WHEELER-FEYNMAN PROBLEM ON A COMPACT INTERVAL

VERONICA-ANA DÂRZU

Department of Applied Mathematics
Babeş-Bolyai University of Cluj-Napoca
E-mail: vdarzu@math.ubbcluj.ro

Abstract. In this paper the problem (1)+(2) is studied.

Keywords: Functional differential equations of mixed type, the method of steps

AMS Subject Classification: 34K05, 34K15

1. Introduction

In the paper [1] and [3] the autor study the Weeler-Feynman problem on R. In this paper we consider the following Weeler-Feynman problem:

(1)
$$x'(t) = f(t, x(t), x(t-h), x(t+h)), \quad t \in [a, b],$$

(2)
$$x(t) = \varphi(t), \quad t \in [t_0 - h, t_0 + h],$$

where $t_0 \in [a, b]$, $a \leq t_0 - h$, $t_0 + h \leq b$ and $\varphi \in C^1[t_0 - h, t_0 + h]$

2. Remarks and examples

2.1. By a solution of (1) we understand a function $x \in C[a-h, b+h] \cap C^1[a, b]$ which satisfies the relation (1) for all $t \in [a, b]$.

2.2. Let $\alpha, \beta, \gamma \in R$, $\beta \neq 0$, $\gamma \neq 0$, $t_0 \in [a, b]$. We consider the following problem:

(3)
$$x'(t) = \alpha x(t) + \beta x(t-h) + \gamma x(t+h), \quad t \in [a, b],$$

(4)
$$x(t) = \varphi(t), \quad t \in [t_0 - h, t_0 + h],$$

where $t_0 \in [a, b]$, $a \leq t_0 - h$, $t_0 + h \leq b$.

We shall apply the method of steps on intervals $[t_0, b]$ and $[a, t_0]$ to find some "if and only" conditions for the existence of a solution of problem (3)+(4).

Let $t \in [t_0, t_0 + h]$
$$\varphi'(t) = \alpha \varphi(t) + \beta \varphi(t-h) + \gamma x(t+h)$$
Then:

\[x(t) := x_1(t) = \frac{1}{\gamma} [\alpha \varphi(t - h) + \beta \varphi(t - 2h) - \varphi'(t - h)], \ t \in [t_0 + h, t_0 + 2h] \]

Let \(t \in [t_0 + h, t_0 + 2h] \)

\[x'_1(t) = \alpha x_1(t) + \beta \varphi(t - h) + \gamma x(t + h) \]

Then:

\[x(t) := x_2(t) = \frac{1}{\gamma} [\alpha x_1(t - h) + \beta \varphi(t - 2h) - x'_1(t - h)], \ t \in [t_0 + 2h, t_0 + 3h] \]

By the same way the final step on \([t_0, b] \): \[x_{n_b}(t) = \frac{1}{\gamma} [\alpha x_{n_{b-1}}(t - h) + \beta x_{n_{b-2}}(t - 2h) - x'_{n_{b-1}}(t - h)], \ t \in [t_0 + n_b h, b] \]

where \(n_b = \lfloor \frac{b - t_0}{h} \rfloor \).

By the same way on \([a, t_0]\) we find \(n_a = \lfloor \frac{t_0 - a}{h} \rfloor \).

Let \(n := max\{n_a, n_b\} \).

Let \(\varphi \in C^{n+1}[t_0 - h, t_0 + h] \).

Let \(x \in C^n[a - h, b + h] \cap C^{n+1}[a, b] \) be a solution of problem (3)+(4).

We have:

\[x^{(k+1)}(t) = \alpha x^{(k)}(t) + \beta x^{(k)}(t - h) + \gamma x^{(k)}(t + h), \ k \in \{0, 1, \ldots, n\} \]

For \(t = t_0 \), we have:

\[\varphi^{(k+1)}(t_0) = \alpha \varphi^{(k)}(t_0) + \beta \varphi^{(k)}(t_0 - h) + \gamma \varphi^{(k)}(t_0 + h), \ k \in \{0, 1, \ldots, n\} \]

Then the problem (3)+(4) has a solution if and only if:

\[\varphi^{(k+1)}(t_0) = \alpha \varphi^{(k)}(t_0) + \beta \varphi^{(k)}(t_0 - h) + \gamma \varphi^{(k)}(t_0 + h), \ k \in \{0, 1, \ldots, n\} \].

2.3. For the case in which \(\beta = 0 \) or \(\gamma = 0 \) see [2].

3. THE MAIN RESULT

In what follow we consider the problem (1)+(2). We need the following conditions.

Let \(n_a := \lfloor \frac{t_0 - a}{h} \rfloor, \ n_b := \lfloor \frac{b - t_0}{h} \rfloor, \ n := max\{n_a, n_b\} \).

Let \(f \in C^{n+1}([a, b] \times R^3) \).

(C1): For all \(u_1 \in [a, b], \ u_2, u_4, u_5 \in R, \) there exist a unique \(u_3 \in R, \ u_3 = f_1(u_1, u_2, u_4, u_5), \ f_1 \in C^{n+1}([a, b] \times R^3) \), such that, \(u_5 = f(u_1, u_2, u_3, u_4) \).

(C2): For all \(u_1 \in [a, b], \ u_2, u_3, u_5 \in R, \) there exist a unique \(u_4 \in R, \ u_4 = f_2(u_1, u_2, u_3, u_5), \ f_2 \in C^{n+1}([a, b] \times R^3) \), such that, \(u_5 = f(u_1, u_2, u_3, u_4) \).

We have
Theorem 1. Let \(f \in C^{n+1}([a,b] \times R^3) \) satisfies (C1) and (C2). If \(\varphi \in C^n[a - h, t_0 + h] \), then the problem (1)+(2) has a unique solution if and only if \(\varphi \) satisfies the following condition:

\[
(5) \quad \varphi^{(k+1)}(t_0) = [f(t, \varphi(t), \varphi(t - h), \varphi(t + h))]^{(k)}_{t = t_0}, \quad k \in \{0, 1, \ldots, n\}
\]

Proof. By the method of steps we construct the solution of (1)+(2) as follows. Let \(t \in [t_0, t_0 + h] \)

\[
\varphi'(t) = f(t, \varphi(t), \varphi(t - h), x(t + h))
\]

From (C2) we have

\[
x(t) := x_1(t) = f_2(t - h, \varphi(t - h), \varphi(t - 2h), \varphi'(t - h)), \quad t \in [t_0 + h, t_0 + 2h].
\]

By the same method we find the final step:

\[
x_n(t) = f(t - h, x_{n-1}(t - h), x_{n-2}(t - 2h), x_n(t - h)), \quad t \in [t_0 + n_1h, b]
\]

where \(n_b = \lfloor \frac{b - t_0}{h} \rfloor \).

We must have:

\[
\varphi(t_0 + h) = x_1(t_0 + h)
\]

\[
x_p(t_0 + (p + 1)h) = x_{p+1}(t_0 + (p + 1)h), \quad p \leq n_b - 1
\]

By the same way we have the solution on \([a, t_0]\) with the condition

\[
\varphi(t_0 - h) = x_{-1}(t_0 - h)
\]

\[
x_{-p}(t_0 - (p + 1)h) = x_{-(p+1)}(t_0 - (p + 1)h), \quad p \leq n_a - 1
\]

where \(n_a = \lfloor \frac{t_0 - a}{h} \rfloor \)

So the solution is:

\[
x(t) = \begin{cases}
 x_{-n_a}(t) & \text{dac\‘a} \ t \in [a, t_0 - n_a h] \\
 x_{-k}(t) & \text{dac\‘a} \ t \in [t_0 - (k + 1)h, t_0 - kh], 1 \leq k \leq n_a - 1 \\
 \varphi(t) & \text{dac\‘a} \ t \in [t_0 - h, t_0 + h] \\
 x_k(t) & \text{dac\‘a} \ t \in [t_0 + kh, t_0 + (k + 1)h], 1 \leq k \leq n_b - 1 \\
 x_{n_b}(t) & \text{dac\‘a} \ t \in [t_0 + n_b h, b]
\end{cases}
\]

Let \(n = \max \{n_a, n_b\} \).

Now we prove the necessity of the condition (5). Let \(x \in C[a - h, b + h] \cap C^1[a, b] \) a solution of the problem (1)+(2).

Then \(x \in C^n[a - h, b + h] \cap C^{n+1}[a, b] \) is a solution.

We have:

\[
x^{(k+1)}(t) = [f(t, x(t), x(t - h), x(t + h))]^{(k)}_{t = t_0}, \quad t \in [a, b], \ k \in \{0, 1, \ldots, n\}
\]

For \(t = t_0 \), we have (5).
REFERENCES

