SOME REMARKS ON KRASNOSELSKII'S FIXED POINT THEOREM

CEZAR AVRAMESCU AND CRISTIAN VLADIMIRESCU

Department of Mathematics
University of Craiova,
13 A.I. Cuza Street, 1100 Craiova, ROMANIA
E-mail addresses: cezaravramescu@hotmail.com
vladimirescu@ucluj.ro

Abstract. Let M be a closed convex non-empty set in a Banach space $(X, \| \cdot \|)$ and let $P = Ax + Bx$ be a mapping such that: (i) $Ax + By \in M$ for each $x, y \in M$; (ii) A is continuous and AM compact; (iii) B is a contraction mapping. The theorem of Krasnoselskii asserts that in these conditions the operator P has a fixed point in M. In this paper some remarks about the hypothesis of this theorem are given. A variant for the cartesian product of two operators is also considered.

Keywords: fixed point, compact mapping, contraction

AMS Subject Classification: 47H10, 54H25

1. INTRODUCTION

Two main results of fixed point theory are Schauder's theorem and the contraction mapping principle. Krasnoselskii combined them into the following result (see [5], p. 31 or [6], p. 501).

Theorem K (Krasnoselskii). Let M be a closed convex bounded non-empty subset of a Banach space $(X, \| \cdot \|)$. Suppose that A, B map M into X such that

i) $Ax + By \in M$, for all $x, y \in M$;

ii) A is continuous and AM is contained in a compact set;

iii) B is a contraction mapping with constant $\alpha \in (0, 1)$.

Then there exists $x \in M$, with

$$x = Ax + Bx.$$
In [2] T.A. Burton remarks the difficulty to check the hypothesis i) and replaces it with the weaker condition:

\[(x = Ax + By, \ y \in M) \Rightarrow (x \in M). \]

The proof idea is the following: for every \(y \in M \) the mapping \(x \rightarrow Bx + Ay \) is a contraction. Therefore, there exists \(\varphi : M \rightarrow M \) such that \(\varphi(y) = B\varphi(y) + Ay \), for every \(y \in M \). Then the problem is reduced to prove that \(\varphi \) admits a fixed point; to this aim Schauder’s theorem is used (see [6], p. 57).

In [3] the authors show that instead of Schauder’s theorem one can use Schaefer’s fixed point theorem (see [5], p. 29) which yields in normed spaces or more generally in locally convex spaces.

In the present paper, stimulated by the ideas contained in [2] and [3] we shall continue the analysis of Krasnoselskii’s result. We shall give in addition a variant of the result contained in [1] within we shall use Schaefer’s fixed point theorem.

2. General results

Let \((X, \|\cdot\|)\) be a Banach space, \(M \subset X \) be a convex closed (not necessary bounded) subset of \(X \). Let in addition \(A, B : M \rightarrow X \) be two operators; consider the equation

\[x = Ax + Bx. \]

A way to proof that equation (1) admits solutions in \(M \) is to write (1) under the equivalent form

\[x = Hx \]

and to apply a fixed point theorem to operator \(H \). There exist two possibilities to build the operator \(H \).

Case 1. The operator \(I - B \) admits a continuous inverse; then

\[H = (I - B)^{-1} A. \]

Case 2. The operator \(B \) admits a continuous inverse; then

\[H = B^{-1} (I - A). \]
If we want to apply Schauder’s theorem to operator H, then in the Case 1 we must suppose that A fulfills hypothesis ii) from Theorem K and in the Case 2 we must suppose that $I - A$ fulfills this hypothesis.

If we would suppose $A, B : X \to X$, then it will exists another possibility i.e. to consider the equation

$$x = (A + T)x + (B - T)x,$$

where $T : X \to X$ is an arbitrary operator chosen such that the Case 1 or the Case 2 yields.

We state the following two general results.

Proposition 1. Suppose that

i) M is a closed convex set;

ii) $I - B : X \to X$ is an injective operator;

iii) $(I - B)^{-1}$ is continuous;

iv) $A : M \to X$ is a continuous operator and $A(M)$ is contained into a compact set;

v) the following inequalities hold:

\begin{align*}
(5) & \quad A(M) \subset (I - B)(X) \\
(6) & \quad (I - B)^{-1}A(M) \subset M.
\end{align*}

Then the equation (1) has solutions in M.

Indeed, by hypotheses one can apply to operator H Schauder’s fixed point theorem. Remark that the condition (5) which assures the existence of operator H is automatically fulfilled if $I - B$ is a surjective operator.

Proposition 2. Suppose that

i) M is a closed convex set;

ii) $B : X \to X$ is an injective operator;

iii) B^{-1} is a continuous operator;

iv) $I - A : M \to X$ is a continuous operator and $(I - A)(M)$ is contained into a compact set;

v) the following inequalities hold:

\begin{align*}
(7) & \quad (I - A)(M) \subset B(X)
\end{align*}
Then the equation \((1)\) has solutions in \(M\).

The proof is like the proof of Proposition 1.

3. Particular results

Without loss of generality one can admit

\[(9)\]

\[A_0 = 0,\]

(or \(B_0 = 0\)); indeed, one can write \((1)\) under the form

\[x = A_1 x + B_1 x,\]

where \(A_1 x = A x + B_0,\) \(B_1 x = B x - B_0.\)

Clearly, the translated operators \(A_1, B_1\) keep many algebraic and topological properties of the operators \(A, B.\)

Suppose that \(B : X \rightarrow X\) is a contraction mapping with constant \(\alpha < 1.\)

By inequalities

\[(10)\]

\[(1 - \alpha) \|x - y\| \leq \|(I - B)x - (I - B)y\| \leq (1 + \alpha) \|x - y\|, \quad (\forall)\ x, y \in X.\]

it follows in the case \(B_0 = 0\)

\[
(1 - \alpha) \|x\| \leq \|(I - B)x\| \leq (1 + \alpha) \|x\|, \quad (\forall)\ x \in X.
\]

Admitting the hypotheses of Proposition 1 about \(A,\) let us set

\[h_{\rho} := \sup_{x \in B_{\rho}} \{\|Ax\|\},\]

where

\[B_{\rho} := \{x \in X, \|x\| \leq \rho\}.\]

One has the following

Corollary 1. Suppose that \(B : X \rightarrow X\) is a contraction mapping with constant \(\alpha \in (0, 1),\) \(B_0 = 0,\) \(A : B_{\rho} \rightarrow X\) is continuous and \(A (B_{\rho})\) is compact.

If

\[(11)\]

\[h_{\rho} \leq (1 - \alpha) \rho,\]

then the equation \((1)\) has solutions in \(B_{\rho}.\)
Indeed, as is known, \(I - B : X \to X \) is homeomorphism. The operator \(H \) given by (3) does exist and (11) assures the inclusion \(HM \subset M \), since (10) implies
\[
\left\| (I - B)^{-1} x \right\| \leq \frac{1}{1 - \alpha} \| x \|.
\]

Consider now the case when \(B \) is expansive, i.e. \(B \) satisfies the condition
\[
\| Bx - By \| \geq \beta \| x - y \|, \quad \text{for all } x, y \in X,
\]
with \(\beta > 1 \).

Clearly, if \(B \) is expansive then \(B \) is injective and \(B^{-1} \) is continuous (it is well known that if \(\dim X < \infty \), then every expansive mapping is surjective, so it is a homeomorphism; since \(B^{-1} \) maps \(X \) into \(X \) it is a contraction mapping having the constant \(\frac{1}{\beta} \); hence every expansive mapping \(B : \mathbb{R}^n \to \mathbb{R}^n \) admits an unique fixed point).

From the inequalities
\[
\|(I - B) x - (I - B) y\| \geq \|Bx - By\| - \|x - y\| \geq (\beta - 1) \|x - y\|,
\]
it follows also \(I - B \) is injective and \((I - B)^{-1} \) is continuous, since
\[
\left\| (I - B)^{-1} x - (I - B)^{-1} y \right\| \leq \frac{1}{\beta - 1} \| x - y \|.
\]

Therefore, by Proposition 1 one gets the following corollary.

Corollary 2. Suppose that \(B \) is an expansive mapping, \(B0 = 0 \) and \(I - B \) is surjective. If \(A : \overline{B}_\rho \to X \) is continuous with \(A(\overline{B}_\rho) \) compact and
\[
h_\rho \leq \rho (\beta - 1),
\]
then the equation (1) has solutions in \(\overline{B}_\rho \).

One can renounce to surjectivity hypothesis of \(I - B \) replacing it by the condition
\[
A\overline{B}_\rho \subset (I - B) X.
\]

Consider now, as in Proposition 2 \(M = \overline{B}_\rho \) and set
\[
k_\rho := \sup_{x \in \overline{B}_\rho} \{(I - A) x\}.
\]

Corollary 3. Let \(B : X \to X \) be an expansive and surjective operator with \(B0 = 0 \) and \(I - A : M \to X \) a continuous operator with \((I - A) \overline{B}_\rho \) compact.
If
\[k_\rho \leq \beta \rho, \]
then the equation (1) has solutions in \(\overline{B_\rho} \).

Indeed, by (12) it follows for \(y = 0 \),
\[\|B^{-1}x\| \leq \frac{1}{\beta} \|x\|. \]

Corollary 4. Suppose that \(A \) satisfies the hypotheses of Corollary 3. Let
\(B : X \to X \) be a linear injective continuous Fredholm operator having null
index. If
\[\|B^{-1}\| \leq \frac{\rho}{\kappa_\rho}, \]
then the equation (1) has solutions in \(\overline{B_\rho} \).

An interesting particular case of Corollary 3 is the following.

Corollary 5. Suppose that
i) \(\dim X < \infty \);
ii) \(A : \overline{B_\rho} \to X \) is continuous;
iii) \(B : X \to X \) is an expansive mapping with constant \(\beta > 1 \).

Then, if the relation (17) yields, the equation (1) admits solutions in \(\overline{B_\rho} \).

Indeed, as we remarked, by hypothesis i) it results \(B \) is homeomorphism.

Applying to \(H \) given by (4) the fixed point theorem of Brouwer one obtains
the result.

4. Results via Schaefer’s theorem

In what follows we give a particular form of Schaefer’s theorem which can
be found in [5], p. 29.

Theorem S. (Schaefer) Let \((X, \|\cdot\|) \) be a normed space, \(H \) be a continuous
mapping of \(X \) into \(X \), which maps bounded sets of \(X \) into compact sets. Then
either

I) the equation \(x = \lambda Hx \) has a solution for \(\lambda = 1 \)
or

II) the set of all such solutions \(x \), for \(0 < \lambda < 1 \) is unbounded.

One can state now variants of Propositions 1, 2 by renouncing to complete-
ness of \(X \).

Proposition 3. Let \((X, \|\cdot\|) \) be a normed space. Suppose that
i) $A : X \rightarrow X$ is a continuous operator with A mapping bounded sets of X into compact sets;

ii) $I - B$ is a homeomorphism;

iii) the set

$$\{ x \in X, \ (\exists) \ \lambda \in (0,1), \ x = \lambda Hx \}$$

is bounded, where H is given by (3).

Then the equation (1) admits solutions in X.

Proposition 4. Let $(X, \|\cdot\|)$ be a normed space. Suppose that

i) $B : X \rightarrow X$ is a homeomorphism;

ii) $I - B$ is a continuous operator with $I - B$ mapping bounded sets of X into compact sets;

iii) the set (19), where H is given by (4), is bounded.

Then the equation (1) admits solutions in X.

5. Remarks

Reverting to Theorem K, let x be an arbitrary solution for (1) and y the unique fixed point of B.

Setting

$$a := \inf_{x \in M} \{\|Ax\|\}, \ b := \sup_{x \in M} \{\|Ax\|\},$$

one has

$$\|x - y\| = \|Ax + Bx - By\| \leq \|Ax\| + \alpha \|x - y\| \leq b + \alpha \|x - y\|,$$

therefore

$$\|x - y\| \leq \frac{b}{1 - \alpha}.$$

Similarly,

$$\|x - y\| \geq \|Ax\| - \alpha \|x - y\| \geq a - \alpha \|x - y\|,$$

hence

$$\|x - y\| \geq \frac{a}{1 + \alpha}.$$

Finally, between the unique fixed point of B and every fixed point of operator $A + B$ one has the relation

$$\frac{a}{1 + \alpha} \leq \|x - y\| \leq \frac{b}{1 - \alpha}.$$

If \(B_0 = 0 \), then
\[
\frac{a}{1 + \alpha} \leq \|x\| \leq \frac{b}{1 - \alpha},
\]
relation true for each solution of equation (1).

6. **Theorems of Krasnoselskii’s type for a cartesian product of operators**

In [1] the problem of the existence of solutions \((x, y)\) for the system

\[
\begin{aligned}
\begin{cases}
 x = F(x, y) \\
 y = G(x, y)
\end{cases}
\end{aligned}
\]

One can make the same remarks like in previous sections. To obviate the repetition we deal only with the possibility of application Schaefer’s theorem to the problem (21).

Let \((X_1, \| \cdot \|_1), (X_2, \| \cdot \|_2)\) be two Banach spaces and let \(F : X_1 \times X_2 \to X_1\), \(G : X_1 \times X_2 \to X_2\) be two operators.

We state and prove the following result.

Theorem A. Suppose that:

i) \(F(x, y)\) is continuous with respect to \(y\), for every \(x \in X_1\) fixed;

ii) \[
\|F(x_1, y) - F(x_2, y)\|_1 \leq L \|x_1 - x_2\|_1, \]
for all \(x_1, x_2 \in X_1\) and \(y \in X_2\), with \(L \in (0, 1)\);

iii) there exists a constant \(C > 0\) such that
\[
\|F(0, y)\|_1 \leq C \|y\|_2, \]
for all \(y \in X_2\);

iv) \(G(x, y)\) is continuous on \(X_1 \times X_2\);

v) \(G\) is a compact operator.

Then either the system

\[
\begin{aligned}
\begin{cases}
 x = F(x, y) \\
 y = G(x, y)
\end{cases}
\end{aligned}
\]

admits a solution or the set of all such solutions for \(\lambda \in (0, 1)\) of the system

\[
\begin{aligned}
\begin{cases}
 x = \lambda F \left(\frac{x}{\lambda}, y \right) \\
 y = \lambda G(x, y)
\end{cases}
\end{aligned}
\]

is unbounded.
Proof. Firstly we prove that if $\lambda \in (0, 1]$ then $\lambda F\left(\frac{x}{\lambda}, y\right)$ is contraction mapping with respect to x, for every $y \in X.

Indeed, if $x \in X_1$, then $\frac{x}{\lambda} \in X_1.$
Evaluate for $x_1, x_2 \in X_1$ and $y \in X_2,
\[\|\lambda F\left(\frac{x_1}{\lambda}, y\right) - \lambda F\left(\frac{x_2}{\lambda}, y\right)\|_1 \leq \lambda \|F\left(\frac{x_1}{\lambda}, y\right) - F\left(\frac{x_2}{\lambda}, y\right)\|_1 \leq \lambda L \|\frac{x_1}{\lambda} - \frac{x_2}{\lambda}\|_1 = L \|x_1 - x_2\|_1.

Consider $y \in X_2$ arbitrary. Denote by $g\left(y\right)$ the unique solution of equation
$x = \lambda F\left(\frac{x}{\lambda}, y\right).

Therefore, for every $y \in X_2$ there exists an unique $g\left(y\right) \in X_1$ such that
$g\left(y\right) = \lambda F\left(\frac{g\left(y\right)}{\lambda}, y\right).

Define $T : X_2 \rightarrow X_2$ by
\begin{equation}
(22) \quad Ty := K\left(g\left(y\right), y\right), \text{ for every } y \in X_2.
\end{equation}

We show that the hypotheses of Schaefer’s theorem are fulfilled.
Indeed, if $(y_n)_n$ is a sequence converging to y in X_2 as $n \rightarrow \infty$, then
\[\|g\left(y_n\right) - g\left(y\right)\|_1 = \|\lambda F\left(\frac{g\left(y_n\right)}{\lambda}, y_n\right) - \lambda F\left(\frac{g\left(y\right)}{\lambda}, y\right)\|_1 \leq \lambda \|F\left(\frac{g\left(y_n\right)}{\lambda}, y_n\right) - F\left(\frac{g\left(y\right)}{\lambda}, y\right)\|_1 + \lambda L \left\|\frac{g\left(y_n\right)}{\lambda} - \frac{g\left(y\right)}{\lambda}\right\|_1.

Hence,
\[\left(1 - L\right) \|g\left(y_n\right) - g\left(y\right)\|_1 \leq \lambda \|F\left(\frac{g\left(y\right)}{\lambda}, y_n\right) - F\left(\frac{g\left(y\right)}{\lambda}, y\right)\|_1\]
and $\lambda \|F\left(\frac{g\left(y\right)}{\lambda}, y_n\right) - F\left(\frac{g\left(y\right)}{\lambda}, y\right)\|_1 \rightarrow 0$ as $n \rightarrow \infty$ and the continuity of g follows immediately.
So, one has
\[\| T y_n - T y \|_2 = \| G (g (y_n), y_n) - G (g (y) , y) \|_2 \]
and since hypothesis iv) and \(y = \lim_{n \to \infty} y_n \) it results the continuity of \(T \).

Let \(M_2 \in X_2 \) be a bounded set. We prove that \(TM_2 \subset X_2 \) is compact.
Indeed, for \(y \in M_2 \) we have succesively
\[
\| g (y) \|_1 = \lambda \left\| F \left(\frac{g (y)}{\lambda}, y \right) \right\|_1 \\
\leq \lambda \left\| F \left(\frac{g (y)}{\lambda}, y \right) - F (0, y) \right\|_1 + \lambda \| F (0, y) \|_1 \\
\leq \lambda L \left\| \frac{g (y)}{\lambda} - 0 \right\|_2 + \lambda \| F (0, y) \|_1 \\
\leq L \| g (y) \|_1 + \lambda C \| y \|_2.
\]

It results
\[\| g (y) \|_1 \leq \frac{\lambda C}{1 - L} \| y \|_2 , \text{ for all } y \in M_2. \]
Therefore the set \(g (M_2) \) is bounded in \(X_1 \). Since the set \(g (M_2) \times M_2 \) is bounded in \(X_1 \times X_2 \) and from hypothesis v) it follows that the set
\[T (M_2) = G (g (M_2) \times M_2) \]
is compact in \(X_2 \).
By applying Schaefer’s theorem one gets either the equation
\[y = Ty \]
admits solutions in \(X_2 \) or the set of all solutions for \(\lambda \in (0, 1) \) of the equation
\[y = \lambda Ty \]
is unbounded.
Equivalently, either the system
\[
\begin{cases}
 x = F (x, y) \\
 y = G (x, y)
\end{cases}
\]
adopts a solution \((g (y_0), y_0) \) or the set of all such solutions \((g (y_0), y_0) \) for \(\lambda \in (0, 1) \) of the system
\[
\begin{cases}
 x = \lambda F \left(\frac{x}{\lambda}, y \right) \\
 y = \lambda G (x, y)
\end{cases}
\]
is unbounded. □

REFERENCES

