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1. Introduction

Consider the initial value problem (IVP)

(1)
{

u′ + Au(t) = f(t, u(t)), t ∈ [0, T ]
u(0) = u0

where u0 ∈ E, E is an ordered Banach space, f : [0, T ] × E → E is continuous and
A : D(A) ⊂ E → E is the generator of a positive semigroup of linear operators (see
[17, 23]).
In some cases, the study of (1) is easier in the form of an operator equation,

(2) Lu = N(u), u ∈ D(L),

where L : D(L) ⊂ Y → X and N : Y → X are two operators between the ordered
Banach spaces Y and X.
The monotone iterative technique can be ilustrated using (2) as follows.
Let α ∈ D(L) be a lower solution of (2) (i.e. Lα ≤ N(α)) and let us consider the
sequence (αn)n≥0 given by α0 = α and

(3) Lαn+1 = N(αn), n ≥ 0.

If Lu ≤ Lv implies N(u) ≤ N(v) and L is surjective, this sequence is well defined and
the following inequalities hold.

Lα ≤ N(α) = Lα1 ≤ N(α1) = Lα2 ≤ ....

The problem is to assure that the sequence of monotone iterations (Lαn)n≥0 is
convergent (or only a subsequence) to some Lu∗ and Lu∗ = N(u∗).
This holds, for example, if there exists un upper solution β ∈ D(L) (i.e. N(β) ≤ Lβ)
with Lα ≤ Lβ and N ◦ L−1 : [Lα, Lβ] → [Lα, Lβ] is continuous and compact.
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In this paper we present an application of this technique to the evolution equation
(1). We work with mild solutions and, also, mild lower and upper solutions.
There are some generalizations in ordered sets of the monotone iterative technique
and we present them here as abstract results given by R. Lemmert [32] and S. Carl
and S. Heikkila [10]. Using one of these abstract results we obtained an existence
theorem for an implicit evolution equation.
This subject is an old one. Let us remember only few other names with contributions
in this field: M.A. Krasnosel’skii [18], H. Amann [2] Ladde, Lakshmikantham and
Vatsala [19] R. Precup [24, 25], A. Buică [7, 8], S. Carl and S. Heikkilla [9, 10] X.
Liu, S. Sivaloganathan and S. Zhang [22].

The approximation for the solution u∗ of Lu = N(u) with the sequence (αn) given
by Lαn+1 = N(αn) is at most linear, i.e.

||u∗ − αn+1|| ≤ c||u∗ − αn||.

The generalized quasilinearization method offer monotone sequences that converge
quadratically to the solution. Such a sequence, (αn) is given by
α0 = α and

Lαn+1 = N(αn) + M(αn)(αn+1 − αn), n ≥ 0.

Under some additional assumptions on L,N, M one can prove that

||u∗ − αn+1|| ≤ c||u∗ − αn||2.

This method combines the quasilinearization method of R. Bellman and R. Kalaba
[21] and the Newton’s method as it is stated in [14, 3, 13]. It was applied to many
kind of problems related to differential or integral equations: V. Lakshmikanthan
and A.S. Vatsala [21], R. Precup [26, 27], S.G. Deo and C. McGloin Knoll [12], S.
Carl and V. Lakshmikantham [11], B. Ahmad, J. Nieto and N. Shahzad [1].
In this paper we give an abstract theorem which provide approximations for the
solution of the operator equation Lu = N(u), where L is linear and N could be
nonlinear. We replace the differentiability condition for the nonlinear part with
a metric condition. We show how some results form [21] regarding the initial
value problem for an ODE and for an n-th order system of ODE are obtained as
consequences of our abstract result.
When one apply the monotone iterative techniques to differential equations, there is
need to use of differential inequalities. This is one of the reasons for we present some
here.

This paper is organized as follows.
1. Introduction.
2. Differential inequalities.
3. Monotone linear (iterative) approximations.
4. Monotone quadratic (iterative) approximations.
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2. Differential inequalities

Some of the main tools used in the monotone iterative techique are differential
inequalities.
We call a linear differential inequality (LDI) the following implication.

u′(t) + Au(t) ≤ v′(t) + Av(t), t ∈ [0, T ] and
u(0) ≤ v(0)

imply u(t) ≤ v(t), t ∈ [0, T ].
We call a nonlinear differential inequality (NDI) the following implication.

u′(t) + Au(t)− f(t, u(t)) ≤ v′(t) + Av(t)− f(t, v(t)), t ∈ [0, T ] and
u(0) ≤ v(0)

imply u(t) ≤ v(t), t ∈ [0, T ].
We present here some differential inequalities collected from P. Volkmann [31]), A.
Buică [5, 6], G. Herzog and R. Lemmert [16].

Proposition 2.1. Let u, v ∈ C1[0, T ] and A ∈ R. Then (LDI) holds.
Let f : [0, T ] × R → R be continuous. We assume that f is or locally Lipschitz or
increasing or decreasing. Then (NDI) holds.

We say that f : [0, T ]× Rn → Rn is quasimonotone increasing (qmi) with respect to
x if u ≤ v and uk = vk imply fk(t, u) ≤ fk(t, v).
If there exists ω > 0 such that f(t, ·) + ωId is increasing then f is qmi.

Proposition 2.2. Let u, v ∈ C1 ([0, T ],Rn) and A = (−aij) ∈ Mn (R). Then (LDI)
holds if and only if aij ≥ 0 when i 6= j.
Let A = (−aij) ∈ Mn (R) be such that aij ≥ 0 when i 6= j. Let f : [0, T ]× Rn → Rn

be continuous, locally Lipschitz and qmi. Then (NDI) holds.

Proposition 2.3. Let u, v ∈ C1 ([0, T ], E) and A : D(A) → E be a linear operator.
Then (LDI) holds if and only if (−A) is the generator of a positive semigroup of
operators.
Let A : D(A) → E be a linear operator which generates a positive semigroup of
contractions. Let f : [0, T ] × E → E be continuous, Lipschitz and such that there
exists ω > 0 such that f(t, ·) + ωId is increasing. Then (NLI) holds.

Let us notice that these kind of results assure that

α(t) ≤ u∗(t) ≤ β(t), t ∈ [0, T ],

where α, β are lower and upper solutions, and u∗ is a solution of the IVP. If the
existence of some ordered lower and upper solutions is guaranteed, then the hypothesis
for the nonlinear part can be relaxed in order to assure that the solution is between
α and β. We say that α ∈ C1 ([0, T ];E) is a lower solution of IVP (1) if

α′(t) + Aα(t) ≤ f(t, α(t)), t ∈ [0, T ]
α(0) ≤ u0

Analoguosly we define the upper solution.
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Let α and β be ordered (i.e. α ≤ β) lower and upper solutions for the IVP (1). Let
us denote

Dα,β = {(t, u) ∈ [0, T ]× E : α(t) ≤ u ≤ β(t)} .

Proposition 2.4. Let α, β ∈ C1 ([0, T ], E) be ordered lower and upper solutions for
the IVP (1) and A : D(A) → E be a linear operator which generates a positive
semigroup of contractions. Let f : [0, T ]×E → E be continuous, locally Lipschitz and
such that f(t, ·) + ωId is increasing in Dα,β for some ω > 0. Then the unique mild
solution, denoted u∗, of (1) is defined on [0, T ] and α(t) ≤ u∗(t) ≤ β(t), for every
t ∈ [0, T ].

Remark. Let Ω be a bounded domain of Rn and f̃ : [0, T ] × Ω × R → R be a
continuous function which has a continuous partial derivative with respect to the
last variable. Let us define f : [0, T ] × C(Ω) → C(Ω), f(t, u)(x) = f̃(t, x, u(x)) and
consider α, β : [0, T ] → C(Ω) continuous with α ≤ β. Then f(t, ·) + ωId is increasing
in Dα,β , where ω is such that ∂f̃

∂u ≥ −ω in [α(t), β(t)] for every t ∈ [0, T ].

In the end of this section we intend to illustrate how differential inequalities can be
used to prove stability of the steady-stae solution.
X. Liu, S. Sivaloganathan and S. Zhang studied in [22] the following model for the
growth of populations of two species.





∂u
∂t −∆u = u(a1 − b1u + c1v)
∂v
∂t −∆v = v(a2 + b2u− c2v), a.e. (0,∞)× Ω
u(0, x) = u0(x), v(0, x) = v0(x), Ω
∂u
∂γ (t, x) = 0, ∂v

∂γ = 0, (0,∞)× ∂Ω.

Since the linear part generates a semigroup of linear contractions and the nonlinear
part is locally Lipschitz, the local existence is assured. Let

η1 = (a1c2 + a2c1)/(b1c2 − b2c1) and η2 = (a1b2 + a2b1)/b1c2 − b2c1).
We have that (η1, η2) is a steady-state solution for this system, and (η1−ε, η2−ε) and
(η1 + ε, η2 + ε) are ordered lower and upper solutions. The hypothesis of Proposition
2.4 are fullfiled. Then, any solution with initial values between the lower and upper
solutions will remain between these values for all t > 0. Thus the following result
holds.

Theorem 2.1. [22] If b1c2 > b2c1, b1 ≥ c1, c2 ≥ b2 and a1, a2 ≥ 0 then the steady-
state solution (η1, η2) is stable.

3. Monotone linear iterative approximations

In the introduction we have presented the main ideas of the monotone iterative
technique. Let us now state precisely some results.
Let K be a cone in the ordered Banach space X, that is, a closed, convex subset of
X such that K ∩ −K = {0}, where 0 denotes the null element of X. The cone K
induces the order relation in X defined by u ≤ v, u, v ∈ X if and only if v − u ∈ K.
For α ≤ β the order interval [α, β] is the set of all u ∈ X such that α ≤ u ≤ β. The



MONOTONE ITERATIONS FOR THE INITIAL VALUE PROBLEM 141

cone K is said to be regular if any monotone increasing sequence contained in an
order interval is convergent.

Theorem 3.1. ([2]) Let X be an ordered metric space, α), β0 ∈ X. If N : [α0, β0] →
[α0, β0] is a monotone increasing and compact operator, then the sequence (αn), given
by α0 = α, αn+1 = N(αn), n ≥ 0 is monotone increasing and converges to the
minimal fixed point of N .

Theorem 3.2. (Lemmert [32]) Let X be an ordered set, α ∈ X, N : X → X be
increasing and α ≤ N(α). We assume that every chain in {Nu : α ≤ u} has a
supremum. Then N has a fixed point.

Theorem 3.3. (Carl-Heikkila [10]) Let W be a nonempty set, X be an ordered set,
α ∈ W . Let L,N : X → X be such that Lα ≤ N(α), and Lu ≤ Lv implies N(u) ≤
N(v). We assume that L(W ) is an ordered metric space and each (un) in W with
(Lun) and (N(un)) monotone increasing, is such that (N(un)) converges in L(W ).
Then there exists u∗, a solution of Lu = N(u).

Corollary 3.1. Let X be an ordered Banach space with a normal cone K, α, β ∈ X.
Let N : [α, β] → [α, β] be increasing. If K is regular or N([α, β]) is compact in X
then N has extremal fixed points.

Using Theorem 3.1 we can prove the existence of extremal mild solutions and of
monotone iterative approximations for the IVP (1).

We say that u ∈ C ([0, T ];E) is a mild solution of IVP (1) if u is a solution of the
integral equation

(4) u(t) = e−Atu0 +
∫ t

0

e−A(t−s)f(s, u(s))ds.

A mild lower solution is a function α ∈ C ([0, T ];E) which satisfy (4) with ≤ instead
of =.

Theorem 3.4. Let us assume that the following hypotheses are fullfiled.
(H1) There exist α a mild lower solution and β a mild upper solution of the IVP (1);
(H2) (−A) is the generator of a positive linear semigroup of compact operators;
(H3) f + ωId is increasing in Dα,β.
Then there exist extremal mild solutions α ≤ u∗ ≤ u∗ ≤ β and monotone sequences
(αn), (βn) which converge to u∗ and u∗, respectively.
The sequence (αn) is given by

αn+1 = S(t)u0 +
∫ t

0

S(t− s)[f(s, αn) + ωαn]ds,

where S(t) = e−ωte−At.

Using Theorem 3.3 we have studied the IVP for an evolution equation in the implicit
form,
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{
u′ + Au− f(t, u) = G(t, u, u′ + Au− f(t, u)), t ∈ (0, T )
u(0) = u0.

Let us list first some hypothesis and state some preliminary results and definitions.

(A1) (−A) is the generator of a semigroup of linear positive contractions.
(F2) f : (0, T )×E → E is Carathéodory and there exists ω > 0 such that f(t, ·)+ωId
is increasing.
(F3) there exists a ∈ L1(0, T ) such that |f(t, u)−f(t, v)| ≤ a(t)|u−v| for all u, v ∈ E.
(G4) G is sup-measurable and increasing.

L̃ : D(L) ⊂ C([0, T ];E) → L1(0, T ; E)× E

L̃u = (w,w0) iff
u(t) = S(t)w0 +

∫ t

0
S(t− s)[w(s)f(s, u(s)) + ωu(s)]ds.

Nu(t) = G(t, u(t), Lu(t)) and Ñu(t) = (Nu(t), u0).

Lemma. L̃u ≤ L̃v implies u ≤ v.

We say that α ∈ D(L) is a mild lower solution of the IVP (5) if
L̃α(t) ≤ (G(t, α(t), Lα(t)), u0), t ∈ (0, T ).

Lemma. L̃, Ñ : W → L1(0, T ; E) × E are well-defined and L̃u ≤ L̃v implies
Ñu ≤ Ñv.

We also consider now the following hypothesis.
(H5) There exists α, β ∈ D(L) mild lower and upper solutions of the IVP (5), such
that L̃α ≤ L̃β.

The main result is the following.

Theorem 3.5. [7] Let us assume that the hypotheses (A1),(F2),(F3), (G4),(H5) are
fullfiled and that the ordered Banach space E has regular cone. Then the IVP (5) has
extremal mild solutions in W = {u ∈ D(L) : L̃α ≤ L̃u ≤ L̃β} and they are monotone
increasing with respect to f, g and u0.

4. Quadratic approximations

The aim of this section is to present the quasilinearization method in an abstract
setting. We do not assume differentiability for the nonlinear part. We replace it by
a metric condition. We also present some results regarding the initial value problem
from [21] as consequences of our abstract result.

Let (X, ||·||X ,≤) and (Y, ||·||Y ,≤) be two ordered Banach spaces where Y is a subset of
X. Let L : D(L) ⊂ Y → X be a linear operator and N : Y ⊂ (X, || · ||X) → (X, || · ||X)
be a continuous operator. Let α0, β0 ∈ D(L) be such that

Lα0 ≤ N(α0), N(β0) ≤ Lβ0, α0 ≤ β0.
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Let M : [α0, β0] ⊂ (Y, || · ||X) → L(Y, X) be a uniformly continuous operator, where
L(Y,X) is the set of all continuous and linear operators from (Y, || · ||X) to (X, || · ||X).

We list some hypotheses.

(L1) For every α ∈ [α0, β0] and v ∈ X, the equation (L−M(α)) u = v has a unique
solution, u ∈ D(L) denoted by u = S(v, α).

If (L1) is fullfiled then we can consider the operator S : X × [α0, β0] → Y .

(L2) v ≤ v∗ implies S(v, α) ≤ S(v∗, α).

(L3) There exists c1 > 0 such that

||S(v∗, α0)− S(v, α0)||Y ≤ c1||v∗ − v||,
for all v, v∗ ∈ X and α0 ∈ [α, β].

(L4) Let (αn) be a sequence from Y such that (αn) and (Lαn) converge in X to u∗

and v∗, respectively. Then (αn) is convergent in Y and v∗ = Lu∗.

(N5) N(u) ≤ N(v)−M(u)(v − u), for all α0 ≤ u ≤ v ≤ β0.

(N6) There exists c2 > 0 with ||N(v) − N(u) −M(u)(v − u)|| ≤ c2||v − u||2, for all
α0 ≤ u ≤ v ≤ β0.

Theorem 4.1. Let us suppose that the hypotheses (L1)-(L4),(N5) and (N6) are full-
filed, the order cone of X is regular, and that the equation Lu = N(u) has at most
one solution.
Then the sequence (αn)n≥0 given by the iterative relation

(5) Lαn+1 = N(αn) + M(αn) (αn+1 − αn) , n ≥ 0

is monotone increasing and converges in Y to the unique solution of Lu = N(u). The
convergence is quadratic.

Proof. The sequence (αn) is well defined and its elements are from Y , as it is assured
by hypothesis (L1).
Now we show that

α0 ≤ α1 ≤ β0.

We have that
Lα1 = N(α0) + M(α0) (α1 − α0) .

Then, using that Lα0 ≤ N(α0), we obtain

(L−M(α0))α0 ≤ N(α0)−M(α0)α0 =
= (L−M(α0)) α1.
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Hypothesis (L2) assures that α0 ≤ α1.
We also have

Lα1 −M(α0)α1 = Nα0 −M(α0)α0 ≤ (using (N5)
≤ Nβ0 −M(α0) (β0 − α0)−M(α0)α0 ≤
≤ Lβ0 −M(α0)β0.

Hypothesis (L2) assures that α1 ≤ β0.

We prove now that
Lα1 ≤ Nα1.

This follows by the following relations.

Lα1 −M(α0)α1 = Nα0 −M(α0)α0 ≤ (using (N5)
≤ Nα1 −M(α0)(α1 − α0)−M(α0)α0.

Assume now that for some n > 1, Lαn ≤ Nαn and α0 ≤ αn ≤ β0. Similar to the
proof for n = 1, it can be shown that Lαn+1 ≤ Nαn+1 and α0 ≤ αn+1 ≤ β0.
So by induction we obtain

(6) α0 ≤ α1 ≤ ... ≤ αn ≤ ... ≤ β0.

The convergence in the norm ||·||X of the sequence (αn)n≥0 is assured by the regularity
of the order cone K of the Banach space X. Let us denote by u∗ the limit of this
sequence, which satisfies

αn ≤ u∗.

Using the continuity of N and the uniform continuity of M , the right hand side of
(5) converges in X to N(u∗). Thus, the sequence (αn) from Y is such that (αn)
and (Lαn) converge in the norm of X to u∗ and N(u∗), respectively. Using (L5) we
deduce that (αn) converges in Y to u∗ and Lu∗ = N(u∗).

Finally, to prove quadratic convergence, we let

pn = u∗ − αn.

Lpn+1 = Lu∗ − Lαn+1

= Nu∗ −Nαn −M(αn)(αn+1 − αn) =
= Nu∗ −Nαn −M(αn)pn + M(αn)pn+1

If we write v∗ = Lu∗+M(αn)u∗ and notice that u∗ = S(v∗, αn) and αn+1 = S(vn, αn),
we deduce the following inequalities on the base of (L3) and (N6).

||pn+1||Y = ||u∗ − αn+1||Y ≤ c1||Lpn+1 −M(αn)pn+1||X
= c1||Nu∗ −Nαn −M(αn)(u∗ − αn)||X
≤ c1c2||pn||2y

The proof is therefore complete. ¤
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Let us consider the initial value problem for a first order ODE,

(7) u′ = f(t, u), t ∈ [0, T ], u(0) = u0,

where f ∈ C ([0, T ]× R;R).

Corollary 4.1. [21] Assume that α0, β0 ∈ C1[0, T ] are such that

α′0 ≤ f(t, α0),
f(t, β0) ≤ β′0 and

α0(t) ≤ β0(t), t ∈ [0, T ]
and that the derivatives fu, fuu exist, are continuous, and

fuu ≥ 0 in Ω,

where Ω = {(t, u) ∈ [0, T ]× R : α0(t) ≤ u ≤ β0(t), t ∈ [0, T ]}.
Then the sequence (αn)n≥0 given by

α′n+1 = f(t, αn) + fu(t, αn)(αn+1 − αn)
αn+1(0) = u0

converge uniformly to the unique solution of (7) and the convergence is quadratic.

Remark. The proof of this theorem follows from Theorem 4.1 by choosing the spaces
and the operators as follows. Y = C[0, T ] with the supremum norm, X = L1(0, T )
with L1-norm and natural order relations.
D(L) =

{
u ∈ C1(0, T ) : u(0) = u0

}
, Lu = u′, N(u)(t) = f(t, u(t)) and

M(α)u(t) = fu(t, α(t)) · u(t).

Let us consider the initial value problem for an n-th order system of ODE,

(8) u′ = f(t, u), t ∈ [0, T ], u(0) = u0,

where f ∈ C ([0, T ]× Rn;Rn).

Corollary 4.2. [21] Assume that α0, β0 ∈ C1 ([0, T ];Rn) are such that
α′0 ≤ f(t, α0),

f(t, β0) ≤ β′0 and
α0(t) ≤ β0(t), t ∈ [0, T ]

and that
(i) f ∈ C ([0, T ]× Rn,Rn) is quasimonotone increasing in u;

(ii) fu, fuu exist and are continuous satisfying

fuu ≥ 0 on Ω

where Ω = {(t, u) ∈ Rn : α0(t) ≤ u ≤ β0(t), t ∈ [0, T ]};

(iii) ai,j(t, α0) ≥ 0 for i 6= j where A(t, α0) = [ai,j ] is an n × n matrix given by
A(t, α0) = fu(t, α0(t)).
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Then the sequence (αn)n≥0 given by

α′n+1 = f(t, αn) + fu(t, αn)(αn+1 − αn)
αn+1(0) = u0

converge uniformly to the unique solution of (8) and the convergence is quadratic.
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