ON MULTIPLICATIVELY UNITARY PERFECT NUMBERS

Antal Bege
Department of Applied Mathematics
Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail: bege@math.ubbcluj.ro

Abstract

In this paper we imtroduce the unitary multiplicative divisor function, and the notion of unitary multiplicative perfect number, unitary multiplicative superperfect number and multiplicatively unitary $k-l$ perfect number and characterize them. Keywords: perfect number, unitary perfect number, divisor function, fixed points. AMS Subject Classification: 11A25.

1 Introduction

Let $\sigma(n)$ be the sum of positive divisors of n,

$$
\sigma(n)=\sum_{d \mid n} d
$$

$s(n)$ the sum of aliquet part of n, i. e. the positive divisors of n other than n itself, so that

$$
s(n)=\sigma(n)-n .
$$

It is well-known that a number n is called perfect if the sum of aliquot divisors of n is equal to n

$$
s(n)=n
$$

or equivalently

$$
\sigma(n)=2 n .
$$

Perfect, amicable and sociable numbers are fixed points of the arithmetic function s and its iterates. (R. K. Guy [3], P. Erdős [1])
The Euclid-Euler theorem gives the form of even perfect numbers:
Lemma 1.1 An even integer n is perfect iff there exist prime number p such that $n=2^{p-1} q$, where $q=2^{p}-1$ is prime ("Mersenne prime").

No odd perfect numbers are known.
The number n is called super-perfect if

$$
\sigma(\sigma(n))=2 n
$$

Suryanarayana and Kanold states [9], [5] the general form of even super-perfect numbers: $n=2^{p-1}$, where $2^{p}-1=q$ is a prime (Mersenne prime).
No odd super-perfect numbers are known.
A divisor d of a natural number n is unitary divisor if $\left(d, \frac{n}{d}\right)=1$, and n is unitary perfect if

$$
\sigma^{*}(n)=2 n .
$$

The notion of unitary perfect numbers introduced M. V. Subbarao and L. J. Waren in 1966 [8].
Five unitary perfect numbers are known, they are necessarilly even and its true that no unitary perfect numbers of the form $2^{m} s$ where s is a squarefree odd integer [2].
Sándor in [6] introduced the concept of multiplicatively divisor function $T(n)$ (see [4]) and multiplicatively perfect and superperfect number and characterize them. Let $T(n)$ denote the product of all divisors of n :

$$
T(n)=\prod_{d \mid n} d
$$

We say that the number $n>1$ multiplicatively perfect (or shortly m-perfect) if

$$
T(n)=n^{2}
$$

and multiplicatively super-perfect (m-super-perfect), if

$$
T(T(n))=n^{2}
$$

In this paper we introduce the unitary muliplicative divisor function, and the notion of multiplicative unitary perfect, multiplicative unitary superperfect and k - l multiplicative unitary perfect numbers and characterize them.

2 Main results

Definition 2.1 Let $T^{*}(n)$ denote the product of all unitary divisors of n :

$$
T^{*}(n)=\prod_{\substack{d \left\lvert\, n \\\left(d, \frac{n}{d}\right)\right.}} d
$$

Let $T^{* k}(n)$ the k th iterate of $T^{*}(n)$:

$$
T^{* k}(n)=T^{*}\left(T^{*(k-1)}(n)\right), \quad k \geq 1
$$

Definition 2.2 The number $n>1$ is multiplicatively unitary perfect (or shortly m unitary perfect) if

$$
T^{*}(n)=n^{2}
$$

multiplicatively unitary super-perfect (m unitary super-perfect), if

$$
T^{*}\left(T^{*}(n)\right)=n^{2},
$$

and multiplicatively unitary k - l perfect (m unitary $k-l$ perfect), if

$$
T^{* k}(n)=n^{l} .
$$

First we prove the following result:
Lemma 2.1 For $n \geq 1$

$$
T^{*}(n)=n^{\frac{\tau^{*}(n)}{2}}
$$

where $\tau^{*}(n)$ denotes the number of unitary divisors of n.
Proof. If $d_{1}, d_{2}, \ldots, d_{k}$ are all unitary divisors of n, then

$$
\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}=\left\{\frac{n}{d_{1}}, \frac{n}{d_{2}}, \ldots, \frac{n}{d_{k}}\right\}
$$

implying that

$$
\begin{gathered}
d_{1} d_{2} \ldots d_{k}=\frac{n}{d_{1}} \cdot \frac{n}{d_{2}} \cdots \frac{n}{d_{k}}, \\
T(n)=n^{k / 2}
\end{gathered}
$$

where $k=\tau^{*}(n)$ denotes the number of unitary divisors of n.

Remark

The $T^{*}(n)$ function not multiplicative and not additive function.
Theorem 2.1 All m-perfect numbers n have the following form: $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ where p_{1}, p_{2} are distinct primes and $\alpha_{1}, \alpha_{2}>0$ natural numbers or $\alpha_{1}=\alpha_{2}=0$.
There are no $n>1 m$-super-perfect numbers.
Proof. The $n=1$ solution of the equation. If we assume that $n>1$ we have $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be the prime factorisation of $n>1$. It is well-known that

$$
\tau^{*}(n)=2^{\omega(n)}=2^{k},
$$

where $\omega(n)$ is the number of distinct prime divisors of n (see [7]). We have by Lemma 2.1 that n multiplicatively unitary perfect iff

$$
n^{\frac{\tau^{*}(n)}{2}}=n^{2}
$$

or

$$
\tau^{*}(n)=4, \quad \omega(n)=2,
$$

which equivalent to the form $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$.
Let $n>1$ a natural number. We have

$$
\begin{equation*}
T^{*}\left(T^{*}(n)\right)=\left(T^{*}(n)\right)^{\frac{\tau^{*}\left(T^{*}(n)\right)}{2}}=n^{\frac{\tau^{*}(n)}{2} \frac{\tau^{*}\left(T^{*}(n)\right)}{2}} \tag{2.1}
\end{equation*}
$$

because $n>1$

$$
\begin{equation*}
\tau^{*}\left(T^{*}(n)\right)=\tau^{*}\left(n^{\frac{\tau^{*}(n)}{2}}\right)=\tau^{*}(n) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we have that n unitary m superperfect number iff

$$
n^{\left(\frac{\tau^{*}(n)}{2}\right)^{2}}=n^{2},
$$

or

$$
\left(\tau^{*}(n)\right)^{2}=8
$$

which is impossible.
We now investigate the problem of the existence of $k-l$ unitary m perfect numbers. First we prove that:

Lemma 2.2 If n a natural number such that $\omega(n) \geq l+1$ we have:

$$
T^{* k}(n) \geq n^{2^{l k}}
$$

Proof. Let m be a smallest natural number with $\omega(m)=l+1$ Because for $n \geq m$ with $\omega(n) \geq l+1$

$$
T^{*}(n)=n^{2^{\omega(n)}} \geq m^{2^{\omega(m)}}=T^{*}(m)
$$

we have

$$
T^{*}(n)=n^{2^{\omega(n)}}
$$

the function $T^{*}(n)$ increasing function and therefore $T^{* k}(n)$ increasing too.
Let m be a smallest natural number with $\omega(n)=l+1$. We have $n \geq m$ and therefore

$$
\begin{equation*}
T^{* k}(n) \geq T^{* k}(m) \tag{2.3}
\end{equation*}
$$

By induction and (2.1), (2.2) we have

$$
\begin{equation*}
T^{* k}(n)=n^{\left(\frac{\tau^{*}(n)}{2}\right)^{k}} . \tag{2.4}
\end{equation*}
$$

But $\omega(n)=l+1$ implies that

$$
\begin{equation*}
\tau^{*}(m)=2^{l+1} \tag{2.5}
\end{equation*}
$$

From (2.3), (2.4), (2.5) we have

$$
T^{* k}(n) \geq T^{* k}(m) \geq n^{2^{2 k}}
$$

This lemma implies the following result:

Theorem 2.2 If $l \neq 2^{m k}$ there are no $k-l m$ unitary perfect numbers.
If $l=2^{m k}$ every n natural number with $\omega(n)=m k-l$ unitary m perfect number.
Theorem 2.3 For every even perfect number and every k exist l suvh that n unitary $k-l$ perfect number.

Proof. By Lemma 1.1, n even perfect iff $n=2^{p-1} q$, where $q=2^{p}-1$ is prime which imlies that $\omega(n)=2, \tau^{*}(n)=4$ and

$$
T^{* k}(n)=n^{\left(\frac{\tau^{*}(n)}{2}\right)^{k}}=n^{2^{k}}=n^{l}
$$

with $l=2^{k}$.

References

[1] Erdős, P., Granville, A., Pomerance C., Spiro C., On the normal behavior of the iterates of some arithmetical functions, Analytic Number Theory, Birkhaüser, Boston, 1990.
[2] Graham, S. W., Unitary perfect numbers with squarefree odd part, Fibonacci Quart., 27 (1989), 317-322.
[3] Guy, R. K., Unsolved problems in number theory, Springer Verlag, 2 ${ }^{\text {nd }}$ ed., 1994.
[4] K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer, 1982, Chapter 2.
[5] H.J. Kanold, Über super-perfect numbers, Elem. Math., 24 (1969), 61-62.
[6] Sándor, J. On multiplicatively perfect numbers, J. Inequal. Pure and Appl. Math., 2 (2001), No. 1, Art. 3.
[7] Sivaramakrishnan, R. Classical theory of arithmetic functions, Monographs and Textbooks In Pure and Applied Mathematics, Vol. 126, Marcel Dekker, NewYork, 1989.
[8] Subbarao, M. V., Warren, L. J., Unitary perfect numbers, Canad. Math. Bull., 9 (1966), 147-153.
[9] Suryanarayana D., Super-perfect numbers, Elem. Math., 24 (1969), 16-17.

