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Abstract. Using contraction mappings we study x′ = −a(t)g(x(t−r)) and obtain a stability

result allowing a(t) to change sign, but requiring that it be positive on average. Next,

we study stability properties of delay equations of the form x′(t) = −a(t)g1(x(t − r)) −
b(t)g2(x(t − r)) where the gi are odd increasing functions and g2(x)/g1(x) → 0 as |x| → 0.

We show that stability properties can be proved by studying x′(t) = −[a(t)+b(t)]g1(x(t−r)).

In effect, we can borrow the coefficient of the higher order term and add it to the coefficient

of the lower order term to stabilize the equation. Finally, we return to the first equation

and obtain a stability result when a(t) can change sign, but is negative on average. Some of

these stability results are of a very different type than previously discussed in the literature;

and this is a result of using fixed point techniques.
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1. Introduction

Perron’s theorem [14] tells us that if the linear approximation of a differen-
tial equation is uniformly asymptotically stable then the higher order terms
can be ignored. Here, we take the reverse view: Higher order terms can be
used with lower order terms to stabilize an equation.

In a series of papers [2-9] Furumochi and the author have investigated sta-
bility by means of fixed point theory. The general project was started some
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years ago in an attempt to overcome a list of difficulties encountered in stabil-
ity investigations using Liapunov’s direct method. The present work continues
from [3].

In this paper we use fixed point theory to study stability properties of scalar
equations of the form

x′(t) = −a(t)g(x(t− r))

where r is a positive constant, a(t) can change sign, while g is nonlinear,
xg(x) > 0 for x 6= 0, and g satisfies monotonicity and growth conditions.

Three things of interest are accomplished. First, we prove a fixed point
theorem of contraction type which is suited to such stability problems; it is
essentially a known result, but is suited to problems addressed here. Next,
we obtain a stability criterion for x′ = −a(t)g(x(t− r)) when a(t) can change
sign, but on average is positive. Then we obtain results which allow us to
”average” the coefficients of terms of different orders in order to get a stability
result. We show that stability of the zero solution of

x′(t) = −a(t)x(t− r)− b(t)x2n+1(t− r)

can be established from the stability of

x′(t) = −(a(t) + b(t))x(t− r);

the coefficient of the higher order term is simply borrowed and added to the
coefficient of the lower order term. There is, of course, a ”cost” for doing so.
In the same way, stability of the zero solution of

x′(t) = −a(t)x2n+1(t− r)− b(t)x2n+3

can be established from examination of

x′(t) = −(a(t) + b(t))x2n+1(t− r).

The aforementioned ”cost” goes down as n increases. We believe that this is
a type of result not previously seen in the theory of differential equations. In
one of the later results we show that our first equation can still be stable when
a(t) changes sign and is, on average, negative.

We focus some of our attention on polynomial problems in order to give
clear insight into what can be proved. The same techniques work on far more
general problems.
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These averaging results are in marked contrast to classical linear dominant
theory, as portrayed in Perron [14]; in fact, nonlinear terms combine with
linear terms to facilitate proof of stability. They are also in sharp contrast
to Liapunov results begun in Krasovskii [12] where strongly stable ordinary
differential equations are perturbed with a higher order delay term, typified
by

x′(t) = −a(t)g(x(t)) + b(t)h(x(t− r))

with the pointwise relations

a(t)− |b(t+ r)| ≥ 0, xg(x) ≥ 0, and |g(x)| ≥ |h(x)|

so that with Liapunov functional

V (t, xt) = |x(t)|+
∫ t

t−r
|b(s+ r)h(x(s))|ds

we get the relation

V ′(t, xt) ≤ −a(t)|g(x(t))|+ |b(t)h(x(t− r))|

+|b(t+ r)h(x(t))| − |b(t)h(x(t− r))| ≤ 0.

All of the stability comes from the part without a delay, −a(t)g(x(t)), and all
the relations are pointwise. See Hatvani [11; pp. 3565-3570] and Zhang [15;
p. 1381] for recent extensions of the Krasovskii idea. In [10], for example, is
found Liapunov theory with the stability being derived from the delay term.
In the results presented here all the relations are various kinds of averages
and all the stability will come from terms containing a delay. Recently, Zhang
[16] has presented a systematic way of constructing Liapunov functionals for
linear delay equations when information about the quasi-characteristic roots
is known, even when all the stability comes from the delay terms. We will
have more to say on the history in Section 3.

2. A natural metric for a contraction mapping

It is well known that if f(t, x) satisfies a uniform Lipschitz condition in x

in the supremum norm, then a new norm can be defined (a weighted norm) so
that

∫ t
0 f(s, x(s))ds is a contraction. But if f(t, s, x) does not satisfy a uniform

Lipschitz condition in x then it can be challenging to define a norm so that∫ t
0 f(t, s, x(s))ds is a contraction.
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We will have a mapping with several terms which needs to be a contraction.
The terms will be considered individually with each term being a contraction
and having a contraction constant as small as we please. The following theorem
shows how this is done and it will be used repeatedly in the rest of the paper.
The general idea of the theorem is very well known.

Theorem 2.1. Let L > 0, ψ(0) be a fixed number,

M = {φ : [0,∞) → R|φ ∈ C, φ(0) = ψ(0), |φ(t)| ≤ L},

and f : [−L,L] → R satisfy a Lipschitz condition with constant K > 0.
Suppose also that a : [0,∞) → R is continuous, h : [0,∞) → R is continuous,
and for φ ∈M define

(Pφ)(t) = h(t) +
∫ t

0
e−

R t
s a(u+r)dua(s+ r)f(φ(s))ds.

If P : M →M then for each d > 1 there is a metric ρ on M such that P is a
contraction with constant 1/d and (M,ρ) is a complete metric space.

Proof. Let (X, | · |K) be the Banach space of continuous φ : [0,∞) → R for
which

|φ|K := sup
t≥0

e−(dK+2)
R t
0 |a(s+r)|ds|φ(t)|

exists. If φ, η ∈M then

|Pφ− Pη|K

≤ sup
t≥0

e−(dK+2)
R t
0 |a(s+r)|ds

∫ t

0
e−

R t
s a(u+r)du|a(s+ r)||f(φ(s))− f(η(s))|ds

≤sup
t≥0

∫ t

0
e−

R t
s a(u+r)du|a(s+r)|K|φ(s)−η(s)|e−(dK+2)(

R s
0 |a(u+r)|du+

R t
s |a(u+r)|du)ds

≤ |φ− η|K sup
t≥0

∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|Ke−(dK+2)

R t
s |a(u+r)|duds

≤ |φ− η|K sup
t≥0

∫ t

0
e−dK

R t
s |a(u+r)|duK|a(s+ r)|ds

≤ |φ− η|K
K

dK
= (1/d)|φ− η|K .

Now M is a subset of the Banach space X and M is closed so M is complete.
Thus, P : M →M has a unique fixed point.

The proof is complete.
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3. A beginning stability theorem

Let r be a positive constant, a : [0,∞) → R be continuous, and consider
the scalar equation

x′(t) = −a(t)g(x(t− r)) (3.1)

with continuous initial function ψ : [−r, 0] → R, where g is continuous, locally
Lipschitz, and odd, while x− g(x) is nondecreasing and g(x) is increasing on
an interval [0, L] for some L > 0. This requirement may be reduced, in part,
when g has a derivative by writing

a(t)g(x(t− r)) = (Da(t))(g(x(t− r))/D),

where | d
dxg(x)| ≤ D on [0, L], and then renaming a(t) as Da(t).

In [3] we studied this equation for n = 0 (the linear case). We proved that
if there is an α < 1 such that∫ t

t−r
|a(u+ r)|du+

∫ t

0
|a(s+ r)|e−

R t
s a(u+r)du|

∫ s

s−r
a(u+ r)du|ds ≤ α

and if
∫ t
0 a(s)ds→∞ as t→∞, then the zero solution of (3.1) is asymptoti-

cally stable.
To prepare for our next theorem write (3.1) as

x′(t) = −a(t+ r)g(x(t)) +
d

dt

∫ t

t−r
a(s+ r)g(x(s))ds

and then as

x′(t) = −a(t+ r)x(t) + a(t+ r)[x(t)− g(x(t))] +
d

dt

∫ t

t−r
a(s+ r)g(x(s))ds.

Existence theory is found in [1; pp. 186-191], for example. For each t0 ≥ 0,
Equation (3.1) requires a continuous initial function ψ : [t0 − r, t0] → R to
specify a solution x(t, t0, ψ). In this problem the computations are the same
for any t0 ≥ 0 so we take t0 = 0. By the variation of parameters formula we
have

x(t) =ψ(0)e−
R t
0 a(s+r)ds +

∫ t

0
e−

R t
s a(u+r)dua(s+ r)[x(s)− g(x(s))]ds

+
∫ t

0
e−

R t
s a(u+r)du d

ds

∫ s

s−r
a(u+ r)g(x(u))duds.
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Integration by parts of the last term yields

x(t) = ψ(0)e−
R t
0 a(s+r)ds − e−

R t
0 a(u+r)du

∫ 0

−r
a(u+ r)g(ψ(u))du

+
∫ t

0
e−

R t
s a(u+r)dua(s+ r)[x(s)− g(x(s))]ds+

∫ t

t−r
a(u+ r)g(x(u))du

−
∫ t

0
e−

R t
s a(u+r)dua(s+ r)

∫ s

s−r
a(u+ r)g(x(u))duds. (3.2)

Note that if 0 < L1 < L, then the conditions on g given with (3.1) hold on
[−L1, L1]. Also, note that if φ : [−r,∞) → R with φ0 = ψ, if φ is continuous
and |φ(t)| ≤ L, then for t ≥ 0 we have

|φ(t)− g(φ(t))| ≤ L− g(L)

since x− g(x) is odd and nondecreasing on (0, L). The symbol φ0 denotes the
segment of φ on [−r, 0].

For any continuous ψ on [−r, 0] with |ψ(t)| < L we take

M = {φ : [−r,∞) → R|φ0 = ψ, φ ∈ C, |φ(t)| ≤ L}.

The size of ψ will be further restricted later.
Theorem 3.1. Let g be odd, increasing on [0, L], satisfy a Lipschitz con-

dition, and let x− g(x) be nondecreasing on [0, L]. Suppose also that for each
L1 ∈ (0, L] we have

|L1 − g(L1)| sup
t≥0

∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|ds+ g(L1) sup

t≥0

∫ t

t−r
|a(u+ r)|du

+g(L1) sup
t≥0

∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|

∫ s

s−r
|a(u+ r)|duds < L1 (3.3)

and there exists J > 0 such that

−
∫ t

0
a(s+ r)ds ≤ J for t ≥ 0. (3.4)

Then the zero solution of (3.1) is stable.
Proof. We will first define a mapping P : M → M using (3.2) so that for

φ ∈M we have

(Pφ)(t) = ψ(t), −r ≤ t ≤ 0,
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and for t ≥ 0

(Pφ)(t) = ψ(0)e−
R t
0 a(s+r)ds − e−

R t
0 a(u+r)du

∫ 0

−r
a(u+ r)g(ψ(u))du

+
∫ t

0
e−

R t
s a(u+r)dua(s+ r)[φ(s)− g(φ(s))]ds+

∫ t

t−r
a(u+ r)g(φ(u))du

−
∫ t

0
e−

R t
s a(u+r)dua(s+ r)

∫ s

s−r
a(u+ r)g(φ(u))duds. (3.5)

By (3.3) there is an α < 1 such that if φ ∈M then

|(Pφ)(t)| ≤ ‖ψ‖eJ + eJ‖g(ψ)‖
∫ 0

−r
|a(s+ r)|ds

+|L− g(L)| sup
t≥0

∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|ds

+g(L)
∫ t

t−r
|a(u+ r)|du+ g(L)

∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|

∫ s

s−r
|a(u+ r)|duds

≤ eJ [‖ψ‖+ ‖g(ψ)‖
∫ 0

−r
|a(s+ r)|ds] + αL.

Choose δ > 0 so that ‖ψ‖ < δ and K the Lipschitz constant for g on [0, L]
implies that

eJ [δ +Kδ

∫ 0

−r
|a(s+ r)|ds] < (1− α)L.

Then |(Pφ)(t)| ≤ L so we can show that P : M → M . Since the mapping
is given by integrals and the functions are Lipschitz we will be able to show
that P is a contraction. (At this point, if (3.3) holds only for L, itself, then
we have a boundedness result.) For a given ε > 0, ε < L, substitute ε for L
and obtain the usual stability proof since a fixed point of P will be a unique
solution and lie in M .

We now want to change the metric so that we will have a contraction. For
φ, η ∈M we have

|(Pφ)(t)−(Pη)(t)| ≤
∫ t

0
e−

R t
s a(u+r)du|a(s+r)||φ(s)−g(φ(s))−η(s)+g(η(s))|ds

+
∫ t

t−r
|a(u+ r)||g(φ(u))− g(η(u))|du

+
∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|

∫ s

s−r
|a(u+ r)||g(φ(u))− g(η(u))|duds. (3.6)
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Now g(x) and x − g(x) both satisfy a Lipschitz condition with the same
constant K, so we proceed as in the proof of Theorem 2.1 and take the metric
on M as that induced by the norm

|φ|K := sup
t≥0

e−(dK+2)
R t
0 |a(u+r)|du|φ(t)|

where we will find that d > 3 will suffice. As shown in Theorem 2.1, the
first term on the right-hand-side of (3.6) has a contraction constant 1/d. The
second term satisfies

sup
t≥0

e−(dK+2)
R t
0 |a(u+r)|du

∫ t

t−r
|a(u+ r)||g(φ(u))− g(η(u))|du

≤ sup
t≥0

∫ t

t−r
|a(u+ r)|K|φ(u)− η(u)|e−(dK+2)

R u
0 |a(s+r)|dse−(dK+2)

R t
u |a(s+r)|dsdu

≤ sup
t≥0

∫ t

t−r
|a(s+ r)|Ke−(dK+2)

R t
s |a(u+r)|duds|φ− η|K

≤ (K/dK)|φ− η|K
= (1/d)|φ− η|K .

Multiply the third term by e−(dk+2)
R t

s |a(u+r)|du obtaining∫ t

0
e−

R t
s a(u+r)du|a(s+ r)|

∫ s

s−r
|a(u+ r)|K|φ(u)− η(u))|×

e−(dK+2)(
R u
0 |a(v+r)|dv)−(dK)

R t
u |a(v+r)|dv)−2

R t
s |a(v+r)|dvduds

≤ |φ− η|K sup
t≥0

∫ t

t−r
|a(u+ r)|Ke−dK

R t
u |a(v+r)|dvdu

≤ (1/d)|φ− η|K .

We take d > 3 for a contraction. As in the proof of Theorem 2.1 there is a
unique fixed point. This completes the proof.

Our result is an interesting complement to the well-known 3/2-Theorem
which stresses the pointwise extremes of functions, while ours stresses averages
and allows a(t) to be negative. There is a large theory centered around the
scalar equation

x′(t) = −a(t)x(t− r(t))

where a(t), r(t) are continuous nonnegative functions. General results and a
survey is found in Krisztin [13] containing nonlinear extensions.
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The 3
2-theorem. If there are nonnegative constants α and q with a(t) ≤

α, r(t) ≤ q such that αq ≤ 3/2, then the zero solution of x′(t) = −a(t)x(t−r(t))
is uniformly stable and 3/2 is the best possible constant.

That result allows r to be a function of t, but our (3.3) allows a(t) to be
negative and also as large as we please. We have been unable to find any
results on a 3/2-theorem in which a(t) is allowed to change sign. Condition
(3.3) does imply that a(t) has essentially a positive average. By contrast,
Example 3 in Section 5 will show stability when a(t) has essentially a negative
average. Thus, fixed point theory seems to add something entirely new to the
solution of that type of problem.

4. Borrowing from a higher order term

It is a fairly simple matter to use exactly the same proof as that of Theorem
3.1 to show that if (3.1) satisfies the conditions of Theorem 3.1 and if (3.1)
is perturbed with a higher order term then the conclusion of Theorem 3.1
still holds for the perturbed system. But if the linear part does not satisfy
Theorem 3.1 then we note an interesting fact: a higher order term can stabilize
the equation in the sense that by borrowing from the coefficient of a higher
order term we can fulfill conditions parallel to those of Theorem 3.1.

Remark 1. We could continue here with

x′(t) = −a(t)x(t− r)− b(t)g(x(t− r))

where x − g(x) is odd, positive and increasing on (0, L). But the impact of
the next two results will depend crucially on the reader being able to see the
exact value of two constants. See Remark 6 for a comparison of results.

Thus, we consider

x′(t) = −a(t)x(t− r)− b(t)x3(t− r) (4.1)

where we assume that

c(t) := b(t) + a(t) ≥ 0, (4.2)

and that there is a constant α < 1 with

sup
t≥0

2
∫ t

t−r
c(u+ r)du+

2
3

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds ≤ α. (4.3)



12 T. A. BURTON

Example 1. If 1 < k < 3/2 then

x′(t) = −(1− k sin t)x(t− r)

will not satisfy (3.3), but when

2r + (2/3)k < 1

then

x′(t) = −(1− k sin t)x(t− r)− (k sin t)x3(t− r)

will satisfy (4.3) and the conditions of our next theorem will hold.
Problem. It would be very interesting to see a Liapunov functional con-

structed for this last equation showing stability. Such construction might well
lead Liapunov theory into a fruitful new phase. Indeed, it seems challenging
even for r = 0 since the condition then includes k < 3/2.

Remark 2. Theorem 3.1 averaged the values of a(t) to produce stability.
Our next result will produce stability by averaging the coefficients of terms
having different powers.

Theorem 4.1. If (4.2) and (4.3) hold then there is a δ > 0 such that if ψ is
a continuous initial function on [−r, 0] with ‖ψ‖ < δ then |x(t, 0, ψ)| < 1/

√
3

for all t ≥ 0.
Proof. Write (4.1) as

x′ = −a(t)x(t− r)− b(t)x(t− r) + b(t)[x(t− r)− x3(t− r)]

= −c(t)x(t− r) + b(t)[x(t− r)− x3(t− r)]

= −c(t+ r)x(t) +
d

dt

∫ t

t−r
c(s+ r)x(s)ds+ b(t)[x(t− r)− x3(t− r)]

so that by the variation of parameters formula, followed by integration by
parts we have

x(t) =ψ(0)e−
R t
0 c(s+r)ds − e−

R t
0 c(u+r)du

∫ 0

−r
c(u+ r)ψ(u)du

+
∫ t

0
e−

R t
s c(u+r)dub(s)[x(s− r)− x3(s− r)]ds+

∫ t

t−r
c(u+ r)x(u)du

−
∫ t

0
e−

R t
s c(u+r)duc(s+ r)

∫ s

s−r
c(u+ r)x(u)duds.
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Now f(x) = x− x3 has a maximum of 2/3
√

3 at 1/
√

3. As x− x3 increases
on (0, 1/

√
3) we could work on any shorter interval. We will show here that

if ψ is small enough and if |φ(t)| ≤ 1/
√

3 then |(Pφ)(t)| ≤ 1/
√

3. We use the
previous equation to define P as we did in (3.5) and have

|(Pφ)(t)| ≤ ‖ψ‖+ ‖ψ‖
∫ 0

−r
c(u+ r)du

+
∫ t

0
e−

R t
s c(u+r)du|b(s)|(2

√
3/9)ds

+ 2 sup
t≥0

∫ t

t−r
c(u+ r)du(1/

√
3)

≤ 1/
√

3

provided that (4.3) holds and ‖ψ‖ < δ where δ+δ
∫ 0
−r c(u+r)du < 1−α. Our

mapping set for any such fixed ψ is

M = {φ : [−r,∞) → R|φ0 = ψ, |φ(t)| ≤ 1/
√

3}

and P : M →M .
The contraction argument parallel to Theorem 2.1 uses the weight for the

norm as

e−2d
R t
0 [|b(s)|+c(s+r)]ds

since for φ, η ∈M we have

|(Pφ)(t)− (Pη)(t)| ≤
∫ t

0
e−

R t
s c(u+r)du|b(s)||φ(s)− η(s)|ds

+2
∫ t

t−r
c(u+ r)|φ(s)− η(s)|ds.

5. Further borrowing

Here, we obtain an extension of the result in the last section by starting
with a nonlinear term which does not necessarily satisfy the conditions of
Theorem 3.1. Yet, when there is a suitable higher order term present, it may
be used to stabilize the equation. Moreover, the coefficient corresponding to
the 2/3 in (4.3) is reduced to a small fraction of that 2/3 as the order increases.
This means that the penalty for merging the coefficients reduces as the order
increases.
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Consider the equation

x′(t) = −a(t)x2n+1(t− r)− b(t)x2n+3(t− r) (5.1)

where n is a positive integer. Let

c(t) := a(t) + b(t) ≥ 0.

Remark 3. As remarked in Section 4, we could work with

x′(t) = −a(t)g1(x(t− r))− b(t)g2(x(t− r))

where g2(x)/g1(x) → 0 as |x| → 0, gi odd, g1(x)−g2(x) positive and increasing
on (0, L). But the impact of the next result depends on the reader seeing the
coefficient of the first integral in Theorem 5.2. See Remark 6 for a summary.

Remark 4. Here, we enlarge on the process begun in the proof of Theorem
3.1. The order of these steps is critical, as is explained between (6.2) and (6.4).
The following steps are taken in the proof of the next theorem.

(i) Add and subtract the term b(t)x2n+1(t − r) to yield the term
−c(t)x2n+1(t− r).

(ii) Two steps are now taken to enable us to use the variation of parameters
formula:

(a) First, write

−c(t)x2n+1(t− r) = −c(t+ r)x2n+1(t) +
d

dt

∫ t

t−r
c(s+ r)x2n+1(s)ds.

(b) Finally, write

−c(t+ r)x2n+1(t) = −c(t+ r)x(t) + c(t+ r)[x(t)− x2n+1(t)].

Theorem 5.1. Let a(t) + b(t) = c(t) ≥ 0, L2 = 2n+1
2n+3 , and let

(1− L2) sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds+ 2 sup

t≥0

∫ t

t−r
c(s+ r)ds < 1.

Then there is a δ > 0 such that if the continuous initial function ψ for (5.1)
satisfies ‖ψ‖ < δ then |x(t, 0, ψ)| < L.

Proof. Write (5.1) as

x′(t) = −c(t+ r)x(t) + c(t+ r)[x(t)− x2n+1(t)]

+
d

dt

∫ t

t−r
c(s+ r)x2n+1(s)ds+ b(t)[x2n+1(t− r)− x2n+3(t− r)], (5.2)
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As we have done twice before, use the variation of parameters formula,
integrate by parts, and obtain

x(t) = e−
R t
0 c(s+r)dsψ(0)− e

R t
0 c(u+r)du

∫ 0

−r
c(u+ r)duψ2n+1(u)du

+
∫ t

0
e−

R t
s c(u+r)duc(s+ r)[x(s)− x2n+1(s)]ds

+
∫ t

0
e−

R t
s c(u+r)dub(s)[x2n+1(s− r)− x2n+3(s− r)]ds

+
∫ t

t−r
c(u+ r)x2n+1(u)du

−
∫ t

0
e−

R t
s c(u+r)duc(s+ r)

∫ s

s−r
c(u+ r)x2n+1(u)duds. (5.3)

Now
f(x) = x2n+1 − x2n+3 (5.4)

has a local maximum at

x =

√
2n+ 1
2n+ 3

= L (5.5)

and is increasing on (0, L). Moreover,

f(L) =
(

2n+ 1
2n+ 3

) 2n+1
2

−
(

2n+ 1
2n+ 3

) 2n+3
2

. (5.6)

Use (5.3) to define a mapping P as in (3.5) of a set

M = {φ : [−r,∞) → R|φ0 = ψ, |φ(t)| ≤ L} (5.7)

into itself where ψ is a sufficiently small initial function. That mapping in M
will be possible if

L(1− L2n) + f(L) sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds

+ 2L2n+1 sup
t≥0

∫ t

t−r
c(s+ r)ds < L.

As f(L)/L2n+1 = 1− L2 this will reduce to

(1− L2) sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds+ 2 sup

t≥0

∫ t

t−r
c(s+ r)ds < 1. (5.8)

The remainder of the proof is exactly as before.
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Remark 5. The critical value for applications in (5.8) is

1− L2 = 1− 2n+ 1
2n+ 3

=
2

2n+ 3

and we note that this tends to zero as n→∞.
Example 2. Let

a(t) = 1− 2 sin t, b(t) = 2 sin t, c(t) = 1.

Then ∫ t

0
e−

R t
s 1du|b(s)|ds ≤ 2

so to satisfy (5.8) we need

2
2

2n+ 3
+ 2r < 1

or

r <
2n− 1
4n+ 6

.

The idea used here will also work for the nonlinear equation

x′(t) = −a(t)g(x(t− r)) (5.9)

with the conditions appearing with (3.1). For this section we denote it by

x′(t) = −a(t)g(x(t− r).) (5.10)

We can remove a portion of a(t) which does not fit our theorem, provided
that the removed portion has a sufficiently small average.

Theorem 5.2. Let the conditions with (3.1) hold for (5.10) and suppose
that

a(t) = c(t)− b(t) (5.11)

where c(t) ≥ 0 and continuous, while

sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds+ 2 sup

t≥0

∫ t

t−r
c(u+ r)du < 1. (5.12)

Then the zero solution of (5.1) is uniformly stable.



STABILITY BY FIXED POINT METHODS 17

Proof. Write the equation as

x′(t) = −c(t)g(x(t− r)) + b(t)g(x(t− r))

= −c(t+ r)g(x(t)) +
d

dt

∫ t

t−r
c(s+ r)g(x(s))ds+ b(t)g(x(t− r))

= −c(t+ r)x(t) + c(t+ r)[x(t)− g(x(t))]

+
d

dt

∫ t

t−r
c(s+ r)g(x(s))ds+ b(t)g(x(t− r)).

Use the variation of parameters formula with an initial function ψ and
integrate the neutral term by parts as we have done before and obtain

x(t) = ψ(0)e−
R t
0 c(s+r)ds − e−

R t
0 c(u+r)du

∫ 0

−r
c(u+ r)g(ψ(u))du

+
∫ t

0
e−

R t
s c(u+r)duc(s+r)[x(s)−g(x(s))]ds+

∫ t

0
e−

R t
s c(u+r)dub(s)g(x(s−r))ds

+
∫ t

t−r
c(u+ r)g(x(u))du−

∫ t

0
e−

R t
s c(u+r)duc(s+ r)

∫ s

s−r
c(u+ r)g(x(u))duds.

Now f(x) = x− g(x) has a maximum on [0, L] at L. Take

M = {φ : [−r,∞) → R|φ0 = ψ, |φ(t)| ≤ L, φ ∈ C}.

Define a mapping P on M using the last equation in x, as before. We have

|(Pφ)(t)| ≤ ‖ψ‖+ g(‖ψ‖) sup
t≥0

∫ t

t−r
c(u+ r)du

+L− g(L) + g(L) sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds+ 2g(L)

∫ t

t−r
c(u+ r)du.

In order to say that P : M →M we need

L− g(L) + g(L) sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds+ 2g(L) sup

t≥0

∫ t

t−r
c(u+ r)du < L.

When we subtract L from each side and divide by g(L) we arrive at

sup
t≥0

∫ t

0
e−

R t
s c(u+r)du|b(s)|ds+ 2 sup

t≥0

∫ t

t−r
c(u+ r)du < 1. (5.13)

Theorem 3.1 was a result in which the second integral in (5.12) yielded
stability by averaging the values of c. Theorem 4.1 showed how the fixed
point method averaged the coefficients of terms of different powers. We now
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see that the integral in (5.12) can average an oscillating large term to make
its effect smaller than a small constant term.

Example 3. Consider the scalar equation

x′(t) = −(1− k cos2 pt)g(x(t− r))

where 1 < k < 2, g satisfies the conditions with (3.1), and p is a large positive
integer. Notice that, while a(t) can change sign, for large p the integral of
a(t) becomes negative; on average, a(t) is negative. Conditions of Theorem
3.1 would not be satisfied.

To show the behavior of solutions, referring to Theorem 5.2, we take

c(t) = 1, b(t) = k cos2 pt,

so that (5.12) asks that

sup
t≥0

∫ t

0
e−(t−s)k cos2 psds+ 2r < 1.

We will show that for p large enough and r small enough, then (5.12) is
satisfied. Now

k cos2 pt = (k/2)(1 + cos 2pt)

and

(k/2)
∫ t

0
e−(t−s)(1 + cos 2ps)ds

≤ (k/2) + (k/2)e−t

∫ t

0
es cos 2psds

=
k

2
+

ke−t

2(1 + 4p2)
[es(cos 2ps+ 2p sin 2ps)

∣∣∣∣t
0

=
k

2
+

ke−t

2(1 + 4p2)
[et(cos 2pt+ 2p sin 2pt)− 1]

=
k

2
+

k

2(1 + 4p2)
[cos 2pt+ 2p sin 2pt− e−t]

≤ k

2
+
k(1 + 2p)
2(1 + 4p2

→ k

2
as p → ∞. Thus, for p large enough and r small enough, then (5.12) is
satisfied.
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Remark 6. Compare (5.12) with (4.3) and (5.8). That crucial coefficient
of the integral containing |b(s)| is 1 in (5.12), 2/3 in (4.3), and (1 − L2) in
(5.8). The higher order term made a significant contribution to stability.

6. Equations with more terms

It is quickly verified that the technique here works with any number of
terms. In the equation

x′(t) = −a(t)x2n+1(t− r)− b(t)x2n+3(t− r)− p(t)x2n+5(t− r) (6.1)

we simply get an additional term∫ t

0
e−

R t
s c(u+r)dup(s)[x2n+1(s− r)− x2n+5(s− r)]ds (6.2)

and c(t) = a(t) + b(t) + p(t). The only step which requires caution is that the
term −c(t)x2n+1(t− r) must be converted to the neutral term

−c(t+ r)x2n+1(t) +
d

dt

∫ t

t−r
c(s+ r)x2n+1(s)ds; (6.3)

do not add in the linear term and then convert it to the neutral term. If that
order is inverted, then one obtains integrals of the form∫ t

0
e−

R t
s c(u+r)duc(s)...ds (6.4)

which are not readily estimated.
This process also shows that the terms need not enter as consecutive odd

exponents in x; if the coefficient in the next higher order term is insufficient
to show stability, we can continue to still higher order terms.
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