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Abstract. Using a classical result on linear differential inequalities are established some results for
Riccati inequality and the second order linear differential inequality.

1. Introduction

In [3], [4], [5] are given some operatorial inequalities and some applications to
differential inequalities. All this results use the monotonicity of an operator and
this fact implies various conditions on the coefficients of the considered differential
inequality. E. Zeidler [6] gives also an operatorial inequality for a continuous, linear,
positive operator with spectral radius less than one. The goal of this paper is to
obtain some inequalities for the solutions of Riccati inequality and the second order
linear differential inequality using a classical results for the first order differential
inequality. This method implies few conditions on the coefficients of the inequality
but the inequality has a locally character.

2. Main results

The following best known lemma will be used in the sequel.
Lemma 1. [1] Let x0, y0 be real numbers I = [x0, +∞) and a, b ∈ C(I). Suppose

that y ∈ C1(I) satisfies the following inequality

(1) y′(x) ≤ a(x)y(x) + b(x), x ≥ x0, y(x0) = y0.

Then

(2) y(x) ≤ y0 exp
(∫ x

x0

a(t)dt

)
+

∫ x

x0

b(s) exp
(∫ x

s

a(t)dt

)
ds, x ≥ x0.

If the converse inequality holds in (1), then the converse inequality holds in (2) too.
First we consider Riccati inequality.
Theorem 1. Let x0, y0 be real numbers, I = [x0, +∞) and f, g, h ∈ C(I) be such

that f(x) ≥ 0 for all x ≥ x0 and the Cauchy problem

(3) y′ = f(x)y2 + g(x)y + h(x), y(x0) = y0, y ∈ C1(I)
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has a unique solution denoted by y in an interval I1 = [x0, x1), x1 ∈ R.
If y ∈ C1(I) satisfies the following inequality

(4) y′ ≤ f(x)y2 + g(x)y + h(x), y(x0) = y0, y0 < y0,

then there exists an interval I2 = [x0, x2), x2 ∈ R, such that

(5) y(x) ≤ y(x) +
[

1
y0 − y0

exp

(∫ x

x0

c(t)dt

)
−

∫ x

x0

f(s) exp
(∫ x

s

c(t)dt

)
ds

]−1

for all x ∈ I2, where c = −2fy − g.
If the converse inequality holds in (4) with y0 > y0 then the converse inequality

holds in (5) too.
Proof. Let y be a solution of the inequality (4). We have y(x0) − y(x0) < 0, so

there exists an interval J ′ = [x0, x
′
0), x′0 ∈ R, such that y(x)− y(x) < 0 for all x ∈ J ′.

Putting

(6) y = y +
1
z
, z ∈ C1(J ′), z(x) < 0, x ∈ J ′,

in the inequality (4) we get

(7) z′ + (f(x)y(x) + g(x))z + f(x) ≥ 0

and using Lemma 1 we obtain

(8) z(x) ≥ z0 exp
(∫ x

x0

c(t)dt

)
−

∫ x

x0

f(s) exp
(∫ x

s

c(t)dt

)
ds

where c = −2fy − g and z0 = z(x0) = (y0 − y0)−1.
The right hand of the relation (8) is negative because f(x) > 0 for x ∈ I so there

exists an interval J ′′ = [x0, x
′′
0), x′′0 ∈ R, where z(x) < 0 for x ∈ J ′′. Putting

(9) I2 = I1 ∩ J ′ ∩ J ′′

we obtain by (6) and (8)

(10) y(x) = y(x) +
[

1
y0 − y0

exp
(∫ x

x0

c(t)dt

)
−

∫ x

x0

f(s) exp
(∫ x

s

c(t)dt

)
ds

]−1

for all x ∈ I2. The converse inequality results analogously.
Corollary 1. If the conditions of Theorem 1 are satisfied then

(11) y(x) ≤ y(x), x ∈ J2

or
y(x) ≥ y(x), x ∈ J2

if the converse inequality holds in (4) with y0 > y0.
Proof. It follows from (10) taking account that the second term of the right hand

is negative.
In the sequel we deal with the linear differential inequality of the second order.
Theorem 2. Let I = [x0, +∞) be a real interval and p, q ∈ C(I). If y ∈ C1(I)

satisfies the following inequality

(12) y′′ + p(x)y′ + q(x)y ≤ 0, y(x0) = y0, y′(x0) = y′0, y0 6= 0
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and y is the unique solution of the Cauchy problem

(13) y′′ + p(x)y′ + q(x)y = 0, y(x0) = y0, y′(x0) = y′0,

then there exists an interval I1 = [x0, x1), x1 ∈ R, such that

(14) y(x) ≤ y(x), x ∈ I1.

If the converse inequality holds in (12) then the converse inequality holds in (14).
Proof. By the continuity of y and y0 6= 0 it results that there exists an interval

I1 = [x0, x1), x1 ∈ R, such that y(x) 6= 0 for all x ∈ I1.
Suppose that y0 > 0 and y(x) > 0 for all x ∈ I1. Let y be a solution of (12) and

let z be defined by

(15) z(x) =
y(x)
y(x)

, x ∈ I1.

The inequality (12) becomes

(16) y(x)z′′ + (2y′(x) + p(x)y(x))z′ ≤ 0, x ∈ I1,

and denoting z′ = u we obtain

(17) y(x)u′ + (2y′(x) + p(x)y(x))u ≤ 0, x ∈ I1.

Denoting

(18) a(x) = −2y′(x) + p(x)y(x)
y(x)

, x ∈ I1

we get

(19) u′(x) ≤ a(x)u(x), x ∈ I1,

and taking account of Lemma 1 it results

(20) u(x) ≤ u(x0) exp
(∫ x

x0

a(t)dt

)
, x ∈ I1.

But

u(x0) = z′(x0) =
y′(x0)y(x0)− y(x0)y′(x0)

(y(x0))2
= 0

and in view of (20) we have z′(x) ≤ 0 for every x ∈ I1. The function z is decreasing
on I1, hence

(21)
y(x)
y(x)

≤ y(x0)
y(x0)

= 1, x ∈ I1

which is equivalent with y(x) ≤ y(x) for every x ∈ I1.
Now if y0 < 0 we have y(x) < 0 for every x ∈ I1 and the function z and u defined

by (15) satisfy

(22) u′(x) ≥ a(x)u(x), x ∈ I1,

where a is given by (18). From Lemma 1 we get

(23) u(x) ≥ u(x0) exp
(∫ x

x0

a(t)dt

)
= 0, x ∈ I1,
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so the function z is increasing on I1. It results

(24)
y(x)
y(x)

≥ y(x0)
y(x0)

= 1, x ∈ I1,

and since y is negative on I1 we have

(25) y(x) ≤ y(x), x ∈ I1.
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