MULTIPLE SOLUTIONS FOR NEUMANN PROBLEM WITH P-LAPLACIAN

JENIC˘A CR˘INGANU
University of Galati, Faculty of Science
Str. Domneasc˘a nr. 47, Galati, Romania

Abstract. In this paper we prove that the Neumann problem with p-Laplacian:

\[
\begin{align*}
(\mathcal{P}) \quad &-\Delta_p u + |u|^{p-2} u = f(x, u), \text{ in } \Omega \\
&|\nabla u|^{p-2} \frac{\partial u}{\partial n} = 0, \text{ on } \partial \Omega
\end{align*}
\]

has an unbounded sequence of solutions in \(W^{1,p}(\Omega), 1 < p < \infty\), using a multiple version of the "Mountain Pass" theorem.

1. Introduction and preliminary results

Let \(\Omega\) be an open bounded subset in \(\mathbb{R}^N, N \geq 2\), with smooth boundary, \(1 < p < \infty\), \(f: \Omega \times \mathbb{R} \to \mathbb{R}\) be a Caratheodory function which satisfies the growth condition:

\[
|f(x, s)| \leq c(|s|^{q-1} + 1), \text{ a.e.}x \in \Omega, (\forall) s \in \mathbb{R},
\]

where \(c \geq 0\) is constant, \(1 < q < p^* = \begin{cases} \frac{Np}{N-p}, & \text{if } p < N \\ +\infty, & \text{if } p \geq N \end{cases}\).

We consider the Neumann problem \((\mathcal{P})\), where \(\Delta_p\) is the p-Laplacian operator defined by

\[
\Delta_p u = \text{div}(-\nabla u|^{p-2}\nabla u) \text{ and } \frac{\partial u}{\partial n} = \nabla u \cdot n
\]

We shall use the standard notation:

\[
W^{1,p}(\Omega) = \left\{ u \in L^p(\Omega) : \frac{\partial u}{\partial x_i} \in L^p(\Omega), i \in \overline{1,N} \right\}
\]

equipped with the norm

\[
||u||_{1,p} = ||u||_{0,p}^p + \sum_{i=1}^{N} \left| \frac{\partial u}{\partial x_i} \right|_{0,p}^p
\]

where \(||\cdot||_{0,p}\) is the usual norm on \(L^p(\Omega)\).
We define a new equivalent norm on the space $W^{1,p}(\Omega)$:

$$
\|u\|_{1,p}^p = \|u\|_{0,p}^p + \|\nabla u\|_{0,p}^p = \int_{\Omega} |u|^p + \int_{\Omega} \left(\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 \right)^{p/2}.
$$

Then the space $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})$ is separable, reflexive and uniformly convex Banach space.

The dual norm on $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$ is denoted by $||| \cdot |||_{*,1,p}$.

The operator $-\Delta_p$ may be seen acting from $W^{1,p}(\Omega)$ into $(W^{1,p}(\Omega))^*$ by

$$
< -\Delta_p u, v > = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v, \text{ for all } u, v \in W^{1,p}(\Omega)
$$

Definition 1. A function $u \in W^{1,p}(\Omega)$ is said to be a solution for the problem (P) iff

$$
\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v + \int_{\Omega} |u|^{p-2} u v = \int_{\Omega} f(x,u) v, \text{ for all } v \in W^{1,p}(\Omega)
$$

If $u \in W^{1,p}(\Omega)$ and $\Delta_p u \in L^q(\Omega)$ we can speak about $|\nabla u|^{p-2} \frac{\partial u}{\partial n}$ and $|\nabla u|^{p-2} \frac{\partial u}{\partial n} \in W^{-\frac{1}{p} - \frac{1}{p'}}(\partial \Omega)$ (see e.g.[6]).

Let $\Psi : L^q(\Omega) \to \mathbb{R}$ be defined by

$$
\Psi(u) = \int_{\Omega} F(x,u), \text{ where } F(x,s) = \int_{0}^{s} f(x,\tau) d\tau.
$$

The function F is Caratheodory and

$$
|F(x,s)| \leq c_1(|s|^q + 1), \text{ a.e. } x \in \Omega, (\forall) s \in \mathbb{R}
$$

where $c_1 \geq 0$ is constant.

The functional Ψ is continuously Frechet differentiable on $L^q(\Omega)$ and $\Psi'(u) = N_f(u)$, for all $u \in L^q(\Omega)$, where N_f is the Nemytskii operator of f:

$$
N_f(u)(x) = f(x,u(x)), \text{ a.e. } x \in \Omega.
$$

Let $\varphi : [0, \infty) \to \mathbb{R}$ be a normalization function defined by $\varphi(t) = t^{p-1}$ and

$$
J_{\varphi} : W^{1,p}(\Omega) \to \mathcal{P}(W^{1,p}(\Omega))^*
$$

be the duality mapping corresponding to φ.

Then $J_{\varphi} u = \partial \varphi(u)$ for all $u \in W^{1,p}(\Omega)$ (see [5]) where

$$
\phi(u) = \int_{0}^{||u||_{1,p}} \varphi(t) dt = \frac{1}{p} ||u||_{1,p}^p
$$

and $\partial \phi$ is the subdifferential of φ in the sense of convex analysis.
The functional ϕ is convex continuously Fréchet differentiable on $W^{1,p}(\Omega)$ and $\phi'(u) = -\Delta_p u + |u|^{p-2}u$, for all $u \in W^{1,p}(\Omega)$.

So J_φ is single valued and

$$J_\varphi u = \phi'(u) = -\Delta_p u + |u|^{p-2}u,$$

for all $u \in W^{1,p}(\Omega)$.

Then the Euler-Lagrange functional $\mathcal{F} : W^{1,p}(\Omega) \to \mathbb{R}$,

$$\mathcal{F}(u) = \phi(u) - \varphi(u) = \frac{1}{p}||u||_p^p - \int_\Omega F(x,u) \, dx$$

and

$$\mathcal{F}'(u) = \phi'(u) - \varphi'(u) = -\Delta_p u + |u|^{p-2}u - N_f(u).$$

If $u \in W^{1,p}(\Omega)$ is a critical point for \mathcal{F}, that is $\mathcal{F}'(u) = 0$, then $\Delta_p u + |u|^{p-2}u = N_f(u)$ and consequently u is solution for the problem (P). In order to show that the functional \mathcal{F} has an unbounded sequence of critical points we use a multiple version of the "Mountain Pass" theorem (see e.g. Theorem 9.12 in [7]).

Theorem 1.1. Let X be an infinite dimensional real Banach space and let $f \in C^1(X, \mathbb{R})$ be even, satisfy (P.S.) condition. Suppose $f(0) = 0$ and:

(i) there are constants $\rho, \alpha > 0$ such that $f(||x||_p \geq \alpha)$.

(ii) for each finite dimensional subspace X_1 of X the set $\{ x \in X : f(x) \geq 0 \}$ is bounded. Then f possesses an unbounded sequence of critical values.

We recall that the functional $f \in C^1(X, \mathbb{R})$ satisfies the Palais-Smale condition (P.S.) if for every sequence $(u_n) \subset X$ with $(f(u_n))$ bounded and $f'(u_n) \to 0$ as $n \to \infty$, possesses a convergent subsequence.

Since $W^{1,p}(\Omega)$ is uniformly convex and J_φ is single valued then J_φ satisfies the (S+)-condition: if $u_n \to u$ (weakly in $W^{1,p}(\Omega)$) and

$$\lim_{n \to \infty} \sup \ < J_\varphi u_n, u_n - u > \leq 0,$$

then $u_n \to u$ (see e.g. [5], Proposition 2).

2. Existence result

We need the following result:

Proposition 2.1. Suppose the Caratheodory function $f : \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies:

(i) the growth condition (1)

(ii) there are numbers $\theta > p$ and $s_0 > 0$ such that

$$0 \leq \theta F(x,s) \leq sf(x,s), \text{ for a.e. } x \in \Omega, (\forall) \ |s| \geq s_0.$$

Then, if X_1 is a finite dimensional subspace of $W^{1,p}(\Omega)$ the set $S = \{ u \in X_1 : F(u) \geq 0 \}$ is bounded in $W^{1,p}(\Omega)$.

Proof. From (3) there is $\gamma \in L^\infty(\Omega)$, $\gamma > 0$ on Ω (see [5]), such that

$$F(x,s) \geq \gamma(x)|s|^{\theta}, \text{ a.e. } x \in \Omega, (\forall) \ |s| \geq s_0.$$

For $u \in W^{1,p}(\Omega)$ let us denote

$$\Omega_1(u) = \{ x \in \Omega : |u(x)| \geq s_0 \}, \Omega_2(u) = \Omega \setminus \Omega_1(u).$$
By (2) we have
\[\left| \int_{\Omega_2(u)} F(x, u) \right| \leq \int_{\Omega_2(u)} |F(x, u)| \leq c_1 |u|^q + 1 \leq c_1 \int_{\Omega} s_0^q + \int_{\Omega} c_1 = c_1 (s_0^q + 1) \cdot \text{vol } \Omega = k_1 \]
and using (4) we have
\[(5) \quad \mathcal{F}(u) = \frac{1}{p} ||u||_{1,p} - \int_{\Omega_1(u)} F(x, u) - \int_{\Omega_2(u)} F(x, u) \leq \frac{1}{p} ||u||_{1,p} - \int_{\Omega_1(u)} \gamma(x)|u|^\theta + k_1 = \frac{1}{p} ||u||_{1,p} - \int_{\Omega_1(u)} \gamma(x)|u|^\theta + \int_{\Omega_2(u)} \gamma(x)|u|^\theta + k_1 \leq \frac{1}{p} ||u||_{1,p} - \int_{\Omega} \gamma(x)|u|^\theta + k_2 \]
where \(k_2 = ||\gamma||_{\infty} s_0^q \cdot \text{vol } \Omega + k_1 \).

The functional \(|| \cdot ||_\gamma : W^{1,p}(\Omega) \to \mathbb{R} \), defined by
\[||u||_\gamma = \left(\int_{\Omega} \gamma(x)|u|^\theta \right)^{\frac{1}{\theta}} \]
is a norm on \(W^{1,p}(\Omega) \).

On the finite dimensional subspace \(X_1 \) the norms \(||| \cdot |||_{1,p} \) and \(|| \cdot ||_\gamma \) being equivalent, there is a constant \(\bar{k} = \bar{k}(X_1) > 0 \) such that
\[|||u|||_{1,p} \leq \bar{k} \left(\int_{\Omega} \gamma(x)|u|^\theta \right)^{\frac{1}{\theta}} \]
for all \(u \in X_1 \).

Consequently, by (5), on \(X_1 \) it holds:
\[\mathcal{F}(u) \leq \frac{1}{p} \bar{k}^p \left(\int_{\Omega} \gamma(x)|u|^\theta \right)^{\frac{1}{\theta}} - \int_{\Omega} \gamma(x)|u|^\theta + k_2 = \frac{1}{p} \bar{k}^p ||u||_{1,p}^p - ||u||_{\gamma}^\theta + k_2. \]
Therefore
\[\frac{1}{p} \bar{k}^p ||u||_{1,p}^p - ||u||_{\gamma}^\theta + k_2 \geq 0 \]
for all \(u \in S \) and since \(\theta > p \) we conclude that \(S \) is bounded in \(W^{1,p}(\Omega) \) (in the norm \(|| \cdot ||_\gamma \) and so in the norm \(||| \cdot |||_{1,p} \)).

Now, we can state

Theorem 2.1. Suppose the Caratheodory functions \(f : \Omega \times \mathbb{R} \to \mathbb{R} \) is odd in the second argument : \(f(x, s) = -f(x, -s) \) and satisfies:
(i) there is \(q \in (1, p^*) \) such that
\[|f(x, s)| \leq c(|s|^{q-1} + 1), \text{ a.e. } x \in \Omega, \forall s \in \mathbb{R} \]
(ii) \(\limsup_{s \to 0} \frac{f(x,s)}{|s|^{p-2}s} < \lambda_1 \) uniformly with a.e. \(x \in \Omega \),

where \(\lambda_1 = \inf \left\{ \|v\|_{W^{1,p}_0(\Omega)}^p : v \in W^{1,p}(\Omega), v \neq 0 \right\} \).

(iii) there are constants \(\theta > p \) and \(s_0 > 0 \) such that

\[
0 < \theta F(x,s) \leq sf(x,s) \quad \text{for a.e. } x \in \Omega, \forall |s| \geq s_0
\]

Then the problem \((P) \) has an unbounded sequence of solutions.

Proof. It’s enough to show that \(F \) has an unbounded sequence of critical points in \(W^{1,p}(\Omega) \).

For this we shall use the theorem 1.1.

Clearly \(F(0) = 0 \) and \(F \) is even since \(f \) is odd.

By (i), (ii) and (iii) and proposition 2.1 it results that \(F \) satisfies the (PS) condition and hypothesis (i) and (ii) of the theorem 1.1.

References