FIXED POINT THEOREMS FOR ACYCLIC MULTIVALUED MAPS AND INCLUSIONS OF HAMMERSTEIN TYPE

RADU PRECUP

Departement of Applied Mathematics
"Babeș-Bolyai" University
3400 Cluj-Napoca, Romania
E-mail: r.precup@math.ubbcluj.ro

Abstract. The aim of this lecture is to present a new compactness method for operator inclusions in general, and for Hammerstein like inclusions, in particular. This method applies to acyclic multivalued maps which satisfy a generalized compactness condition of Mönch type.

Keywords: Multivalued map, acyclic map, Hammerstein operator, operator inclusion, compactness, fixed point.

1. The operator form of the initial and boundary value problems

STEP I: Consider the initial value problem (IVP) and the boundary value problem (BVP):

\[\begin{cases}
 u' = f(t,u), & t \in I = [0,T] \\
 u(0) = 0;
\end{cases} \quad \begin{cases}
 u'' = f(t,u), & t \in I \\
 u \in B
\end{cases} \]

for a system of \(n \) differential equations. Here \(B \) stands for the boundary conditions. Under standard conditions, both problems (1) can be put under the operator form

\[u = N(u), \quad u \in C(I;\mathbb{R}^n), \]

where \(N : C(I;\mathbb{R}^n) \to C(I;\mathbb{R}^n) \) is the composite operator \(N = JSF \), of the Nemytskii operator \(F \),

\[F : C(I;\mathbb{R}^n) \to C(I;\mathbb{R}^n), \quad F(u)(t) = f(t,u(t)), \]

of a linear integral operator \(S \), of the form

\[S : C(I;\mathbb{R}^n) \to C^1(I;\mathbb{R}^n), \quad S(u)(t) = \int_0^T k(t,s)u(s)\,ds \]

and of the imbedding map \(J \),

\[J : C^1(I;\mathbb{R}^n) \to C(I;\mathbb{R}^n), \quad J(u) = u. \]

For the (IVP), the kernel \(k \) has the expression

\[k(t,s) = \begin{cases}
 1, & s < t \\
 0, & t < s
\end{cases} \]
while for the (BVP), \(-k\) is the Green’s function corresponding to the boundary conditions \(\mathcal{B}\), assuming its existence. Assume \(F\) and \(S\) are bounded continuous operators. Then, since by the Ascoli-Arzela Theorem, the imbedding map \(J\) is completely continuous, we have that \(N\) is completely continuous and so, we may think to apply Schauder’s Fixed Point Theorem or the Leray-Schauder Principle (see [7]) in order to guarantee the existence of solutions to each of problems (1).

2. Equations in Banach spaces

STEP II: Consider the problems (1) in a Banach space \(E\).

The imbedding map \(J\) of \(C^1(I;E)\) into \(C(I;E)\) is not completely continuous when \(E\) is infinite dimensional. Consequently, to say something about the compactness of \(N\), for each bounded set \(C\) of \(C(I;E)\) we have to analyze the compactness of the section sets \(N(C)(t)\) for \(t \in I\), where

\[
N(C)(t) = \left\{ \int_0^T k(t,s)f(s,u(s))\, ds : u \in C \right\}.
\]

If \(C\) is countable, then the integral and the Kuratowski’s measure of noncompactness interchange as follows (see [3], Theorem 1.2.2):

\[
\alpha(N(C)(t)) \leq \int_0^T |k(t,s)| \alpha(f(s,C(s)))\, ds.
\]

Next we require the following compactness property holds for \(f\):

\[
\alpha(f(t,M)) \leq L(t) \alpha(M)
\]

for each bounded set \(M \subset E\). Then we obtain

\[
\alpha(N(C)(t)) \leq \int_0^T |k(t,s)| L(s) \alpha(C(s))\, ds.
\]

From, we would like to derive that

\[
\alpha(N(C)(t)) = 0, \ \text{for all} \ t \in I.
\]

This is not easy for general sets \(C\), but it is possible if \(C\) satisfies

\[
C \subset \text{conv}(\{u_0\} \cup N(C))
\]

for some \(u_0 \in C(I;E)\). Indeed, for such a set \(C\), we have

\[
\alpha(C(t)) \leq \alpha(N(C)(t)) \leq \int_0^T |k(t,s)| L(s) \alpha(C(s))\, ds.
\]

If we let \(\phi(t) = \alpha(C(t))\), then

\[
\phi(t) \leq \int_0^T |k(t,s)| L(s) \phi(s)\, ds.
\]

Now suitable integral inequalities (see [9]) yield \(\phi \equiv 0\) and so, by the infinite dimensional version of the Ascoli-Arzela Theorem, \(N(C)\) is relatively compact in \(C(I;E)\).
Notice by the above argument we have not proved the complete continuity of \(N \) and in consequence, Schauder’s Fixed Point Theorem and Leray-Schauder Principle do not apply. However, we may use Mönch’s extensions of these two theorems.

3. Mönch’s fixed point theorems

Theorem 3.1. ([5]) Let \(X \) be a Banach space, \(D \subset X \) be closed convex and \(N : D \to D \) be continuous with the further property that for some \(x_0 \in D \) one has
\[
C \subset D, \ C \text{ countable, } \quad \overline{C} = \overline{\{x_0\} \cup N(C)} \implies \overline{C} \text{ compact.}
\]

Then \(N \) has at least one fixed point.

Theorem 3.2. ([5]) Let \(X \) be a Banach space, \(K \subset X \) closed convex, \(U \subset K \) open in \(K \) and \(N : U \to K \) continuous, with the further property that for some \(x_0 \in U \) one has
\[
C \subset U, \ C \text{ countable, } \quad C \subset \overline{\{x_0\} \cup N(C)} \implies \overline{C} \text{ compact.}
\]

In addition, assume that
\[
x \neq (1 - \lambda)x_0 + \lambda N(x) \quad \text{for all } x \in U \setminus U, \lambda \in (0,1).
\]

Then \(N \) has at least one fixed point in \(U \).

STEP III: Consider the (IVP) and the (BVP) for a differential inclusion in the Banach space \(E \), i.e.
\[
\begin{align*}
\begin{cases}
u' \in f(t,u), \quad t \in I \\
u(0) = 0;
\end{cases} & \quad \begin{cases}
u'' \in f(t,u), \quad t \in I \\
u \in B.
\end{cases}
\end{align*}
\]

If we wish to discuss the inclusions (4) in a similar way like the equations (1), we need to give multivalued analogs to Mönch’s Theorems. This was achieved in [6] replacing (2)-(3) by some slightly more general conditions expressed in terms of a pair \((M,C)\) instead of a single set \(C\):

4. Mönch type theorems for inclusions

Theorem 4.1. ([6]) Let \(D \) be a closed, convex subset of a Banach space \(X \) and \(N : D \to 2^D \setminus \{\emptyset\} \) a mapping with convex values. Assume \(\text{graph}(N) \) is closed, \(N \) maps compact sets into relatively compact sets and that for some \(x_0 \in D \) one has
\[
M \subset D, \ M = \text{conv}(\{x_0\} \cup N(M)), \quad \overline{M} = \overline{C} \text{ with } C \subset M, \ C \text{ countable} \implies \overline{M} \text{ compact.}
\]

Then there exists \(x \in D \) with \(x \in N(x) \).

Theorem 4.2. ([6]) Let \(K \) be a closed, convex subset of a Banach space \(X \), \(U \) a relatively open subset of \(K \) and \(N : U \to 2^K \setminus \{\emptyset\} \) a mapping with convex values.
Assume graph(N) is closed, N maps compact sets into relatively compact sets and that for some \(x_0 \in U \), the following two conditions are satisfied:

\[
M \subset U, \ M \subset \text{conv} \{ \{x_0\} \cup N(M)\}, \quad \frac{d}{dt} \text{with } C \subset M, \ C \text{ countable} \quad \Rightarrow \quad \frac{\partial}{\partial t} M \text{ compact;}
\]

\[
x \notin (1 - \lambda)x_0 + \lambda N(x) \quad \text{for all } x \in U \setminus U, \ \lambda \in (0, 1).
\]

Then there exists \(x \in \overline{U} \) with \(x \in N(x) \).

Notice any upper semicontinuous mapping \(N \) with compact convex nonempty values, has closed graph and maps compact sets into relatively compact sets.

5. Hammerstein Integral Inclusions

Let us present an application of Theorem 4 to the Hammerstein integral inclusion

\[
u(t) \in \int_0^T k(t, s) f(s, u(s)) \, ds \quad \text{a.e. } t \in I.
\]

Theorem 5.1. ([8]) Let \(p \in [1, \infty], \ q \in [1, \infty) \) and let \(r \in (1, \infty] \) be the conjugate of \(q \), i.e., \(\frac{1}{q} + 1/r = 1 \). Assume \(k : \mathbb{I}^2 \to \mathbb{R} \) is measurable and

\[
\begin{align*}
\quad \text{(a) if } p < \infty : \text{ the map } t &\mapsto k(t, .) \text{ belongs to } L^p(I; L^r(I)); \\
\quad \text{(b) if } p = \infty : \text{ the map } t &\mapsto k(t, .) \text{ belongs to } C(I; L^r(I)).
\end{align*}
\]

In addition suppose:

\begin{enumerate}
\item \(f : I \times E \to 2^E \setminus \{\emptyset\} \) is a Carathéodory function with compact convex values;
\item there exists \(a \in L^q(I; \mathbb{R}_+) \), \(b \in \mathbb{R}_+ \) and \(R > 0 \) such that

\[
\begin{align*}
\text{(a) if } p < \infty : \ |f(t, x)| &\leq a(t) + b|x|^{p/q}, \ x \in E \\
\text{(b) if } p = \infty : \ |f(t, x)| &\leq a(t) \quad \text{for } |x| \leq R
\end{align*}
\]

(i.e., \(f \) is a \((q, p/q)-\text{Carathéodory function})
\item there exists a \((q, p/q)-\text{Carathéodory function } \omega : I \times \mathbb{R}_+ \to \mathbb{R}_+ \) with

\[
\alpha(f(t, M)) \leq \omega(t, \alpha(M))
\]

a.e. \(t \in I \), for every bounded \(M \subset E \);
\item \(\varphi \equiv 0 \) is the unique solution in \(L^p(I; \mathbb{R}_+) \) to the inequality

\[
\varphi(t) \leq 2 \int_0^T |k(t, s)| \omega(s, \varphi(s)) \, ds, \ a.e. \ t \in I;
\]
\item \(|u|_p < R \) for any solution \(u \in L^p(I; E) \) with \(|u|_p \leq R \) of

\[
u(t) \in \lambda \int_0^T k(t, s) f(s, u(s)) \, ds, \ a.e. \ t \in I,
\]

for \(\lambda \in (0, 1) \).

Then (7) has at least one solution \(u \in L^p(I; E) \) (respectively, in \(C(I; E) \) if \(p = \infty \)) with \(|u|_p \leq R \).
6. Fixed point results for acyclic mappings

STEP IV: Let us now discuss the problems

\[
\begin{cases}
u' \in Au + f(t, u), & t \in I \\ u(0) = 0;
\end{cases}
\]

\[
\begin{cases}
u'' \in Au + f(t, u), & t \in I \\ u \in \mathcal{B}.
\end{cases}
\]

Notice semilinear parabolic, respectively hyperbolic and elliptic inclusions can be put under the abstract form \(u' \in Au + f(t, u) \), respectively \(u'' \in Au + f(t, u) \).

Here we suppose that \(A \) is a multivalued map from \(E \) into \(2^E \) such that for each \(v \) in a given space of functions, there exists a unique solution \(S(v) := u \) to the initial value problem, respectively boundary value problem:

\[
\begin{cases}
u' \in Au + v, & t \in I \\ u(0) = 0;
\end{cases}
\]

\[
\begin{cases}
u'' \in Au + v, & t \in I \\ u \in \mathcal{B}.
\end{cases}
\]

We note that the solution operator \(S \) is not linear, so even \(f \) has convex values, the mapping \(N = SF \) may have non convex values. Thus, a natural problem was to give extensions of Mönch’s Theorems for multivalued operators with non convex values. As a result we obtained a Mönch type generalization of the Eilenberg-Montgomery Theorem [2] (see also [4]):

Theorem 6.1. ([9]) Let \(D \) be a closed convex subset of a Banach space \(X, Y \) a metric space, \(N : D \to 2^Y \setminus \{\emptyset\} \) a map with acyclic values, and \(r : Y \to D \) continuous. Assume \(\text{graph}(N) \) is closed, \(N \) maps compact sets into relatively compact sets and that for some \(x_0 \in D \) one has

\[
M \subset D, \quad M = \text{conv} \left(\{x_0\} \cup rN(M) \right), \quad \overline{M} \text{ compact.}
\]

Then there exists \(x \in D \) with \(x \in rN(x) \).

The next result is the continuation type version of Theorem 6.

Theorem 6.2. ([9]) Let \(K \) be a closed convex subset of a Banach space \(X, U \) a convex, relatively open subset of \(K, Y \) a metric space, \(N : U \to 2^Y \setminus \{\emptyset\} \) with acyclic values and \(r : Y \to K \) continuous. Assume \(\text{graph}(N) \) is closed, \(N \) maps compact sets into relatively compact sets and that for some \(x_0 \in U \), the following two conditions are satisfied:

\[
M \subset U, \quad M \subset \text{conv} \left(\{x_0\} \cup rN(M) \right) \quad \Rightarrow \quad \overline{M} \text{ compact;}
\]

\[
x \notin (1 - \lambda)x_0 + \lambda rT(x) \quad \text{for all} \quad x \in U \setminus U, \quad \lambda \in (0, 1).
\]

Then there exists \(x \in U \) with \(x \in rN(x) \).
7. Abstract Hammerstein inclusions

STEP V: Here we discuss the abstract inclusion

\[u \in SF (u), \quad u \in L^p (I; E), \]

where

\[S : L^q (I; E) \to L^p (I; E) \]

is a given single valued operator and \(F : L^p (I; E) \to 2^{L^q (I; E)} \) is the Nemytskii multivalued operator associated to a function \(f : I \times E \to 2^E \), given by

\[F (u) = \{ w \in L^q (I; E) : w (t) \in f (t, u (t)) \text{ a.e. } t \in I \}. \]

As a direct consequence of Theorem 7, we have the following existence principle for (10).

Theorem 7.1. ([1]) Let \(K \) be a closed convex subset of \(L^p (I; E) \) \((1 \leq p \leq \infty)\), \(U \) a relatively open subset of \(K \) and \(u_0 \in U \). Assume

1. \(SF : U \to 2^K \setminus \{ \emptyset \} \) has acyclic values, closed graph and maps compact sets into relatively compact sets;
2. \(M \subset U, M \subset \text{conv } (\{0\} \cup SF (M)) \implies M \text{ compact}; \)
3. \(u \notin (1 - \lambda)u_0 + \lambda SF (u) \) for all \(u \in U \setminus K, \lambda \in (0, 1) \).

Then (10) has at least one solution in \(U \).

In what follows: \(u_0 = 0, \quad U = B_R = \{ u \in K : |u|_p < R \} \). We shall give sufficient conditions for (H1)-(H2):

(S1) There exists a function \(k : I^2 \to R_+ \) such that \(k(t, \cdot) \in L^r (I) \)

\((1/r + 1/q = 1) \), the function \(t \mapsto |k(t, \cdot)|_r \) belongs to \(L^p (I) \) and

\[|S (w_1) (t) - S (w_2) (t)| \leq \int_I k (t, s) |w_1 (s) - w_2 (s)| \, ds \]

a.e. \(t \in I \), for all \(w_1, w_2 \in L^q (I; E) \).

(S2) \(S : L^q (I; E) \to K \) and for every compact convex subset \(C \) of \(E \), \(S \) is sequentially continuous from \(L^q_w (I; C) \) to \(L^p (I; E) \) (Here \(L^q_w (I; C) \) stands for the set \(L^1 (I; C) \) endowed with the weak topology of \(L^1 (I; E) \)).

1. \(f : I \times E \to 2^E \setminus \{ \emptyset \} \) has compact convex values.
2. \(f (\cdot, x) \) has a strongly measurable selection on \(I \), for each \(x \in E \).
3. \(f (t, \cdot) \) is upper semicontinuous, for a.e. \(t \in I \).
4. There exists \(a \in L^q (I; R_+) \), \(b \in R_+ \) and \(R > 0 \) such that

\[\begin{cases} \text{if } p < \infty : |f (t, x)| \leq a (t) + b |x|^{p/q}, \text{ for all } x \in E; \\ \text{if } p = \infty : |f (t, x)| \leq a (t), \text{ for } |x| \leq R. \end{cases} \]

5. For every separable closed subspace \(E_0 \) of \(E \), there exists a \((q, p/q)\)-Carathédory function \(\omega : I \times R_+ \to R_+ \) such that

\[\beta_{E_0} (f (t, M) \cap E_0) \leq \omega (t, \beta_{E_0} (M)) \]
a.e. \(t \in I \), for every set \(M \subset E_0 \) satisfying
\[
|M| \leq |S(0)(t)| + \left(|a|_q + bR^{p/q}\right)|k(t,.)|_r
\]
if \(p < \infty \), respectively
\[
|M| \leq |S(0)(t)| + |a|_q |k(t,.)|_r
\]
if \(p = \infty \). In addition \(\varphi \equiv 0 \) is the unique solution in \(L^p(I;R_+) \) to
\[
\varphi (t) \leq \int_I k(t,s) \omega (s, \varphi (s)) \, ds, \quad \text{a.e. } t \in I.
\]
(15) Here \(\beta_{E_0} \) is the ball measure of noncompactness in \(E_0 \).

Theorem 7.2. ([1]) Assume (S1)-(S2), (f1)-(f5) and (SF) hold. In addition suppose (H3). Then (10) has at least one solution \(u \) in \(K \subset L^p(I;E) \) with \(|u|_p \leq R \).

If \(q \leq p \), then a sufficient condition for (f5) is
(15*) For every separable closed subspace \(E_0 \) of \(E \), there exists a \(\delta \in L^{pq/(p-q)}(I) \) such that
\[
\beta_{E_0}(f(t,M) \cap E_0) \leq \delta(t) \beta_{E_0}(M)
\]
a.e. \(t \in I \), for every subset \(M \subset E_0 \) satisfying
\[
|M| \leq |S(0)(t)| + \left(|a|_q + bR^{p/q}\right)|k(t,.)|_r,
\]
if \(p < \infty \), respectively
\[
|M| \leq |S(0)(t)| + |a|_q |k(t,.)|_r.
\]
if \(p = \infty \), and
(16) \[
|\delta|_{pq/(p-q)} ||k(t,.)||_r < 1.
\]
Here \(pq/(p-q) = q \) if \(p = \infty \) and \(pq/(p-q) = \infty \) if \(p = q \).

Notice in the Volterra case, i.e. when \(k(t,s) = 0 \) for \(s > t \), condition (16) can be dropped.

Example 7.1. Let \(f(t,x) = a|x|^{p-2}x \), where \(a > 0 \), \(p > 2 \). Then, if \(|M| \leq \eta(t) \),
one has
\[
\beta(f(t,M)) \leq a(p-1) \eta(t)^{p-2} \beta(M).
\]
Here \(\delta(t) = a(p-1) \eta(t)^{p-2} \) and (16) holds for a sufficiently small \(a \).

We note that the technique we use to verify compactness conditions like (5), (6) equally applies to check the Palais-Smale condition in critical point theory (see [10]).
References

