DATA DEPENDENCE OF THE FIXED POINTS OF SOME PICARD OPERATORS

Alina Sîntămărian
Department of Applied Mathematics Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail: salina@math.ubbcluj.ro

Abstract

The purpose of this paper is to give a data dependence theorem of the fixed point for a Picard operator. We also study the data dependence of the unique solution for a nonlinear integral equation.

Key words: fixed point, Picard operator, data dependence, integral equation.
AMS Subject Classification: 47H10, 54H25.

1 Introduction

Let X be a nonempty set and $f: X \rightarrow X$ be an operator. We denote by F_{f} the fixed points set of f.

Definition 1.1 (Rus [2], [3]) Let (X, d) be a metric space. An operator $f: X \rightarrow X$ is a Picard operator (briefly P. o.) iff there exists $x^{*} \in X$ such that $F_{f}=\left\{x^{*}\right\}$ and $\left(f^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*}, for all $x_{0} \in X$.

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function. We consider the following conditions:
$\left(i_{\varphi}\right) \varphi$ is monotone increasing;
(ii $\left.\varphi_{\varphi}\right) \varphi(t)<t$, for each $t>0$;
$\left(i i i_{\varphi}\right) \varphi$ is right continuous;
$\left(i v_{\varphi}\right) \lim _{t \rightarrow+\infty}(t-\varphi(t))=+\infty$.
We denote by ϕ the class of all functions $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which satisfy the conditions $\left(i_{\varphi}\right),\left(i i_{\varphi}\right)$ and $\left(i i i_{\varphi}\right)$ and we denote by Φ the class of all continuous functions φ : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which satisfy the conditions $\left(i_{\varphi}\right),\left(i i_{\varphi}\right)$ and $\left(i v_{\varphi}\right)$.

For a function $\varphi \in \Phi$ and for $\eta>0$ we put

$$
\varphi_{\eta}:=\sup \left\{t \mid t \in \mathbb{R}_{+}, t-\varphi(t) \leq \eta\right\}
$$

It is clear that $\varphi_{\eta} \rightarrow 0$, as $\eta \searrow 0$.

Example 1.1 Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, defined by $\varphi(t)=$ at, for each $t \in \mathbb{R}_{+}$, where $a \in] 0,1[$. Then $\varphi \in \Phi$.
Example 1.2 Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, defined by $\varphi(t)=t /(t+1)$, for each $t \in \mathbb{R}_{+}$. Then $\varphi \in \Phi$.

Example 1.3 ([1]) Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, defined by $\varphi(t)=\ln (t+1)$, for each $t \in \mathbb{R}_{+}$. Then $\varphi \in \Phi$.

We denote by $\mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$ the Banach space of the continuous functions $u:[a, b] \rightarrow$ \mathbb{R}^{n}, equipped with Cebyshev's norm $\|u\|_{C}=\sup _{t \in[a, b]}\|u(t)\|$.

2 Data dependence of the fixed point for some Picard operators

Theorem 2.1 (Rus [3]) Let (X, d) be a complete metric space, $\varphi \in \phi$ and $f: X \rightarrow$ X be an operator. We suppose that

$$
d(f(x), f(y)) \leq \varphi(d(x, y))
$$

for each $x, y \in X$.
Then f is P. o..
Further on we shall give a data dependence theorem for the unique fixed point of such a Picard operator.
Theorem 2.2 Let (X, d) be a complete metric space, $\varphi_{1}, \varphi_{2} \in \Phi$ and $f_{1}, f_{2}: X \rightarrow X$ be two operators. We suppose that:
(i) $d\left(f_{i}(x), f_{i}(y)\right) \leq \varphi_{i}(d(x, y))$, for each $x, y \in X, i \in\{1,2\}$;
(ii) there exists $\eta>0$ such that

$$
d\left(f_{1}(x), f_{2}(x)\right) \leq \eta
$$

for each $x \in X$.
Then

$$
d\left(x_{1}^{*}, x_{2}^{*}\right) \leq \min \left\{\varphi_{1 \eta}, \varphi_{2 \eta}\right\}
$$

where x_{i}^{*} is the unique fixed point of $f_{i}, i \in\{1,2\}$.
Proof. Let $i, j \in\{1,2\}$, with $i \neq j$. We have

$$
\begin{gathered}
d\left(x_{i}^{*}, x_{j}^{*}\right)=d\left(f_{i}\left(x_{i}^{*}\right), f_{j}\left(x_{j}^{*}\right)\right) \leq \\
\leq d\left(f_{i}\left(x_{i}^{*}\right), f_{i}\left(x_{j}^{*}\right)\right)+d\left(f_{i}\left(x_{j}^{*}\right), f_{j}\left(x_{j}^{*}\right)\right) \leq \varphi_{i}\left(d\left(x_{i}^{*}, x_{j}^{*}\right)\right)+\eta
\end{gathered}
$$

and from this we get that

$$
d\left(x_{i}^{*}, x_{j}^{*}\right)-\varphi_{i}\left(d\left(x_{i}^{*}, x_{j}^{*}\right)\right) \leq \eta
$$

Hence $d\left(x_{i}^{*}, x_{j}^{*}\right) \leq \varphi_{i \eta}$.
Therefore $d\left(\overline{x_{1}^{*}}, x_{2}^{*}\right) \leq \min \left\{\varphi_{1 \eta}, \varphi_{2 \eta}\right\}$.

3 Applications

In what follows we shall prove again the Theorem 2 given by Constantin in [1], using the Theorem 2.1. Moreover, the conditions imposed on the function φ are weaker than those from the Theorem 2 in [1].
Theorem 3.1 We consider the integral equation

$$
\begin{equation*}
x(t)=\int_{a}^{b} K(t, s, x(s)) d s+f(t), t \in[a, b] \tag{3.1}
\end{equation*}
$$

and we suppose that:
(i) $f \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$;
(ii) $K:[a, b] \times[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous;
(iii) there exists $\varphi \in \phi$ such that

$$
\|K(t, s, u)-K(t, s, v)\| \leq l(t, s) \varphi(\|u-v\|)
$$

for each $t, s \in[a, b]$ and for every $u, v \in \mathbb{R}^{n}$, where $l(t, \cdot) \in L^{1}[a, b]$, for each $t \in[a, b]$ and $\sup _{t \in[a, b]} \int_{a}^{b} l(t, s) d s \leq 1$.
Then the integral equation (3.1) has a unique solution in $\mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$.
Proof. We consider the operator $A: \mathcal{C}\left([a, b], \mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$, defined by

$$
A(x)(t)=\int_{a}^{b} K(t, s, x(s)) d s+f(t), t \in[a, b]
$$

Let $x, y \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$. We have

$$
\begin{aligned}
& \|A(x)(t)-A(y)(t)\| \leq \int_{a}^{b}\|K(t, s, x(s))-K(t, s, y(s))\| d s \leq \\
& \leq \int_{a}^{b} l(t, s) \varphi(\|x(s)-y(s)\|) d s \leq \varphi\left(\|x-y\|_{C}\right) \int_{a}^{b} l(t, s) d s
\end{aligned}
$$

for each $t \in[a, b]$. It follows that

$$
\|A(x)-A(y)\|_{C} \leq \varphi\left(\|x-y\|_{C}\right)
$$

From the Theorem 2.1 we get that $F_{A}=\left\{x^{*}\right\}$. This x^{*} is the unique solution of the integral equation (3.1).
Remark 3.1 Let $x_{0} \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$. Taking into account the fact that the operator A defined in the proof of the Theorem 3.1 is a P. o., it follows that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, defined by

$$
x_{n+1}(t)=\int_{a}^{b} K\left(t, s, x_{n}(s)\right) d s+f(t), t \in[a, b]
$$

for each $n \in \mathbb{N}$, converges uniformly to the unique solution x^{*} of the integral equation (3.1).

In the Theorem 2 from [1], Constantin presents a qualitative result relative to the stability of the unique solution of the integral equation (3.1) to small perturbations of the free term.

Further on we shall prove a data dependence theorem on K and f, of the unique solution x^{*} of the integral equation (3.1).

Theorem 3.2 We consider the integral equations

$$
\begin{equation*}
x(t)=\int_{a}^{b} K_{1}(t, s, x(s)) d s+f_{1}(t), t \in[a, b] \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x(t)=\int_{a}^{b} K_{2}(t, s, x(s)) d s+f_{2}(t), t \in[a, b] \tag{3.3}
\end{equation*}
$$

We suppose that:
(i) $f_{1}, f_{2} \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$;
(ii) $K_{1}, K_{2}:[a, b] \times[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous;
(iii) there exist $\varphi_{1}, \varphi_{2} \in \Phi$ such that

$$
\left\|K_{i}(t, s, u)-K_{i}(t, s, v)\right\| \leq l_{i}(t, s) \varphi_{i}(\|u-v\|)
$$

for each $t, s \in[a, b]$ and for every $u, v \in \mathbb{R}^{n}$, where $l_{i}(t, \cdot) \in L^{1}[a, b]$, for each $t \in[a, b]$ and $\sup _{t \in[a, b]} \int_{a}^{b} l_{i}(t, s) d s \leq 1, i \in\{1,2\} ;$
(iv) there exists $\eta_{1}>0$ such that

$$
\left\|K_{1}(t, s, u)-K_{2}(t, s, u)\right\| \leq \eta_{1}
$$

for each $t, s \in[a, b]$ and for every $u \in \mathbb{R}^{n}$;
(v) there exists $\eta_{2}>0$ such that

$$
\left\|f_{1}(t)-f_{2}(t)\right\| \leq \eta_{2}
$$

for each $t \in[a, b]$.
Then

$$
d\left(x_{A}^{*}, x_{B}^{*}\right) \leq \min \left\{\varphi_{1 \eta}, \varphi_{2 \eta}\right\},
$$

where x_{A}^{*} is the unique solution of the integral equation (3.2), x_{B}^{*} is the unique solution of the integral equation (3.3) and $\eta=\eta_{1}(b-a)+\eta_{2}$.

Proof. We consider the operators $A, B: \mathcal{C}\left([a, b], \mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$, defined by

$$
A(x)(t)=\int_{a}^{b} K_{1}(t, s, x(s)) d s+f_{1}(t), t \in[a, b]
$$

and

$$
B(x)(t)=\int_{a}^{b} K_{2}(t, s, x(s)) d s+f_{2}(t), t \in[a, b]
$$

From the proof of the Theorem 3.1 we have that

$$
\|A(x)-A(y)\|_{C} \leq \varphi_{1}\left(\|x-y\|_{C}\right)
$$

for each $x, y \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$ and

$$
\|B(x)-B(y)\|_{C} \leq \varphi_{2}\left(\|x-y\|_{C}\right)
$$

for each $x, y \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$.
We also get that $F_{A}=\left\{x_{A}^{*}\right\}$ and $F_{B}=\left\{x_{B}^{*}\right\}$.
Let $x \in \mathcal{C}\left([a, b], \mathbb{R}^{n}\right)$ and $t \in[a, b]$. Then, we have

$$
\begin{gathered}
\|A(x)(t)-B(x)(t)\| \leq \int_{a}^{b}\left\|K_{1}(t, s, x(s))-K_{2}(t, s, x(s))\right\| d s+\left\|f_{1}(t)-f_{2}(t)\right\| \leq \\
\leq \eta_{1}(b-a)+\eta_{2}=\eta
\end{gathered}
$$

Using the Theorem 2.2, it follows the conclusion.

References

[1] A. Constantin, Some existence results for nonlinear integral equations, Qualitative problems for differential equations and control theory, World Scientific Publishing, 1995, 105-111.
[2] I. A. Rus, Picard operators and applications, Seminar on Fixed Point Theory, "Babeş-Bolyai" Univ., Preprint Nr. 3, 1996.
[3] I. A. Rus, Generalized contractions and applications, Cluj University Press, ClujNapoca, 2001.
[4] I. A. Rus, S. Mureşan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ. Babeş-Bolyai, Mathematica 43 (1), 1998, 79-83.

