ≤ t ≤ b,
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and

‖TXλ‖n ≤ ‖αλ(t)‖n + (q − 1)(‖αλ(t)‖n + 1) ≤ Q1, 0 ≤ t ≤ b,

which implies

|||TXλ|||n ≤ Q1, Xλ ∈ B,

i.e. T (B) ⊆ B.
Also if Xλ ∈ B we have that

‖TXλ(t)− TXλ(s)‖n ≤
√

n
√

u(t)− u(s), 0 ≤ s ≤ t ≤ b,

thus the set T (B) is equicontinuous.
Moreover, we have for Xλ, Yλ ∈ B that

‖(TXλ)i(t)− (TYλ)i(t)‖ ≤ C

r∑
j=1

{
∫ t

0
‖gi

λ,j(s,Xλ(s))− gi
λ,j(s, Yλ(s))‖2ds}

1
2 +

+C

r∑
j,k=1

{
∫ t

0
‖hi

λ,jk(s,Xλ(s))− hi
λ,jk(s, Yλ(s))‖2ds}

1
2 , 0 ≤ t ≤ b.

It is easy to see that for every ϕλ of the form gi
λ,j , hi

λ,jk we have

‖ϕλ(s,Xλ(s))− ϕλ(s, Yλ(s))‖2 ≤ 4u′(t), 0 ≤ t ≤ b

and by the continuity of gi
λ,j(s,Xλ), hi

λ,jk(s,Xλ(s)) in Xλ and by the Lebesgue
convergence theorem we deduce that T is continuous.

Applying the Schauder fixed point theorem we obtain that T has a fixed
point in B, thus equation (1) has a solution on [0, b].

Let us now prove the uniqueness of solutions of the problem (1).
If Xλ and Yλ are solutions defined on the same probability space (Ω,F , P )

with the same reference family {Ft}t≥0 on some interval [0, c] with 0 < c ≤ a,

and with the same initial condition αλ(t), we obtain

‖Xi
λ(t)− Y i

λ(t)‖2 ≤ {
r∑

j=1

C2

∫ t

0
‖gi

λ,j(s,Xλ(s))− gi
λ,j(s, Yλ(s))‖2ds+ (5)

+
r∑

j,k=1

C2

∫ t

0
‖hi

λ,jk(s,Xλ(s))− hi
λ,jk(s, Yλ(s))‖2ds}(r + r2) ≤

≤ C2(r + r2)2
∫ t

0

u′(t)
αu(t)

w(‖Xλ(s)− Yλ(s)‖2
n)ds, 0 ≤ t ≤ c.
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Taking into account the hypotheses, we have

‖Xλ(t)− Yλ(t)‖2
n =

n∑
i=1

‖Xi
λ(t)− Y i

λ(t)‖2 ≤ (6)

≤ nC2(r + r2)2
∫ t

0

u′(t)
αu(t)

w(‖Xλ(s)− Yλ(s)‖2
n)ds, 0 ≤ t ≤ c.

If we set v(t) = ‖Xλ(t)− Yλ(t)‖2
n we deduce that

v(t) ≤
∫ t

0

u′(s)
Au(s)

w(v(s))ds, 0 ≤ t ≤ c. (7)

In view of (3) and the condition on β, there exists b ∈ (0, a] such that

‖ϕλ(t, Xλ)‖2 ≤ εA

4α
u′(t), 0 < t ≤ b, ‖Xλ‖n ≤ M, M > 0,

for any ϕλ of the form gi
λ,j , hi

λ,jk.
We deduce that

‖Xi
λ(t)− Y i

λ(t)‖2 ≤ ε

n
u(t), 0 < t ≤ b,

and
v(t) = ‖Xλ(t)− Yλ(t)‖2

n ≤ εu(t), 0 < t ≤ b, (8)

thus

lim
t→0+

w(v(t))
u(t)

≤ lim
t→0+

w(εu(t))
u(t)

= lim
t→0+

w′(εu(t))εu′(t)
u′(t)

≤ Aε (9)

so that

lim
t→0+

w(v(t))
u(t)

= 0 (10)

Using these relations we can deduce that if we denote

V (t) =
∫ t

0

u′(s)
Au(s)

w(v(s))ds, 0 < t ≤ c, (11)

then V is differentiable on (0, c] and for t ∈ (0, c] \ {t : w′(V (t)) = 0} we have

V ′(t) =
u′(t)
Au(t)

w(v(t)) ≤ u′(t)
u(t)

w(V (t))
w′(V (t))

. (12)

Hence we deduce that

u(t)w′(V (t))V ′(t)− u′(t)w(V (t)) ≤ 0, 0 < t ≤ c

since on the set {t : w′(V (t)) = 0} we can write

0 · V ′(t)u(t)− u′(t)w(V (t)) ≤ 0.
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Then (w(V (t))
u(t) )′ ≤ 0 and thus w(V (t))

u(t) is a nonincreasing function of t on (0, c].
Moreover, since u is a continuous nonnegative function on (0, c] we deduce
that

lim
t→0+

w(V (t))
u(t)

= 0 (13)

since, as in (8), for every ε > 0 there exists a δ(ε) > 0 such that v(s) ≤ εu(s)
on (0, δ(ε)] and thus we have

lim
t→0+

w(V (t))
u(t)

= lim
t→0+

w′(V (t))V ′(t)
u′(t)

= lim
t→0+

w′(V (t))u′(t)w(v(t))
Au(t)

u′(t)
≤

≤ lim
t→0+

w(v(t))
u(t)

= 0.

Then for every ε > 0 there exists a γ(ε) > 0 such that w(v(s)) ≤ u(s) on
[0, γ(ε)] and thus

V (t) ≤
∫ t

0

ε

A
u′(s)ds =

ε

A
u(t) ≤ ε

A
u(γ(ε)) on [0, γ(ε)]

i.e. V (0+) = 0. So we must have V (t) = 0 and thus v(t) = 0 on [0, c], proving
that

‖Xλ(t)− Yλ(t)‖2
n = 0, 0 ≤ t ≤ c,

and the uniqueness of solutions for the equations (1) is proved.
Remark. For various choices of u(t), w(t) and β(t) we get some known

criteria for the existence and uniqueness of solutions for the problem (1), as
those from [2], [4], [5], [6], [7], [12], [16], [18].

For the second part we observe that we can write

||Xi
λ,m(t)−Xi

λ(t)||2 ≤ (1 + r + r2){||αi
λ,m(t)− αi

λ(t)||2+

+
r∑

j=1

||
∫ t

0
[gi

λ,j(s,Xλ,m(s))− gi
λ,j(s,Xλ(s))]dzj(s)||2+

+
r∑

j,k=1

||
∫ t

0
[hi

λ,jk(s,Xλ,m(s))− hi
λ,jk(s,Xλ(s))]dzj(s)dzk(s)||2} ≤

≤ (1 + r + r2){||αi
λ,m(t)− αi

λ(t)||2+

+(r + r2)C2

∫ t

0

u′(s)
αu(s)

w(||Xλ,m(s)−Xλ(s)||2n)ds}, t ∈ (0, a]

where λ ∈ Λ, fixed.
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If we denote by
vλ,m(t) = ||Xλ,m(t)−Xλ(t)||2n,

Vλ,m(t) =
∫ t

0

u′(s)
2Au(s)

w(vλ,m(s))ds,

D = 1 + r + r2,

adding for i = 1, ..., n and taking supreme on [0, a] to the initial condition
term, we obtain

vλ,m(t) ≤ D|||αλ,m − αλ|||2 + Vλ,m(t) for t ∈ (0, a], λ ∈ Λ, fixed . (14)

In view of (3) and the condition on β, for every ε > 0 there exists b ∈ (0, a]
such that

||ϕλ(t, x)||2 ≤ εAu′(t)
4α

for 0 ≤ t ≤ b, ||x||n ≤ M, M > 0, (15)

for any ϕλ of the form gi
λ,j , hi

λ,jk, λ ∈ Λ fixed.
From (15) and (8) we deduce that

vλ,m(t) ≤ D|||αλ,m − αλ|||2 + εu(t) for 0 ≤ t ≤ b. (16)

If we denote by vλ(t) = lim
m→∞

vλ,m(t), then, from Lebesgue convergence
theorem, we obtain that

vλ(t) ≤
∫ t

0

u′(s)
2Au(s)

w(vλ(s))ds = Vλ(t) for t ∈ (0, a]

From (16) we deduce that

lim
t→0+

w(vλ(t))
2Au(t)

≤ lim
t→0+

w(εu(t))
2Au(t)

= lim
t→0+

w′(εu(t))εu′(t)
2Au′(t)

≤ ε

2
,

so we have that

lim
t→0+

w(vλ(t))
u(t)

= 0

On the other hand

V ′
λ(t) =

u′(t)
2Au(t)

w(vλ(t)) ≤ u′(t)w(Vλ(t))
u(t)w′(Vλ(t))

on (0, a].

Then the function (w(Vλ(t))
u(t) )′ ≤ 0 and thus w(Vλ(t))

u(t) is a positive nonincreasing
function on (0, a]. But u is a positive continuous function of t on (0, a] and

lim
t→0+

w(Vλ(t))
u(t)

= 0

so that Vλ(0+) = 0 and thus vλ(t) = 0 on (0, a] and the theorem is proved.
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3. Now we consider the problem of the convergence of the solution pro-
cesses in McShane’s stochastic integral equation systems (1) with coefficients
{αλ, gλ,j , hλ,jk; λ ∈ Λ} depending on a parameter λ ∈ Λ (being the integra-
tor zj common to the all elements of the family). We will suppose that the
mentioned family satisfies the hypotheses (H1) − (H3) for every λ ∈ Λ. By
the above theorem we have that for every λ ∈ Λ, equation (1) has a unique
solution Xλ ∈ C([0, a]). Let λ0 be a fixed point in Λ.

We assume that for every process X ∈ C([0, a]) we have

(H4) ϕλ(t, X(t)) P→ ϕλ0(t, X(t)) as λ → λ0,

if ϕλ is any one of the functions gi
λ,j , hi

λ,jk, where P expresses the convergence
in probability.

From [3, Lemma 1 and the Remark] we know that the condition (H4) implies
that for every X ∈ C([0, a])

lim
λ→λ0

∫ a

0
||ϕλ(s,X(s))− ϕλ0(s,X(s))||2ds = 0

Theorem 2. If the hypotheses (H1)− (H4) and (2)-(3) are satisfied, then
lim

λ→λ0

|||αλ − αλ0 ||| = 0 implies lim
λ→λ0

||Xλ −Xλ0 ||2n = 0.

Proof. We can write that

||Xi
λ(t)−Xi

λ0
(t)||2 ≤ (1 + r + r2){||αi

λ(t)− αi
λ0

(t)||2+

+C2
r∑

j=1

∫ t

0
||gi

λ,j(s,Xλ(s))− gi
λ0,j(s,Xλ0(s))||2ds+

+C2
r∑

j,k=1

∫ t

0
||hi

λ,jk(s,Xλ(s))− hi
λ0,jk(s,Xλ0(s))||2ds} ≤

≤ (1 + r + r2){||αi
λ(t)− αi

λ0
(t)||2+

+2C2
r∑

j=1

∫ t

0
||gi

λ,j(s,Xλ(s))− gi
λ,j(s,Xλ0(s))||2ds+

+2C2
r∑

j=1

∫ t

0
||gi

λ,j(s,Xλ0(s))− gi
λ0,j(s,Xλ0(s))||2ds+

+2C2
r∑

j,k=1

∫ t

0
||hi

λ,jk(s,Xλ(s))− hi
λ,jk(s,Xλ0(s))||2ds+
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+2C2
r∑

j,k=1

∫ t

0
||hi

λ,jk(s,Xλ0(s)− hi
λ0,jk(s,Xλ0(s))||2ds}, 0 ≤ t ≤ a,

since if ϕλ is any one of the functions gi
λ,j , hi

λ,jk we have∫ t

0
||ϕλ(s,Xλ(s))− ϕλ0(s,Xλ0(s))||2ds ≤

∫ t

0
(||ϕλ(s,Xλ(s))− ϕλ(s,Xλ0(s))+

+ϕλ(s,Xλ0(s))− ϕλ0(s,Xλ0(s))||)2ds ≤

≤2{
∫ t

0
(||ϕλ(s,Xλ(s))−ϕλ(s,Xλ0(s)||2+||ϕλ(s,Xλ0(s))−ϕλ0(s,Xλ0(s))||2)ds}

for 0 ≤ t ≤ a.

We denote by Ii
1,λ(t), Ii

2,λ(t), Ii
3,λ(t) and Ii

4,λ(t), 0 ≤ t ≤ a, the last terms
in the last member of the previous inequalities.

The hypothesis (2) enables us to write that

||Xi
λ(t)−Xi

λ0
(t)||2 ≤ (1 + r + r2){||αi

λ(t)− αi
λ0

(t)||2 + Ii
2,λ(t)+

+Ii
4,λ(t) + 2(r + r2)C2

∫ t

0

u′(s)
αu(s)

w(||Xλ(s)−Xλ0(s)||2n)ds},

0 ≤ t ≤ a, λ ∈ Λ. Adding for i = 1, 2, ..., n and noting

M1(λ) = (1 + r + r2){|||αλ − αλ0 |||2 +
n∑

i=1

Ii
2,λ(a) +

n∑
i=1

Ii
4,λ(a)},

M2 = 2n(1 + r + r2)(r + r2)C2,

we see that by the hypothesis (H4) we have

lim
λ→λ0

n∑
i=1

(Ii
2,λ(a) + Ii

4,λ(a)) = 0

and so, since lim
λ→λ0

|||αλ − αλ0 |||2 = 0, we deduce that lim
λ→λ0

M1(λ) = 0.

We obtain, for every t ∈ [0, a], that

||Xλ(t)−Xλ0(t)||2n ≤ M1(λ) + M2

∫ t

0

u′(s)
αu(s)

w(||Xλ(s)−Xλ0(s)||2n)ds,

0 ≤ t ≤ a, and so that by the Lebesgue convergence theorem we have

lim
λ→λ0

||Xλ(t)−Xλ0(t)||2n ≤
∫ t

0

u′(s)
Au(s)

w( lim
λ→λ0

||Xλ(t)−Xλ0(t)||2n)ds =

=
∫ t

0

u′(s)
Au(s)

w(v(s))ds, 0 ≤ t ≤ a,
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where we denoted by

v(t) = lim
λ→λ0

||Xλ(t)−Xλ0(t)||2n

≤ lim
λ→λ0

[D|||αλ − αλ0 |||+ εu(t)] = εu(t), 0 ≤ t ≤ b.

Noting by V (t) =
∫ t
0

u′(s)
Au(s)w(v(s))ds, in a similar way as in the first part,

we deduce that V (t) = 0 on [0, a] and v(t) = 0 on [0, a], hence the theorem is
proved.

4. In modelling, analyzing and predicting aspects of economic reality, physi-
cal, biological and social phenomena researches are placing greater and greater
emphasis upon stochastic methods.

Such methods are expected to capture the various complexities measure-
ment errors and uncertainties that are associated with the world reality. The
question that arises naturally is: How can combinations of complexity, uncer-
tainty and ignorance which are present in the process of theorizing be incor-
porated into dynamic analysis ?

Stochastic calculus appears to be one of the natural tools for the study
of models of these phenomena having some non-deterministic elements. For
example, in the description of brownian motion the stochastic nature is ade-
quately described by a linear differential equation with a random forcing term
which is identified as a white noise process or has a formal derivative of the
Wiener process. These developments culminated in the establishment of the
stochastic calculus (Ito (1951), Doob (1953), Ghihman (1950), Stratonovich
(1964), Kunita and Watanabe (1967), the French probabilists notably Meyer,
Dellacherie and Jacod (1967-1980)).

However, when the results of the stochastic calculus were applied to other
types phenomena, certain difficulties arose in the process of interpretation
of stochastic differentials and approximation process. In many models, white
noise process is explicitly introduced and the basic physical process in question
is visualised as an approximation. Hence it is reasonable to expect some kind
of a stability in the sense that the solutions that are obtained by approximating
the white noise process should themselves approximate the process in question.

Ito stochastic calculus failed to satisfy this requirement of stability (see
Wong and Zakai [25]).
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The symmetric integral defined by Stratonovich [23] and the calculus based
on this definition were gainfully employed in modelling and analysis of noise
driven processes, since the Stratonovich interpretation in some situations may
be the most appropriate. On the other hand, the specific feature of the Ito
model of not looking into the feature seems to be a reason for choosing the Ito
interpretation in many cases, for example in bilogy.

In any case, because of the explicit connection between the two models,
it will for many purposes suffice to do the general mathematical treatment
for one of the two type integrals. In general, one can say that Stratonovich
integral has the advantage of leading to ordinary chain rule formula under a
transformation (change of variable), i.e., there are no 2nd order terms in the
Stratonovich analogue of the Ito transformation formula. This property makes
the Stratonovich integral natural to use for example in connection with sto-
chastic differential on manifolds (see Elworthy [12]). However, Stratonovich
integrals are not martingales as the Ito integrals are and which gives the Ito
integrals an important computational advantage, even though it does not be-
have so nicely under transformation.

All these aspects were studied in great depth by McShane (1969, 1970, 1974)
whose attempts culminated in the establishment of a more general calculus
encompassing both ordinary and Ito Calculus.

In McShane’s Calculus, the standard equation

Xi(t, ω) = Xi(0, ω) +

t∫
0

f i(s,X(s, ω))ds +
r∑

j=1

t∫
0

gi
j(s,X(s, ω))dzj(s, ω)

(17)
is replaced by what he calls a canonical extension (or canonical form or
canonical system) of equation (17):

Xi(t, ω) = Xi(0, ω) +

t∫
0

f i(s,X(s, ω))ds+ (18)

r∑
j=1

t∫
0

gi
j(s,X(s, ω))dzj(s, ω) +

1
2

r∑
j,k=1

t∫
0

gi
j,k(s,X(s, ω))dzj(s, ω)dzk(s, ω)
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in which

gi
j,k(t, x, ω) =

n∑
m=1

[∂gi
j(t, x, ω)/∂xm]gm

k (t, x, ω)

i = 1, 2, ..., n; j, k = 1, 2, ..., r; t ∈ [0, a]; x ∈ Rn.

We are now able to describe the method by which we shall construct sto-
chastic models of physical systems which in the physically realizable case of
lipschitzian noises are known to satisfy the integral equation (17).

If gi
j,k(t, x, ω) are functions defined for t ∈ [0, a] and x ∈ Rn and bounded

on bounded sets of (t, x), then the solution Xi(t, ω) of (17) is also a solution
of (18) since the last integral vanishes for lipschitzian noises.

The McShane Calculus is better suited modelling dynamical phenomena
described typically by McShane systems where zj(t, ω) are noises processes.

McShane stochastic integral systems enjoy the following three important
properties:

(i) The property of inclusiveness: the model must apply to systems in which
the permitted noises are processes belonging to some family large enough to
include processes with sample paths having lipschitzian property, all brow-
nian motion processes, and such modifications as have proved convenient in
applications;

(ii) The property of consistency: for lipschitzian noises, the solutions of the
equations should coincide with the solutions of the equations that are normally
believed to be applicable to physical systems;

(iii) The property of stability: the model must be such that if the noise
process zj(t, ω) is replaced by another permissible process z0

j (t, ω) close to
it, then the corresponding solutions Xi(t, ω), Xi

0(t, ω) are also close to each
other (in the sense that an extreme degree of closeness corresponds to practical
imposibility of distinguishing the process by means of available experimental
procedures).

However, in this analysis of stochastic models, McShane assumed the sam-
ple continuity of the noise processes zj(t, ω). In fact there are many situations
in communication and control theory where the sample path of noise pro-
cesses are superposition of step functions. Stochastic point processes do fall
under this category; purely discontinuous Markov processes (PDMP) of Feller-
Kolmogorov type also do come under this class. It is known that higher order
integrals involving z (of order ≥ 3) do not vanish if the processes z admit finite
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jumps. An extension of the modelling procedure of McShane so as to include
systems driven by discontinuous Markov processes is given in [22] where the
canonical form is defined by

dxi(t) = gi(x(t))dt +
∞∑

m=1

r∑
j=1

1
m!

Dm−1
j (gi

j(x(t)))(dzj(t))m

where

D0
j = 1, Dm+1

j = Dj(Dm
j ), Dj =

n∑
i=1

gi
j(x)∂/∂xi

and the integrals are McShane belated integrals. The existence of such canon-
ical forms has been established for PDMP as well as for weighted pointed
processes (see [21], [22]).

The canonical choice is advantageous not only from simple computational
convenience, but besides this it is known [18] that the difference between
the solution of a stochastic differential equation and the Cauchy-Maruyama
approximations can be disappointingly slow in its convergence to zero, and
this is true for Runge-Kutta approximation also. But when the equations
have the canonical form and some additional hypotheses are satisfied, a set
of approximations closely related to the Cauchy-Maruyama approximations
converges considerably faster.

Moreover, for the Runge-Kutta method applied to stochastic differential
equation (17), without second-order terms, the method gives estimates and
converge as mesh Π tends to zero. But the surprising feature is that the esti-
mates converge, not to a solution of (17) itself, but to a solution of its canonical
extension. This establishes another distinctive property of the canonical form,
and also enables us to compute solutions of canonical extension without ever
having to compute the functions gi

j,k.
The solution of the stochastic differential equation in canonical form has a

stability under modification of the zj that is not possessed by the equations
with other choices for gi

j,k (including the traditional choice zero). We can
be sure that any other extension that gives different solutions certainly lacks
stability.

Moreover, the solutions of the canonical extension do not depend on the
coordinate system in which we choose to expres them, the property that is
not in general possessed by other equations. Also, it must be mentioned an
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especial suitability for retaining adequate agrement with experiment when the
noises are idealized to ”white noise” (see [18, pp 228-234], [19], [21], [22]).

In conclusion, McShane’s Calculus had proved to be very valuable in mod-
elling and in finding application in physics under canonical form.

References
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