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1 Introduction

In the last 25 years the Difference Equations Theory has been developed very much.
An important problem in the study of difference equations is the problem of the global
stability and the oscillatory nature of the solutions. Many results in this area has been
obtained by C.W. Clark [1], R. DeValt, G. Dial, V.L. Kocic, G. Ladas [2], E. Janowski,
V.L. Kocic, G. Ladas [3], V.L. Kocic and G. Ladas [4], G. Papaschinopoulos, C.J.
Schinas [7] and many other. The most used technique to obtain the behavior of the
solutions is the study of semicycles.

In this paper we present another technique to obtain the global asymptotic sta-
bility for the solutions of difference equations using the fixed point theory and Picard
operators from the point of view of a result obtained by I. A Rus in [8]. Also, we
present some examples of difference equations for which we can apply this technique.

2 Global asymptotic stability and Picard operators

First we begin with some basic definitions.
Let X be a nonempty set and A : X → X an operator. We note by:
P (X) := {Y ⊂ X | Y 6= ∅}
FA := {x ∈ X | A(x) = x} - the fixed points set of A.

Definition 2.1 (I.A. Rus [11]). Let (X,d) be a metric space. An operator A : X →
X is a (uniformly) Picard operator if there exists x∗ ∈ X such that:
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(a) FA = {x∗},
(b) the sequence (An(x))n∈N converges (uniformly) to x∗, for all x ∈ X.

For examples of Picard operators see I.A. Rus [10], [12], [11], [13].
In this paper we study the existence, uniqueness and global asymptotic stability

for the k order nonlinear difference equation

xn+k = f (xn, . . . , xn+k−1) , n ∈ N, (1)

with initial values x0, . . . , xk−1 ∈ X, where (X, d) is a metric space and f : Xk → X.

Definition 2.2 An element x∗ ∈ X is a fixed point of the operator f iff

x∗ = f(x∗, . . . , x∗).

Definition 2.3 If x∗ ∈ X is a fixed point for f then the constant sequence generated
by x∗ is an equilibrium solution for the difference equation (1).

Definition 2.4 An equilibrium solution x∗ ∈ X is a global asymptotically stable rel-
atively to the set X if for all solutions (xn)n∈N ⊂ X for the difference equation (1) we
have:

xn → x∗ for n →∞.

Remark 2.1 If the difference equation (1) has a global asymptotically stable equilib-
rium solution then this equilibrium solution is unique.

We are interested to find conditions on operator f implying that the difference
equation (1) has a global asymptotically stable equilibrium solution. We can consider
the operator

Af : Xk → Xk,
(x0, . . . , xk−1) 7−→ (x1, . . . , xk−1, f (x0, . . . , xk−1))

(2)

and we have the following relation between the global asymptotic stability and Picard
operators.

Theorem 2.1 (I.A. Rus [8]) The difference equation (1) has an unique global asymp-
totically stable equilibrium solution relatively to the set X if and only if the operator
Af , defined by (2), is a Picard operator.

3 Fixed point theorems

In this section of the paper we give a fixed point result which ensure that the operator
Af , defined by (2), is a Picard operator.

Theorem 3.1 (I.A. Rus [9], M.A. Şerban [15]) Let (X, d) be a complete metric space,
f : Xk → X and ϕ : Rk

+ → R+ such that:
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(i) ϕ is a (c)-comparison function k dimensional;

(ii) for all x0, . . . , xk−1, xk ∈ X we have

d (f (x0, . . . , xk−1) , f (x1, . . . , xk)) ≤ ϕ (d (x0, x1) , . . . , d (xk−1, xk)) ;

(iii) for all r ∈ R+ we have

ϕ (r, 0, . . . , 0) + ϕ (0, r, 0, . . . , 0) + . . . + ϕ (0, . . . , 0, r) ≤ ϕ (r, . . . , r) .

Then:

(a) the operator Af , defined by (2), is a Picard operator;

(b) we have the estimation

d (xn, x∗) ≤ k ·
∞∑

i=0

ψ[n
k ] (d0) · α[n

k ]

1− α
,

where (xn)n∈N is any solution of (1), d0 = max
i=0,k−1

{d (xi, xi+1)} and ψ : R+ →
R+

ψ(r) = ϕ (r, . . . , r) .

Theorem 3.2 (M.A. Şerban [15]) Let (X, d) be a complete metric space and f :
Xk → X such that:

(i) there exist qi ∈ R+, i = 1, k, with α =
k∑

i=1

qi < 1 such that

d (f (x) , f (y)) ≤
k∑

i=1

qid (xi, yi) ,

for all x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Xk.

Then:

(a) the operator Af , defined by (2), is a Picard operator;

(b) we have the estimation

d (xn, x∗) ≤ k · d0 · α[n
k ]

1− α
,

where (xn)n∈N is any solution of (1) and d0 = max
i=0,k−1

{d (xi, xi+1)};

(c) operator f is continuous in (x∗, . . . , x∗) ∈ Xk.
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4 Applications to some difference equations

As a first example we consider the difference equation

xn+k = a ·max {xn, . . . , xn+k−1}+ b (3)

where a, b ∈ R+ and we give a simplified proof of global asymptotic stability for the
equilibrium solution of difference equation (3), than the proof of H. Sedaghat [14],
based on Theorem 2.1.

Lemma 4.1 For x0, . . . , xk ∈ R+ we have the inequality:

|max {x0, . . . , xk−1} −max {x1, . . . , xk}| ≤ max {|x0 − x1| , . . . , |xk−1 − xk|} .

Proof. This inequality means the there exits j ∈ {0, . . . , k − 1} such that

|max {x0, . . . , xk−1} −max {x1, . . . , xk}| ≤ |xj − xj+1| .
We denote by

m1 = max {x0, . . . , xk−1} ,

m2 = max {x1, . . . , xk}
and we suppose that for all j ∈ {0, . . . , k − 1} we have

|xj − xj+1| < |m1 −m2| , (4)

which implies that m1 6= m2. Thus we have the following cases:

Case 1. m1 > m2 = max {max {x1, . . . , xk−1} , xk} then m1 > max {x1, . . . , xk−1} which
implies that m1 = x0 and therefore from (4), we obtain:

x0 − x1 < x0 −m2 ≤ x0 − x1,

which is a contradiction.

Case 2. m2 > m1 = max {x0, max {x1, . . . , xk−1}} then m2 > max {x1, . . . , xk−1} which
implies that m2 = xk and therefore from (4), we obtain:

xk − xk−1 < xk −m1 ≤ xk − xk−1,

which is a new contradiction and thus the lemma is proved.¤

Theorem 4.1 Let a ∈ [0; 1[ and b ∈ R+ then

x∗ =
b

1− a

is the unique global asymptotically stable equilibrium solution relative to R+ for the
difference equation (3) and we have the estimation

|xn − x∗| ≤ k · a[n
k ]

1− a
·max {|x0 − x1| , . . . , |xk−1 − xk|} ,

for any x0, . . . , xk−1 ∈ R+.
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Proof. The fact that x∗ = b
1−a is the unique equilibrium for the difference

equation (3) can be obtained solving the equation:

x = ax + b.

The uniqueness and global asymptotic stability is obtained from Theorem 3.2
considering the complete metric space X =

(
R+, d|·|

)
and

f : Xk → X,
f (x0, . . . , xk−1) = a ·max {x0, . . . , xk−1}+ b.

Using Lemma 4.1 we deduce

|f (x0, . . . , xk−1)− f (x1, . . . , xk)| = a |max {x0, . . . , xk−1} −max {x1, . . . , xk}| ≤

≤ a ·max {|x0 − x1| , . . . , |xk−1 − xk|}
and, therefore, all the conditions of Theorem 3.2 are satisfied.¤

The second example is a difference equation which arise from the study of the
population dynamics

xn+1 − axn + bxn−k = 0, (5)

equation which was studied by C.W Clark [1], S.A. Kuruklis [5], S.A. Levin and R.M.
May [6].

Theorem 4.2 Let a, b ∈ R such that

|a|+ |b| < 1

then the difference equation (5) has a unique global asymptotically stable equilibrium
solution relative to R and we have the estimation:

|xn − x∗| ≤ (k + 1) · (|a|+ |b|)[n
k ]

1− |a| − |b| ·max {|x0 − x1| , . . . , |xk − xk+1|} ,

for all x0, . . . , xk ∈ R.

Proof. We consider the Banach space X = (R, |·|) and

f : Xk+1 → X,

f (x0, . . . , xk) = axk − bx0.

For all (x0, . . . , xk), (y0, . . . , yk) ∈ Xk+1 we have:

|f (x0, . . . , xk)− f (y0, . . . , yk)| = |a| · |xk − yk|+ |b| · |x0 − y0| .

Because |a| + |b| < 1 we are, again, in conditions of the Theorem 3.2 which implies
that operator Af , defined by (2), is a Picard operator and therefore from the Theorem
2.1 we deduce the global asymptotic stability for the unique equilibrium solution.¤
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For the third example we consider the nonlinear difference equation system:
{

xn+1 = A + yn

xn−p

yn+1 = A + xn

yn−q

(6)

where p, q ∈ N. This system was studied by G. Papaschinopoulos and C.J. Schinas
in [7] proving the global asymptotic stability for the unique equilibrium solution for
A > 1. From the point of view of Theorem 3.2 and Theorem 2.1 we obtain the
following result.

Theorem 4.3 For A > 3+
√

5
3 = 1. 74535 5993 then

z∗ = (1 + A, 1 + A)

is the unique global asymptotically stable equilibrium solution relative to X = [A; B]×
[A; B] for the difference equations system (6) where

B ∈
[

A2

A− 1
; A2 −A

[

and we have the estimations:

δ (zn, z∗) ≤ α[ n
p+1 ]

1− α
·max {δ (z0, z1) , . . . , δ (zp, zp+1)} , for p ≥ q,

δ (zn, z∗) ≤ α[ n
q+1 ]

1− α
·max {δ (z0, z1) , . . . , δ (zq, zq+1)} , for q > p,

where α = 1
A + B

A2 and δ is the metric on the space X = [A; B]× [A;B] defined by

δ (z1, z2) = max {|x1 − x2| , |y1 − y2|}

for all z1 = (x1, y1) , z2 = (x2, y2) ∈ X.

Proof. It is obvious that the metric space (X, δ) is complete. We have to study
two cases:

Case 1. q ≤ p

In this case we define
f = (f1, f2) : Xp+1 → X,

f (z0, . . . , zp) =
(

A +
yp

x0
, A +

xp

yp−q

)

and for all z0, . . . , zp ∈ X we have:

(A,A) ≤ f (z0, . . . , zp) ≤
(

A +
B

A
, A +

B

A

)
,
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but

A +
B

A
≤ B ⇐⇒ B ≥ A2

A− 1

and therefore f (X, . . . , X) ⊆ X.
With this notation the system (6) can be written

zn+p+1 = f (zn, . . . , zn+p−q, . . . , zn+p) .

For all z0, . . . , zp, z̃0, . . . , z̃p ∈ X we have:

|f1 (z0, . . . , zp)− f1 (z̃0, . . . , z̃p)| ≤ yp

x0x̃0
· |x0 − x̃0|+ 1

x̃0
· |yp − ỹp| ≤

≤ B

A2
· |x0 − x̃0|+ 1

A
· |yp − ỹp| ,

|f2 (z0, . . . , zp)− f2 (z̃0, . . . , z̃p)| ≤ 1
yp−q

· |xp − x̃p|+ x̃p

yp−q ỹp−q
· |yp−q − ỹp−q| ≤

≤ 1
A
· |xp − x̃p|+ B

A2
· |yp−q − ỹp−q| ,

and we obtain

δ (f (z0, . . . , zp) , f (z̃0, . . . , z̃p)) ≤ B

A2
·max {δ (z0, z̃0) , δ (zp−q, z̃p−q)}+

1
A
· δ (zp, z̃p)

For this case we consider the function

ϕ : Rp+1
+ → R+

ϕ (r0, . . . , rp) =
B

A2
·max {r0, rp−q}+

1
A
· rp

which is a (c)-comparison function p+1 dimensional. From Theorem 3.1 we obtain
that operator Af : Xp+1 → Xp+1, defined by (2), is a Picard operator and there-
fore from the Theorem 2.1 we deduce the global asymptotic stability for the unique
equilibrium solution.

Case 2. q > p

In this case we define
f = (f1, f2) : Xq+1 → X,

f (z0, . . . , zq) =
(

A +
yq

xq−p
, A +

xq

y0

)
.

The invariance property of the set X to the operator f is also true in this case. Thus,
the system (6) can be written in following form:

zn+p+1 = f (zn+p−q, . . . , zn, . . . , zn+p) .
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For all z0, . . . , zp, z̃0, . . . , z̃p ∈ X we have:

|f1 (z0, . . . , zq)− f1 (z̃0, . . . , z̃q)| ≤ ỹq

xq−px̃q−p
· |xq−p − x̃q−p|+ 1

xq−p
· |yq − ỹq| ≤

≤ B

A2
· |xq−p − x̃q−p|+ 1

A
· |yq − ỹq| ,

|f2 (z0, . . . , zq)− f2 (z̃0, . . . , z̃q)| ≤ 1
y0
· |xq − x̃q|+ x̃q

y0ỹ0
· |y0 − ỹ0| ≤

≤ 1
A
· |xq − x̃q|+ B

A2
· |y0 − ỹ0| ,

and we deduce:

δ (f (z0, . . . , zp) , f (z̃0, . . . , z̃p)) ≤ B

A2
max {δ (z0, z̃0) , δ (zq−p, z̃q−p)}+

1
A

δ (zq, z̃q) .

In this case we consider the function

ϕ : Rq+1
+ → R+

ϕ (r0, . . . , rq) =
B

A2
·max {r0, rq−p}+

1
A
· rq

which is a (c)-comparison function q + 1 dimensional. From Theorem 3.1 we obtain
that operator Af : Xq+1 → Xq+1, defined by (2), is a Picard operator and there-
fore from the Theorem 2.1 we deduce the global asymptotic stability for the unique
equilibrium solution.¤
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