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1. Introduction
In this paper we give some results concerning the existence of fixed points of some

multivalued operators which commute.
In connection with such a study there have been published, in the latest fifteen

years, some open problems, which inspired our investigations too (see, Rus [1], [3], [5]
and [6]).

The aim of this paper is to include in a unique background also the proofs of some
theorems containing conditions which imply FT = (SF )T = {x∗}. For other similar
results, see also Rus [6] and Ŝıntămărian [7].

In the last section, the general framework of our study is of the fixed point
structures. From this perspective, we proposed three open questions, which prove
that the topic is far from being exhausted.

2. Definitions and notations
Let (X, d) be a metric space. Throughout this paper we use the following nota-

tions:
P (X) := {A ⊂ X | A 6= ∅};

Pcl(X) := {A ∈ P (X) | A = Ā};
Pcp(X) := {A ∈ P (X) | A is a compact set}.

Now, let (X, d) be a metric space and A ∈ P (X). Then we denote:

δ(A) := sup{d(a, b) | a, b ∈ A};
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Pb(X) := {A ∈ P (X) | δ(A) < +∞};
Pb,cl(X) := Pb(X) ∩ Pcl(X).

For a multivalued operator T : X ( X, we denote:

I(T ) := {A ∈ P (X) | T (A) ⊂ A};
Ib(T ) := {A ∈ I(T ) | δ(A) < +∞};
Ib,cl(T ) := {A ∈ Ib(T ) | A = Ā}.

Definition 2.1. Let T : X ( X be a multivalued operator. Then, by definition,
an element x ∈ X is:

i) a fixed point of T iff x ∈ T (x);
ii) a strict fixed point of T iff T (x) = {x}.
We denote by:
i′) FT := {x ∈ X | x ∈ T (x)} the fixed points set of T;
ii′′) (SF )T := {x ∈ X | T (x) = {x}} the strict fixed points set of T.

We denote by (X, S(X),M◦) a fixed point structure on X (briefly, f.p.s.).
More details for this notion and its applications can be found in Rus [4].

Definition 2.2. Let T : X ( X. By definition, a subset A ⊂ X is a fixed

subset of T if T (A) = A.

Definition 2.3. (Tarafdar-Vyborny [8]). A multivalued operator
T : X → Pcl(X) is said to be a multivalued topological contraction if

i) T is upper semicontinuous on X;
ii) for each A ∈ Pcl(X) with T (A) = A implies that A is a single point, i.e.

A = {x∗} for some point x∗ ∈ X.

Definition 2.4. Let (X, d) be a metric space. Then, a multivalued operator
T : X → Pb,cl(X) is called:

i) a-contraction, if a ∈]0, 1[ and H(T (x), T (y)) 6 a · d(x, y), for all
x, y ∈ X;

ii) contractive, if H(T (x), T (y)) < d(x, y), for all x, y ∈ X, x 6= y;
iii) (δ, a)-contraction, if a ∈]0, 1[ and δ(T (A)) 6 a·δ(A), for all A ∈ Ib(T ).
iv) (δ, ϕ)-contraction, ϕ is a comparison function and

δ(T (A)) 6 ϕ(δ(A)), for all A ∈ Ib(T ).

Definition 2.5. Let X be a nonempty set and T, S : X ( X multivalued
operators. Then the composed of T and S is a multivalued operator denoted by
T ◦ S : X ( X given by (T ◦ S)(x) :=

⋃
y∈S(x)

T (y).
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Definition 2.6. If X is a nonempty set and T, S : X ( X are multi-valued
operators, then we say that T commutes with S if T ◦ S = S ◦ T .

3. Known results
Theorem 3.1. (Rus [1]). Let X be a set and f, g : X → X comutative

singlevalued mappings.
If f has a unique fixed point, then g will have, at least, one fixed point.

Theorem 3.2. (Rus [3]). Let T : X → P (X). If there exists n ∈ N such that
{x∗} is the unique fixed set for Tn, then (SF )T = {x∗}.

Theorem 3.3. (Rus [6]). Let (X, d) be a metric space and T : X → Pb,cl(X)
a multivalued contraction.

If (SF )T 6= ∅, then FT = (SF )T = {x∗}.
(The proof of this result can be found in [7]).

Theorem 3.4. (Tarafdar-Vyborny [8]). Let X be a Hausdorff compact topo-
logical space and T : X → P (X), a multivalued topological contraction.

Then, (SF )T = {x∗}.

Theorem 3.5. (Rus [4]). Let (X, d) be a bounded complete metric space and
T : X → P (X) a (δ, ϕ)-contraction.

Then, FT = (SF )T = {x∗}.

Theorem 3.6. (Rus [3]). Let X be a nonempty set and T : X → P (X) a
multivalued operator. Then (SF )T is a fixed set for T.

Theorem 3.7. (Rus [2]). Let (X, d) be a complete metric space, T : X →
Pb(X) and
ϕ : R5

+ → R+. We suppose that:
i) (r 6 s, r, s ∈ R5

+) ⇒ ϕ(r) 6 ϕ(s);
ii) there exists p > 1 such that ϕ(r, pr, pr, r, r) < r, for all r > 0;
iii) r − ϕ(r, pr, pr, r, r) → +∞, when r → +∞;
iv) ϕ is continuous;
v) δ(T (x), T (y)) 6 ϕ(d(x, y) , δ(x, T (x)) , δ(y, T (y)) , D(x, T (y)) , D(y, T (x))),

for all x, y ∈ X.
Then, T has a unique fixed point x∗ and T (x∗) = {x∗}.

4. Main results
We shall first prove the following result, which extends the Theorem 3.1 in the

multivoque case and which will be frequently used in proofs.
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Theorem 4.1. Let X 6= ∅ and T : X → P (X).
The following statements are equivalent:
a) (SF )T 6= ∅;
b) There exists a multivalued operator U : X → P (X), having the following

properties : (b1) {x∗} is the unique fixed set for U;
(b2) U commutes with T.

.

Proof. Necessity: a) =⇒ b). Let x∗ ∈ (SF )T .
The constant operator U : X → P (X), defined by U(x) = {x∗}, (∀)x ∈ X,

has a unique fixed set, namely {x∗}. Moreover, U commutes whith T. Indeed, for
all x ∈ X, we have:

(T ◦ U)(x) = T (U(x)) = T ({x∗}) = {x∗}

and
(U ◦ T )(x) = U(T (x)) =

⋃

y∈T (x)

U(y) = {x∗}.

We therefore have T ◦ U = U ◦ T .
Sufficiency: b) =⇒ a). Since {x∗} is a fixed set for U, we shall have

U(x∗) = U({x∗}) = {x∗}. Then, by commutativity, it follows that
U(T (x∗)) = (U ◦ T )(x∗) = (T ◦ U)(x∗) = T (x∗), which shows that T (x∗) is a fixed
set of U. As, by hypothesis (b1) , the unique fixed set of U is {x∗}, we obtain that
T (x∗) = {x∗}. Therefore, (SF )T 6= ∅. ¤

Remark 4.2. As an immediate consequence of Theorem 4.1, we obtain an inter-
esting multivalued fixed point theorem due to I.A.Rus [3]. Indeed, taking U = Tn,
the assumption (b2) is satisfied. Hence, Theorem 4.1 generalizes Theorem 3.2 (which
is Lemma 4.1 of Rus in [3]).

The next results furnish various answers to the Open Problem 3.1 proposed by
I.A.Rus in [3], having the following enunciation:

Being given the commuting multivalued operators T1, T2 : X ( X, which are
the conditions on T1, such that (SF )T2 6= ∅?

Theorem 4.3. Let (X, d) be a metric space and T1, T2 : X → Pb,cl(X) be two
multivalued operators such that T1 ◦ T2 = T2 ◦ T1.

In these conditions, if T1 is a multivalued a-contraction and (SF )T1 6= ∅,
then FT2 6= ∅.

Proof. If we assume that x∗ ∈ (SF )T1 , then we have:

T1(T2(x∗)) = (T1 ◦ T2)(x∗) = (T2 ◦ T1)(x∗) = T2(T1(x∗)) = T2(x∗).
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Therefore, T2(x∗) is a fixed set for T1 and hence there exists y∗ ∈ T2(x∗), such
that y∗ ∈ FT1 . We note that all hypotheses of Theorem 3.3 are satisfied for T1.
By Theorem 3.3 it follows that FT1 = (SF )T1 = {x∗}. Finally, from y∗ ∈ FT1 we
obtain y∗ = x∗. Thus we can write x∗ ∈ T2(x∗), i.e. FT2 6= ∅. ¤

Remark 4.4. From the proof of Theorem 4.3, we have obtained, in fact, even
more, namely that:

If one of the operators T1 or T2 , which commute each other, has strict fixed
points and satisfies a contraction condition, then the two operators have a common
fixed point, i.e. FT1 ∩ FT2 6= ∅.

Remark 4.5. The problem which appears is if the Theorem 4.3 remains true if
we replace the property of T1, respectively T2, of being multivalued contraction,
by other metric conditions. To this question we will give an affirmative answer by
the Theorem 5.3, in this paper.

Corollary 4.6. Let (X, d) be a metric space and T1, T2 : X → Pb,cl(X) be
multivalued operators such that T1 ◦ T2 = T2 ◦ T1.

In these conditions, if T1 is a contractive operator and (SF )T1 6= ∅, then
FT2 6= ∅.

Proof. The demonstration can be made analogously with the proof of Theorem
4.3, by using the definition of the contractive operator. ¤

Theorem 4.7. Let X be a Hausdorff compact topological space and
T1, T2 : X → P (X) be multivalued operators such that:

i) T1 is a topological contraction;
ii) T1 ◦ T2 = T2 ◦ T1.
Then, (SF )T2 6= ∅.

Proof. Using Theorem 3.4, we obtain (SF )T1 = {x∗}. Note that, by Theorem
3.6, {x∗} is the fixed set for T1 and it is unique, since T1 is a multivalued topo-
logical contraction. Hence, applying Theorem 4.1, we conclude that (SF )T2 6= ∅. ¤

Theorem 4.8. Let (X, d) be a bounded complete metric space and
T1, T2 : X → P (X) such that:

i) T1 is a (δ, a)- contraction and T1(x) is closed set for any x ∈ X;
ii) T1 ◦ T2 = T2 ◦ T1.
Then, (SF )T2 6= ∅.
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Proof. Since T1 is a (δ, a) - contraction, based on Theorem 3.5, we have
FT1 = (SF )T1 = {x∗}.

Moreover, because T1 is a (δ, a)- contraction, then T1 is clearly a topological
contraction.
Consequently, {x∗} is the unique fixed set for T1. Finally, applying Theorem 4.1,
it results that (SF )T2 6= ∅. ¤

We now establish a more general result.
Theorem 4.9. Let (X, d) be a complete metric space, T1, T2 : X → Pb(X) and

ϕ : R5
+ → R+. We suppose that:

i) (r 6 s, r, s ∈ R5
+) ⇒ ϕ(r) 6 ϕ(s);

ii) there exists p > 1 such that ϕ(r, pr, pr, r, r) < r, for all r > 0;
iii) r − ϕ(r, pr, pr, r, r) → +∞, when r → +∞;
iv) ϕ is continuous;
v) δ(T1(x), T1(y)) 6 ϕ(d(x, y) , δ(x, T1(x)) , δ(y, T1(y)) , D(x, T1(y)) , D(y, T1(x))),

for all
x, y ∈ X;

vi) T1 ◦ T2 = T2 ◦ T1;
vii) for each A ∈ P (X) with T1(A) = A implies that A contains only one

element.
In these conditions, (SF )T2 6= ∅.

Proof. We remark that all hypotheses of Theorem 3.7 are satisfied for T1. So,
we deduce FT1 = (SF )T1 = {x∗}. From the Theorem 3.6, we have that (SF )T1 is
a fixed set for T1 and taking into account the hypothesis vii), it is unique. Now,
applying Theorem 4.1, we conclude that (SF )T2 6= ∅. ¤

In 1999, I.A.Rus proposed the following open problem (Problem 21 in Rus [6]):
Which are the f.p.s. (X,S(X),M◦) with the following property

Y ∈ S(X), T ∈ M◦(Y ), (SF )T 6= ∅ ⇒ FT = (SF )T = {x∗} ?
As a partial solution to the above-mentioned open problem in the case of f.p.s. of

the contractions we shall prove:
Theorem 4.10. Let (X, d) be a complete metric space and T : X → Pb,cl(X)

a multivalued operator. We suppose that:

i) H(Tn(x), Tn(y)) 6 αn · d(x, y), (∀)x, y ∈ X and
∞∑

n=1
αn < ∞;

ii) there exists n ∈ N∗ such that {x∗} is the unique fixed set for Tn.
In these conditions, FT = (SF )T = {x∗}.

Proof. From the convergence of series
∞∑

n=1
αn results that (∃)n ∈ N∗ such that

αn < 1. In other words, for this n, Tn is a multivalued contraction. In addition,
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from ii) it follows that (SF )T n 6= ∅.
Now, we may invoke Theorem 3.3 to conclude that FT n = (SF )T n = {x∗}.
On the other hand, in virtue of Theorem 3.2, we have (SF )T 6= ∅. Hence,

∅ 6= (SF )T ⊂ (SF )T n = {x∗} implies (SF )T = {x∗}.
Finally, from x∗ ∈ FT ⊂ FT n = {x∗} we obtain FT = {x∗}. ¤

Theorem 4.11. Let X be a Hausdorff compact topological space and T : X →
P (X).

We suppose that there exists n ∈ N∗ such that:
i) Tn is a topological contraction;
ii) FT n is a singleton.
In these conditions, FT = (SF )T = {x∗}.

Proof. Applying Theorem 3.4, we obtain (SF )T n = {x∗}. Now, taking into
account the hypothesis ii), it follows that {x∗} = (SF )T n ⊂ FT n = {z}, hence
x∗ = z.

Consequently, (SF )T n = FT n = {x∗}. Finally, by the some arguments as in the
proof of Theorem 4.10, we obtain the conclusion. ¤

Theorem 4.12. Let (X, d) be a bounded complete metric space and T : X →
P (X) a multivalued operator.

We suppose that there exists n ∈ N∗ such that:
i) Tn is a (δ, ϕ) - contraction;
ii) {x∗} is the unique fixed set for Tn.
In these conditions, FT = (SF )T = {x∗}.

Proof. Using Theorem 3.5, we obtain FT n = (SF )T n = {x∗}.
Further on, the reasoning is similar to the proof of Theorem 4.10. ¤

Theorem 4.13. Let (X,S(X),M◦) be a s.f.p.s. and (θ, η) a compatible pair
with (X, S(X),M◦) . Let Y ∈ η(Z) and T ∈ M◦(Y ).

We suppose that:
i) θ | η(Z) has the intersection property;
ii) there exists n ∈ N∗ such that

ii1) Tn is a (θ, ϕ) - contraction;
ii2) for each A ⊂ X with Tn(A) = A implies that A consists of single

point;
ii3) FT n is a singleton.

In these conditions, FT = (SF )T = {x∗}.
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Proof. From the first general strict fixed point principle (see Rus [4], Theorem
4.2) we have that (SF )T n 6= ∅.

From ii3) it follows that ∅ 6= (SF )T n ⊂ FT n = {x∗} and so, FT n = (SF )T n =
{x∗}.

On the other hand, on the basis of Theorem 3.2 it results (SF )T 6= ∅. Further
on, the demonstration is made analogously with the proof of Theorem 4.10. ¤

5. Fixed point structure with the common fixed property
The purpose of this section is to extend in the multivoque case, the so-called

fixed point structure with the common fixed point property, introduced by
I.A.Rus for singlevalued operators (see [5]). We begin with a new problem in con-
nection with our topic, which can be formulated in terms of the fixed point structures.

Open problem 5.1. Which are the fixed point structures (X,S(X),M◦), with
the following property:
(c) Y ∈ S(X) and T1, T2 ∈ M◦(Y ) such that T1 ◦ T2 = T2 ◦ T1 implies that
FT1 ∩ FT2 6= ∅ ?

Definition 5.2. By definition, a fixed point structure which satisfies the condi-
tion (c) is called fixed point structure with the common fixed point property.

To exemplify this concept, we will establish the following result, using Reich’s
strict fixed point structure.

Theorem 5.3. Let (X, d) be a complete metric space. For Y ∈ P (X), let
M◦(Y ) = {T : Y → Pcl(Y ) | (∃) a, b, c ∈ R+, a + b + c < 1, such that
δ(T (x), T (y)) 6 a · d(x, y) + b · δ(x, T (x)) + c · δ(y, T (y)), for all x, y ∈ X}.

Let T1, T2 ∈ M◦(Y ) such that T1 ◦ T2 = T2 ◦ T1.
Then, FT1 = (SF )T1 = FT2 = (SF )T2 = {x∗}.

Proof. By Reich’s strict fixed point theorem we have FT1 = (SF )T1 = {x∗} and
FT2 = (SF )T2 = {y∗}. We shall show that x∗ = y∗. We suppose, on the contrary,
that x∗ 6= y∗. Then, we have T1(T2(x∗)) = T2(T1(x∗)) = T2(x∗) and hence there
exists z ∈ T2(x∗), such that z ∈ FT1 . So, z = x∗ . Thus we can write x∗ ∈ T2(x∗),
i.e. x∗ ∈ FT2 . Finally, we obtain the contradiction x∗ = y∗. Therefore , in these
conditions, the multivalued operators T1 and T2 have a unique common strict fixed
point. ¤

At the end of this paper we formulate other two open questions.
Open problem 5.4. Let (X, S(X),M◦), be a f.p.s., Y ∈ S(X) and T1, T2 ∈

M◦(Y ) such that T1 ◦ T2 = T2 ◦ T1.
Establish conditions on T1 and T2, which imply that FT1 ∩ FT2 6= ∅.
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For this problem, we give a partial answer by the Remark 4.4, in the present paper.

We now suggest another direction of investigation, changing the previous problem
into a problem of existence of the coincidence points.

Open problem 5.5. Let (X,S(X),M◦) be a f.p.s., Y ∈ S(X) and T1, T2 ∈
M◦(Y ) such that T1 ◦ T2 = T2 ◦ T1.

Establish conditions on T1 and T2, which imply that there exists x∗ ∈ Y such
that T1(x∗) ∩ T2(x∗) 6= ∅.
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