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1 Introduction

Beginning with 1983 ([36]) we developed the theory of weakly Picard operators ([37],
[38], [41]-[47]). The purpose of this paper is to present the basic results of this theory,
to give some applications and to formulate some open problems.

2 Weakly Picard operators on metric space

Let (X, d) be a metric space and A : X → X an operator. In this paper we shall use
the following notations:

P (X) := {Y ⊂ X| Y 6= ∅};
FA := {x ∈ X| A(x) = x} - the fixed point set of A;
I(A) := {Y ∈ P (X)| A(Y ) ⊂ Y } - the family of the nonempty invariant subsets

of A;
An+1 := A ◦An, A0 = 1X , A1 = A, n ∈ N .
Definition 2.1 ([36], [37], [47]). An operator A is weakly Picard operator (WPO)

if the sequence
(An(x))n∈N

converges, for all x ∈ X, and the limit (which may depend on x) is a fixed point of
A.

Definition 2.2 ([36], [37], [47]). If the operator A is WPO and FA = {x∗}, then
by definition A is a Picard operator (PO).
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Remark 2.1. If A is a PO, then A is a Bessaga operator, i.e.,

FAn = FA = {x∗}, for all n ∈ N∗.

Remark 2.2. If A is WPO, then (see [37])

FAn = FA 6= ∅, for all n ∈ N∗.

Remark 2.3 (see [34]). An operator A is PO if and only if FA = {x∗} and {x∗}
is a global atractor for the discrete dynamic generated by the operator A.

Remark 2.4. For some example and properties of POs and WPOs see [36], [37],
[47], [33], [38], [40]-[46], [48].

Remark 2.5. To establish if a given operator is or isn’t PO or WPO is a very
difficult problem. For example we have:

Discrete Markus-Yamabe conjecture ([10], [45]). Let A be a C1 function
from Rn into itself such that A(0) = 0 and for all x ∈ Rn, JA(x) (the Jacobian
matrix of A at x) has all its eigenvalues with modulus less than one. Then A is a
Picard function.

Belitskii-Lyubich conjecture (see [50]). Let X be a Banach space, Ω ⊂ X
an open subset and A : Ω → X be a compact and continuously differentiable in Ω.
Suppose D is a nonempty bounded convex open subset of X such that A(D) ⊂ D ⊂ Ω
and sup

x∈D

(A′(x)) < 1 (r stand for the spectral radius). Then the operator A : D → D

is a Picard operator.
Definition 2.3 ([36], [37], [47]). If A is WPO, then we consider the operator A∞

defined by
A∞ : X → X, A∞(x) := lim

n→∞
An(x).

We remark that A∞(X) = FA and ωA(x) = {A∞(x)} (see [33], [34]).
Definition 2.4 (see [47], [48]). Let A be an WPO and c > 0. The operator A is

c-WPO iff
d(x,A∞(x)) ≤ cd(x,A(x), ∀ x ∈ X.

Example 2.1. Let (X, d) be a complete metric space and A : X → X an a-
contraction. Then the operator A is c-WPO with c = (1− a)−1.

Example 2.2. Let (X, d) be a complete metric space and A : X → X. We
suppose that there exists a ∈ [0, 1[ such that

d(A2(x), A(x)) ≤ ad(x,A(x), ∀ x ∈ X.

Then A is c-WPO with c = (1− a)−1.
Example 2.3 (A generic example of WPO). Let (Xi, di), i ∈ I a family of metric

space, Ai : Xi → Xi, a family of POs and x∗i the unique fixed point of Ai. Let
X :=

⋃

i∈I

Xi be the disjoint union of the family (Xi)i∈I . Let

d : X ×X → R+, d(x, y) :=
{

di(x, y) if x, y ∈ Xi, i ∈ I
di(x, x∗i ) + dj(y, x∗j ) + 1, if i 6= j, x ∈ Xi, y ∈ Xj
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a metric on X. Then (see [37]) the operator A is a WPO. Moreover we have the
following characterization of the WPOs.

Theorem 2.1 ([37]). Let (X, d) be a metric space and A : X → X an operator.
The operator A is WPO (c-WPO) if and only if there exists a partition of X,

X =
⋃

λ∈Λ

Xλ

such that
(a) Xλ ∈ I(A), λ ∈ Λ;
(b) A|Xλ : Xλ → Xλ is a Picard (c-Picard) operator, for all λ ∈ Λ.
Remark 2.6. It is clear that
(i) cardFA = cardΛ;
(ii) if Λ1 ⊂ Λ, then

card

(
FA ∩

( ⋃

λ∈Λ1

Xλ

))
= cardΛ1.

For the class of c-WPOs we have the following data dependence result
Theorem 2.2 ([48]). Let (X, d) be a metric space and Ai : X → X, i = 1, 2. We

suppose that
(i) the operator Ai is ci −WPO, i = 1, 2;
(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, ∀ x ∈ X.

Then
H(FA1 , FA2) ≤ η max(c1, c2).

Here H stands for Hausdorff-Pompeiu functional.

3 WPOs on ordered metric spaces

Let X be a nonempty set, d a metric on X, and ≤ an ordered relation on X. If ≤, as
a subset of X ×X, is closed, then by definition (X, d,≤) is an ordered metric space.
We have

Lemma 3.1 ([33], [47]). Let (X, d,≤) be an ordered metric space and A : X → X
an operator such that:

(i) A is monotone increasing;
(ii) A is WPO.
Then the operator A∞ is monotone increasing.
Lemma 3.2 (abstract comparison lemma), Let (X, d,≤) be an ordered metric

space and A,B, C : X → X be such that:
(i) A ≤ B ≤ C;
(ii) the operators A,B,C are WPOs;
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(iii) the operator B is monotone increasing.
Then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

Remark 3.1. Let A,B,C as in the Lemma 3.2. Moreover, we suppose that
FB = {x∗B}, i.e., B is a Picard operator. Then we have

A∞(x) ≤ x∗B ≤ C∞(x), ∀ x ∈ X.

But A∞(X) = FA, C∞(X) = FC . Thus we have

FA ≤ x∗B ≤ FC .

Lemma 3.3 (Abstract Gronwall lemma; [38]-[40], [45], [46], [34]). Let (X, d,≤)
be an ordered metric space and A : X → X an operator. We suppose that:

(i) A is Picard operator;
(ii) A is monotone increasing.
If we denote by x∗A, the unique fixed point of A, then
(a) x ≤ A(x) ⇒ x ≤ x∗A;
(b) x ≥ A(x) ⇒ x ≥ x∗A.
Let

(UF )A := {x ∈ X| A(x) ≤ x}
and

(LF )A := {x ∈ X| A(x) ≥ x}.
It is clear that if the operator A is monotone increasing, then ([14])

(UF )A ∈ I(A) and (LF )A ∈ I(A).

From Lemma 3.3 we have
Lemma 3.4. Let (X, d,≤) be an ordered metric space and A : X → X an

increasing operator. If

A|(UF )A∪(LF )A
is Picard operator,

then
(LF )A ≤ x∗A ≤ (UF )A.

Remark 3.2. Lemma 3.3 generalizes Proposition 7.15 from [63] and Lemma 1
from [64] where on considered the case of linear bounded operator in ordered Banach
spaces. For other generalizations of Gronwall lemma see [3], [5], [8], [9], [11], [12],
[15]-[20], [22]-[25], [29], [40], [49], [52], [53], [57], [60], [62].

Lemma 3.5 (see [47], [45], [34]). Let (X, d,≤) be an ordered metric space, A :
X → X an operator and x, y ∈ X such that

x < y, x ≤ A(x), y ≥ A(y).



Weakly Picard operators and applications 45

We suppose that
(i) A is WPO;
(ii) A is monotone increasing.
Then
(a) x ≤ A∞(x) ≤ A∞(y) ≤ y;
(b) A∞(x) is the minimal fixed point of A in [x, y] and A∞(y) is the maximal fixed

point of A in [x, y].
For some results related to this lemma see [2], [9], [19], [20], [22], [49].

4 Fiber WPOs problem

Let (X, d) and (Y, ρ) be two metric spaces. Let A : X × Y → X × Y be such that
A(x, y) = (B(x), C(x, y)). We suppose that

(i) B is a PO (WPO);
(ii) C(x, ·) is a PO (WPO), for all x ∈ X.
Is the operator A a Picard operator?
We have (see [41]-[45])
Theorem 4.1. Let (X, d) and (Y, ρ) be two metric space and A = (B, C) a

triangular operator. We suppose that
(i) (Y, ρ) is a complete metric space;
(ii) the operator B : X → X is WPO;
(iii) there exists a ∈ [0, 1[ such that C(x, ·) is an a-contraction, for all x ∈ X;
(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.
Then the operator A is WPO. If B is PO, then A is PO.
For other results for the fiber WPOs problem see [21], [4], [28], [54], [56].
In what follow we shall give some applications of these abstract results.

5 The Cauchy problem

Let X be an ordered Banach space and f ∈ C([a, b] × X,X). Then the following
problems are equivalent

x′ = f(t, x), t ∈ [a, b], x ∈ C1([a, b], X), (5.1)

and

x(t) = x(a) +
∫ t

a

f(s, x(s))ds, t ∈ [a, b], x ∈ C([a, b], X). (5.2)

Consider the operator

Af : C([a, b], X) → C([a, b], X)

defined by

Af (x)(t) := x(a) +
∫ t

a

f(s, x(s))ds.
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Let λ ∈ X and Xλ := {x ∈ C([a, b], X)| x(a) = λ}. Then

C([a, b], X) =
⋃

λ∈X

Xλ

is a partition of C([a, b], X) and Xλ ∈ I(Af ), for all λ ∈ X.
We have
Theorem 5.1. We suppose that
(i) there exists l > 0 such that

‖f(t, u)− f(t, v)‖ ≤ l‖u− v‖, ∀ t ∈ [a, b], u, v ∈ X;

(ii) f(t, ·) is monotone increasing for all t ∈ [a, b].
Let x, y ∈ C1([a, b], X) be two solutions of the equation (5.1). If x(a) ≤ y(a), then

x ≤ y.
Proof. From (i) we have that the operator

Af |Xλ
: Xλ → Xλ

is a PO, for all λ ∈ X (see [3], [14], [39]). So the operator Af is WPO.
From the condition (ii), the operator Af is monotone increasing. If u ∈ X, then

denote by ũ the constant operator

ũ : C([a, b], X) → C([a, b], X)

defined by
ũ(t) = u, ∀ t ∈ [a, b].

It is clear that
x̃(a) ∈ Xx(a) and ỹ(a) ∈ Xy(a).

By Lemma 3.1 we have that

x(a) ≤ y(a) ⇒ A∞f (x̃(a)) ≤ A∞f (ỹ(a)).

But x = A∞f (x̃(a)) and y = A∞f (ỹ(a)). So, x ≤ y.
Theorem 5.2. Consider the following differential equations

x′ = fi(t, x), t ∈ [a, b], i = 1, 2, 3. (i)

We suppose that
(i) fi ∈ C([a, b]×X, X), i = 1, 2, 3 and f1 ≤ f2 ≤ f3;
(ii) there exists li > 0 such that

‖fi(t, u)− fi(t, v)‖ ≤ li‖u− v‖, ∀ t ∈ [a, b], u, v ∈ X, i = 1, 2, 3;

(iii) f2(t, ·) is monotone increasing.
Let xi be a solution of the equation (i), i = 1, 2, 3. If x1(a) ≤ x2(a) ≤ x3(a), then

x1 ≤ x2 ≤ x3.
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Proof. We consider the operator Afi , i = 1, 2, 3 (see the proof of the Theorem
5.1). These operator are WPOs. Condition (iii) implies that the operator Af2 is
monotone increasing. Consider the partition of C([a, b], X) as in the proof of the
Theorem 5.1. We remark that

xi ∈ X
x̃i(a)

, i = 1, 2, 3.

So,
xi = A∞fi

(x̃i(a)).

Now the proof follows from the Lemma 3.2.
Remark 5.1. For other proofs of the above results see [16], [60], [2].
Remark 5.2. Similar results in the case of Carathéodory solution can be given.
Remark 5.3. Let f be as in the Theorem 5.1. Let c ≤ a, g ∈ C([a, b], [c, b])

such that g(t) ≤ t, for all t ∈ [a, b]. Consider the following differential equation with
deviating argument

x′(t) = f(t, x(g(t))), t ∈ [a, b]. (5.3)

By definition a function

x ∈ C([c, b], X) ∩ C1([a, b], X)

is a solution of (5.3) if it satisfies the relation (5.3).
By a similar technique as in the case of the equation (5.1) we have
Theorem 5.3. Let x, y ∈ C([c, b], X) ∩C1([a, b], X) be two solutions of the equa-

tion (5.3). If x(t) ≤ y(t) for all t ∈ [c, a], then x ≤ y.
Theorem 5.4. Let fi be as in the Theorem 5.2, and g as in the Theorem 5.3.

Let xi be a solution of the equation

x′i(t) = fi(t, xi(g(t))), t ∈ [a, b], i = 1, 2, 3.

If
x1(t) ≤ x2(t) ≤ x3(t), ∀ t ∈ [c, a],

then
x1 ≤ x2 ≤ x3.

Remark 5.4. From the abstract Gronwall lemma we have
Theorem 5.5. Let f and g be as in the Theorem 5.3. Let x be a solution of the

equation (5.3) and y a solution of the inequality

y′(t) ≤ f(t, y(g(t))), ∀ t ∈ [a, b].

Then
y|[c,a] ≤ x|[c,a] ⇒ y ≤ x.
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6 Boundary value problem

Let f ∈ C([a, b] × R). Then the following problems are equivalent (see [7], [18],
[31], [39])

−x′′ = f(t, x), t ∈ [a, b]; x ∈ C2[a, b] (6.1)

and

x(t) =
t− a

b− a
x(b)+

b− t

b− a
x(a)+

∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b], x ∈ C[a, b]. (6.2)

Here G stands for the Green functions.
Consider the operator Af : C[a, b] → C[a, b], Af (x)(t) := second part of the

integral equation (6.2).
Let λ, µ ∈ R and Xλ,µ := {x ∈ C[a, b]| x(a) = λ, x(b) = µ}. Then

C[a, b] =
⋃

λ,µ

Xλ,µ

is a partition of C[a, b] and Xλ,µ ∈ I(Af ), for all λ, µ ∈ R.
We have
Theorem 6.1. We suppose that
(i) there exists l > 0 such that

|f(t, u)− f(t, v)| ≤ l|u− v|, ∀ t ∈ [a, b], u, v ∈ R;

(ii) l

∫ b

a

G(t, s)ds ≤ q < 1, ∀ t ∈ [a, b];

(iii) f(t, ·) is monotone increasing for all t ∈ [a, b].
Let x, y ∈ C2[a, b] be two solution of the equation (6.1). If x(a) ≤ y(a), x(b) ≤

y(b), then x ≤ y.
Proof. From the conditions (i) and (ii) the operator

Af |Xλ,µ
: Xλ,µ → Xλ,µ

is a PO, for all λ, µ ∈ R. So the operator Af is WPO.
From the condition (iii), the operator Af is monotone increasing.
For x ∈ C[a, b] we denote by x̃ the function defined by

x̃(t) =
b− t

b− a
x(a) +

t− a

b− a
x(b), t ∈ [a, b].

It is clear that x̃ ∈ Xx(a),x(b).
By Lemma 3.1 we have that

x(a) ≤ y(a), x(b) ≤ y(b) ⇒ A∞f (x̃) ≤ A∞f (ỹ).

But x = A∞f (x̃) and y = A∞f (ỹ).
So, x ≤ y.
Theorem 6.2. Let fi ∈ C([a, b] × R) satisfy the condition (i) and (ii) in the

Theorem 6.1. We suppose that
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• f2(t, ·) is monotone increasing;

• f1 ≤ f2 ≤ f3.

Let xi be a solution of the equation

−x′′ = fi(t, x), t ∈ [a, b]; i = 1, 2, 3.

If
x1(a) ≤ x2(a) ≤ x3(a), x1(b) ≤ x2(b) ≤ x3(b),

then
x1 ≤ x2 ≤ x3.

Proof. The proof follows from Lemma 3.2.
Theorem 6.3. Let f be as in the Theorem 6.1. Let x be a solution of the equation

(6.1) and y a solution of the inequality

−y′′ ≤ f(t, y).

Then
y(a) ≤ x(a), y(b) ≤ x(b) ⇒ y ≤ x.

Proof. The proof follows from Lemma 3.3.
Remark 6.1. In the case of the Dirichlet problem (see [15])

−∆u = f(x, u), f ∈ C(Ω×R)

u|∂Ω = ϕ, ϕ ∈ C(∂Ω)

the corresponding WPO is the following

Af (u)(x) :=
∫

Ω

G(x, s)f(s, u(s))ds +
∫

∂Ω

∂G(x, s)
∂ns

u(s)dσs.

Remark 6.2. In the case of the Darboux problem (see [26])

∂2u

∂x∂y
= f

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
, 0 < x < a, 0 < y < b

{
u(x, 0) = ϕ(x), x ∈ [0, a],
u(0, y) = ψ(y), y ∈ [0, b]

(f ∈ C([0, a] × [0, b] × R3), f(x, y, ·, ·, ·) ∈ Lip, ϕ ∈ C[0, a], ψ ∈ C[0, b]) the corre-
sponding WPO is

A(u, v, w) = (A1(u, v, w), A2(u, v, w), A3(u, v, w)),
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where

A1(u, v, w)(x, y) := u(x, 0) + u(0, y) +
∫ x

0

∫ y

0

f(s, t, u(s, t), v(s, t), w(s, t))dsdt,

A2(u, v, w)(x, y) := v(x, 0) +
∫ y

0

f(x, t, u(x, t), v(x, t), w(x, t))dt,

A3(u, v, w)(x, y) := w(0, y) +
∫ x

0

f(s, y, u(s, y), v(s, y), w(s, y))ds.

7 Integral equations

Some applications of WPOs technique to integral equations are given in [40], [43]-[46],
[48]-[50], [30]. In what follow we consider the integral equation

u(x) = h(x, u(a)) +
∫ x1

a1

. . .

∫ xm

am

K(x, s, u(s))ds, x ∈
i=m∏

i=1

[ai, bi]. (8.1)

We denote D := [a1, b1]× · · · × [am, bm]. We have
Theorem 8.1. We suppose that
(i) h ∈ C(D ×R) and K ∈ C(D ×D ×R);
(ii) h(a, α) = α, for all α ∈ R;
(iii) h(x, ·) and K(x, s, ·) are monotone increasing for all x, s ∈ D;
(iv) there exists LK > 0 such that

|K(x, s, u1)−K(x, s, u2)| ≤ LK |u1 − u2|,
for all x, s ∈ D and u1, u2 ∈ R.

In these condition the equation (8.1) has in C(D) an infinity of solutions. More-
over if u and v are two solutions of the equation then

u(a) ≤ v(a) ⇒ u ≤ v.

Proof. Consider the operator Ah,K : C(D) → C(D), Ah,K(u)(x) := second part
of (8.1).

Let λ ∈ R and Xλ := {u ∈ C(D)| u(a) = λ}. Then

C(D) =
⋃

λ∈R

Xλ

is a partition of C[a, b] and Xλ ∈ I(A), for all λ ∈ R. From the condition (iv), the
operator

Ah,K |Xλ
: Xλ → Xλ

is a PO, for all λ ∈ R. So the operator Ah,K is WPO. From the condition (iii), the
operator Ah,K is monotone increasing.
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By Lemma 3.1 we have that

u(a) ≤ v(a) ⇒ A∞h,K(ũ(a)) ≤ A∞h,K(ṽ(a)).

But
u = A∞h,K(ũ(a) and v = A∞h,K(ṽ(a)).

So, u ≤ v.
Theorem 8.2. Let hi ∈ C(D×R) and Ki ∈ C(D×D×R), i = 1, 2, 3 satisfy the

conditions (i), (ii) and (iv) in the Theorem 8.1.
We suppose that

• h2(x, ·) and K2(x, s, ·) are monotone increasing, for all x, s ∈ D;

• h1 ≤ h2 ≤ h3 and K1 ≤ K2 ≤ K3.

Let ui be a solution of the equation (8.1) corresponding to hi and Ki.
Then

u1(a) ≤ u2(a) ≤ u3(a) ⇒ u1 ≤ u2 ≤ u3.

Proof. The proof follows from Lemma 3.2.
Theorem 8.3. Let h and K be as in the Theorem 8.1. Let u be a solution of

(8.1) and v a solution of the inequality

v(x) ≤ h(x, v(a)) +
∫ x1

a1

. . .

∫ xm

am

K(x, s, v(s))ds.

Then
v(a) ≤ u(a) ⇒ v ≤ u.

Proof. The proof follows from Lemma 3.3.

8 Difference equations

Let (X, d) be a metric space and f : Xk → X an operator (k ∈ N∗, k ≥ 2). Consider
the following difference equation

xn+k = f(xn, . . . , xn+k−1), n ∈ N, (9.1)

with the initial values x0, x1, . . . , xk−1 ∈ X.
We consider the following operator

Af : Xk → Xk, (u1, . . . , uk) 7→ (u2, . . . , uk, f(u1, . . . , uk)).

We have
Theorem 9.1 (see [46]). The equation (9.1) has a global asymptotic stable equi-

librium iff the operator Af is a Picard operator.
Remark 9.1. From Lemma 3.1, 3.2 and 3.3, and the Theorem 9.1 we have some

Gronwall type lemmas and comparison theorems for the difference equations ([1]).
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9 Smooth dependence of solutions on parameters

The fiber WPOs theorem is very useful for proving solutions of some operatorial
equations to be differentiable with respect to parameters. For example:

• (J. Sotomayor) differentiablity with respect to initial data for the solution of
the Cauchy problem

x′ = f(t, x), x(t0) = x0, f : Ω → Rm, Ω ⊂ Rm+1;

• (I.A. Rus) differentiability with respect to λ for the solution of the integral
equation

x(t) = 1 + λ

∫ 1

t

x(s)x(s− t)ds, y ∈ [0, 1];

• (A. Tămăşan) differentiability with respect to lag function for pantograph equa-
tion

x′(t) = f(t, x(t), x(λt)), t > 0, 0 < λ < 1,

x(0) = 0

• (V. Mureşan) differentiability with respect to a parameter for the solution of a
Volterra-Sobolev integral equation;

• (G. Dezsö) differentiability with respect to a parameter for the solution of
Darboux-Ionescu problem;

• (I.A. Rus) differentiability with respect to a parameter for the solution of the
following integral equation

x(t) =
∫ t

t−τ

f(x, s(s)); λ)ds

modeling population growth in a periodic environment.

10 Open problems

The above considerations give rise to the following open problems.
Problem 11.1. Let (X, d) be a metric space. Which are the conditions on X and

A : X → X such that A is WPO ⇔ A is asymptotically regular?
References: [45], [47], [38], [35], [63].
Problem 11.2a. Let (X, +, R, ‖ · ‖) a Banach space and A ∈ C1(X, X). Are the

following conditions equivalent?
(i) The operator A is WPO.
(ii) The operator A′(x) is WPO, for all x ∈ X.
Problem 11.2b. Let (X, +, R, ‖ · ‖) a Banach space and A ∈ C1(X, X). Are the

following conditions equivalent?
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(i) The operator A is PO.
(ii) The operator A′(x) is PO, for all x ∈ X.
References: [38], [47], [10], [16], [45].
Problem 11.3. Let (X, d) be a complete metric space and A : X → X. Give

some metric conditions on A which imply that A is WPO.
References: [45], [47], [35], [36], [38].
Problem 11.4. Let (X, d) be a metric space and f, g : X → X two weakly Picard

operators. If exists η > 0 such that

d(f(x), g(x)) ≤ η, ∀ x ∈ X,

estimate H(Ff , Fg).
References: [38], [46], [45], [48].
Problem 11.5. Fiber WPOs problem. Let (X, d) and (Y, ρ) be two metric spaces.

Let A : X × Y → X × Y be such that A(x, y) = (B(x), C(x, y)). We suppose that
(i) B is WPO;
(ii) C(x, ·) is WPO, ∀ x ∈ X.
Is the operator A WPO?
References: see §4 of this paper.
Problem 11.6. Let (X, d) be a complete metric space. Let A1, . . . , Am be some

continuous WPOs. These operators generate the following operator (fractal operator!)

TA : Pcp(X) → Pcp(X), Y 7→ A1(Y ) ∪ · · · ∪Am(Y ).

Is the operator
TA : (Pcp(X),H) → (Pcp(X), H)

a WPO?
References: [45], [30].
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