RETRACTION METHODS IN FIXED POINT THEORY

Andrei Horvat-Marc
Babeş-Bolyai University
Cluj-Napoca, Romania

Abstract

To obtain fixed point theorems for nonself-mappings there are two possibilities. One consists in using continuation methods of Leray-Schauder type. Roughly speaking, by means of a continuation theorem we can obtain a solution of a given equation starting from one of the solutions of a more simpler equations (see [21]). The other way makes use of the retraction mapping principle. This technique was presented by I.A. Rus in [29].

In this report we adopt the way of a retraction mapping principle. Our goal is to show that under suitable geometrical conditions, continuation theorems of Leray-Schauder type can be alternatively obtained by means of the retraction mapping principle. We shall consider only the boundary conditions of Leray-Schauder, Browder-Petryshyn and Cramer-Ray and we shall restrict ourselves to the case of Banach spaces and vector lattices.

Keywords: fixed point structures, Hilbert space, retractible mapping
AMS Subject Classification: 47H10, 54H25

1 Fixed point structures

Let X be a nonempty set and $Y \in P(X)$, where $P(X)$ denote the set of all nonempty subset of X. We denote by $M(X)$ the set of all mapping $f: X \rightarrow X$.

Definition 1.1. (see [28]) A triple (X, S, M) is a fixed point structure if
(i) $S \subset P(X)$ is a nonempty subset of $P(X)$;
(ii) $M: P(X) \rightarrow \bigcup_{Y \in P(X)} M(Y), Y \subset M(Y)$ is a mapping such that, if $Z \subset Y$ then

$$
M(Z) \supset\left\{\left.f\right|_{Z}: f \in M(Y) \text { and } f(Z) \subset Z\right\}
$$

(iii) Every $Y \in S$ has the fixed point property with respect to $M(Y)$.

Example 1.1. Let X is a nonempty set, $S=\{\{x\}: x \in X\}$ and $M(Y)=M(Y)$.
Example 1.2. (Knaster, Tarski, Birkhoff) (X, \leq) is a complete lattice, $S=\{Y \in$ $P(X): \quad(Y, \leq)$ is a complete sublattice of $X\}$ and $M(Y)=\{f: Y \rightarrow Y: f$ is order-preserving mapping\}.

Example 1.3. (Banach, Caccioppoli) (X, d) is a complete metric space, $S=$ $P_{d}(X)$ and $M(Y)=\{f: Y \rightarrow Y: f$ is a contraction $\}$.

Example 1.4. (Nemytzki, Edelstein) (X, d) is a complete metric space, $S=$ $P_{c p}(X)$ and $M(Y)=\{f: Y \rightarrow Y: f$ is a contractive mapping $\}$.

Example 1.5. (Schauder) X is a Banach space, $S=P_{c p, c v}(X)$ and $M(Y)=$ $C(Y, Y)$.

Example 1.6. (Dotson) X is a Banach space, $S=P_{c p, c l}(X)$ and $M(Y)=\{f$: $Y \rightarrow Y: f$ is a nonexpansive mapping $\}$.

Example 1.7. (Browder) X is a Hilber space, $S=P_{b, c l, c v}(X)$ and $M(Y)=\{f$: $Y \rightarrow Y: f$ is a nonexpansive mapping $\}$.

Example 1.8. (Tychonov) X is a Banach space, $S=P_{w c p, c v}(X)$ and $M(Y)=$ $\{f: Y \rightarrow Y: f$ is weakly continuous $\}$.

Example 1.9. (Schauder) X is a Banach space, $S=P_{b, c l, c v}(X)$ and $M(Y)=$ $\{f: Y \rightarrow Y: f$ is completely continuous $\}$.

Example 1.10. (Tychonov) X is a locally convex space, $S=P_{c p, c v}(X)$ and $M(Y)=C(Y, Y)$.

If more generally we let X be a Banach space, $S=P_{c l, c v}(X)$ and $M(Y)=\{f$: $Y \rightarrow Y: f$ is continuous and there is $x_{0} \in Y$ such that for any $C \in P_{b}(Y)$ relation $\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} Y f(C)\right\}$ implies \bar{C} compact $\}$, then the triple (X, S, M) is a fixed point structure in a generalized sense, when (ii) does not hold (see [17]).

2 The retraction notion

Let X be a nonempty set and $Y \subset X$ a nonempty subset of X.
Definition 2.1. ([9]) A mapping $\rho: X \rightarrow Y$ is called a retraction of X onto Y if and only if $\left.\rho\right|_{Y}=1_{Y}$, i.e. $\rho(x)=x$ for any $x \in Y$.

If X has a certain structure, the mapping ρ must be compatible with that structure. For example a retraction of a topological space will be assumed to be continuous.

2.1 An example of retraction in Hilbert spaces

In this paragraph we consider H be a Hilbert space and $K \subset H$ a nonempty, convex and closed subset, i.e. $K \in P_{c v, c l}(X)$. We will show that $P: H \rightarrow K$ the projection mapping of H onto K, is a retraction. At first we present some additional results.

Theorem 2.2.1. Let $K \subset H$ be a nonempty, convex and closed subset of H, and $u \in H$. Let

$$
d=\inf _{v \in K}\|u-v\|=d(u, K)
$$

Then there exists a unique element $w \in K$ with $d=\|u-w\|=d(u, K)$.
Proof. For any $v \in K$, we have $\|u-v\| \geq 0$, so for a given $u \in H$, the set of real numbers $\{\|u-v\|: v \in H\}$ is lower bounded by zero. So $d=\inf _{v \in K}\|u-v\|=d(u, K)$.

Let $\left(v_{n}\right)_{n \geq 1} \subset K$ be a sequences of points from H such that $\left\|u-v_{n}\right\| \rightarrow d$, as $n \rightarrow \infty$. Since K is convex and $v_{n}, v_{m} \in K$ for any $m, n \in N$, we have $\lambda v_{m}+(1-$ ג) $v_{n} \in K$ for all $m, n \in N$ and $0 \leq \lambda \leq 1$. Put $\lambda=\frac{1}{2}$. Then $\frac{v_{n}+v_{m}}{2} \in K$, so $\left\|u-\frac{v_{n}+v_{m}}{2}\right\| \geq d$. Recall the parallelogram's equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \text { for all } x, y \in H .
$$

We consider $x=u-v_{m}$ and $y=u-v_{n}$. Hence

$$
\left\|v_{n}-v_{m}\right\|^{2}=2\left(\left\|u-v_{m}\right\|^{2}+\left\|u-v_{n}\right\|^{2}\right)-4\left\|u-\frac{v_{m}+v_{n}}{2}\right\|^{2}
$$

Then

$$
\left\|v_{n}-v_{m}\right\|^{2} \leq 2\left(\left\|u-v_{m}\right\|^{2}+\left\|u-v_{n}\right\|^{2}\right)-4 d^{2}
$$

When $m, n \rightarrow \infty$, we obtain $\left\|v_{n}-v_{m}\right\| \rightarrow 0$. This implies that the sequence $\left(v_{n}\right)_{n \geq 1} \subset$ K is fundamental, so it has a limit w. Since $\left(v_{n}\right)_{n \geq 1} \subset K$ and K is closed, it follows that $w=\lim _{n \rightarrow \infty} v_{n} \in K$. Hence $\left\|u-v_{n}\right\| \rightarrow\|u-w\|=d$ as $n \rightarrow \infty$.

In this way, we have shown that there exists $w \in K$ such that

$$
\|u-w\|=d=\inf _{v \in K}\|u-v\|
$$

For the uniqueness, we assume that there exists $q \in K, q \neq w$ such that $\|u-w\|=$ $d=\|u-q\|$. Since K is convex, we have $\frac{q+w}{2} \in K$, hence
$d=\inf _{v \in K}\|u-v\| \leq\left\|u+\frac{q+w}{2}\right\|=\left\|\frac{1}{2}(u-w)+\frac{1}{2}(u-q)\right\| \leq \frac{1}{2}\|u-w\|+\frac{1}{2}\|u-q\|=d$
and

$$
d=\left\|u-\frac{q+w}{2}\right\| .
$$

From the parallelogram's equality, for $x=u-w$ and $y=u-q$ we obtain

$$
\|w-q\|^{2}=2\left(\|u-w\|^{2}+\|u-q\|^{2}\right)-4\left\|u-\frac{w+q}{2}\right\|^{2}=2\left(d^{2}+d^{2}\right)-4 d^{2}=0
$$

So $\|w-q\|=0$, which is equivalent to $w=q$.
Now we formulate
Definition 2.2.1. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. Let $P: H \rightarrow K$ be the mapping giving by $P(u)=w$, where $w \in K$ is such as

$$
\|u-w\|=d=\inf _{v \in K}\|u-v\|
$$

The mapping P is called the metric projection of H onto K.
We have the following results (see [12]).
Theorem 2.2.2. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. The following statements are equivalent:
(i) $w \in K,\|u-w\| \leq\|u-v\|$ for every $v \in K$;
(ii) $w \in K, \operatorname{Re}(u-w, v-w) \leq 0$ for every $v \in K$;
(iii) $w \in K$, $\operatorname{Re}(u-v, w-v) \geq 0$ for every $v \in K$.

Theorem 2.2.3. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. The metric projection of X onto K is a nonexpansive mapping, i.e.

$$
\|P(u)-P(v)\| \leq\|u-v\|, \forall u, v \in H
$$

A consequence of this theorem is the continuity of P. Indeed, for any $u \in H$ and any sequence $\left(u_{n}\right)_{n \geq 1} \subset H$ which is norm convergent at u, we have $\left\|P(u)-P\left(u_{n}\right)\right\| \leq$ $\left\|u-u_{n}\right\|$. Since $\left\|u_{n}-u\right\| t o 0$, as $n \rightarrow \infty$, it follows that

$$
\left\|P\left(u_{n}\right)-P(u)\right\| \rightarrow 0, \text { as } n \rightarrow \infty
$$

i.e. P is continuous.

Thus we may conclude that the mapping given by Definition 3.2.1 is a topological retraction of H onto K.

Remark 2.2.1. For the uniqueness of the element $w \in K$ satisfying $d=\|u-w\|=$ $d(u, K)$ the parallelogram's equality is an important tool. This is in connexion with the structure of Hilbert space. Thus, Definition 3.2.1 cannot be given for an arbitrary Banach space. However, if K is a nonempty, closed, convex set of an uniformly convex Banach space the metric projection P is univoque and continuous (see [23]).

Definition 2.2.2. Let X be a space with the norm $\|\cdot\|$ and $Y \subset X$ a closed subspace of X. A linear continuous mapping $P: X \rightarrow Y$ is called projection mapping of X onto Y if it is a surjection and $P(y)=y$ for any $y \in Y$.

Definition 2.2.3. A closed subspace Y of a Banach space X is called complementabely if there exists a projection of X onto Y.

Theorem 2.2.4. (see [16]) If any closed subspace of a Banach space X is complementabely, then X is isomorph with a Hilbert space.

Examples.

c_{0} is not complementabely in l^{∞}
$C[0,1]$ is not complementabely in $L^{\infty}(0,1)$.

2.2 An example of retraction onto Banach spaces

Let X be a Banach space, $U \subset X$ a nonempty, convex and closed subset of X and $u_{0} \in \operatorname{int} U$.

For every pair $u, v \in X$, the set $[u, v]=\{w \in X: w=(1-\lambda) u+\lambda v, \lambda \in[0,1]\}$ is called the segment between u and v. For any $u \in X$ we make the notation $Z(u)=$ $\left[u, u_{0}\right] \cap \partial U$. Now, we define the mapping $\varphi: X \rightarrow \mathbb{R}$ by

$$
\varphi(u)=\left\{\begin{array}{lll}
\left\|u-u_{0}\right\| & \text { if } & Z(u)=\emptyset \\
\max _{v \in Z(u)}\left\|v-u_{0}\right\| & \text { if } & Z(u) \neq \emptyset
\end{array}\right.
$$

By means of this mapping we construct the operator $\rho: X \rightarrow \bar{U}$, where

$$
\begin{equation*}
\rho(u)=\frac{\varphi(u)}{\left\|u-u_{0}\right\|} u+\left(1+\frac{\varphi(u)}{\left\|u-u_{0}\right\|}\right) u_{0} \tag{2.3.1}
\end{equation*}
$$

This mapping is a retraction. Indeed, if $u \in \operatorname{int} U$ then $Z(u)=\emptyset$, so $\varphi(u)=$ $\left\|u-u_{0}\right\|$ and this implies $\rho(u)=u$. If $u \in \partial U$ then $\varphi(u)=\left\|u-u_{0}\right\|$ and again $\rho(u)=u$. Hence $\rho(u)=u$ for any $u \in \bar{U}$. If $u \notin \bar{U}$ then $Z(u) \neq \emptyset$ and $\varphi(u)<\left\|u-u_{0}\right\|$.

So $\frac{\varphi(u)}{\left\|u-u_{0}\right\|} \in(0,1)$ and consequently $\rho(u) \in\left[u, u_{0}\right]$, i.e. the image of any point $u \in X \backslash \bar{U}$ by ρ lies on the segment $\left[u, u_{0}\right]$.

Moreover, we have

$$
\begin{gathered}
\left\|\rho(u)-u_{0}\right\|=\left\|\frac{\varphi(u)}{\left\|u-u_{0}\right\|} u+\left(1-\frac{\varphi(u)}{\left\|u-u_{0}\right\|}\right) u_{0}-u_{0}\right\|= \\
=\left\|\frac{\varphi(u)}{\left\|u-u_{0}\right\|} u+-\frac{\varphi(u)}{\left\|u-u_{0}\right\|} u_{0}\right\|=\varphi(u)
\end{gathered}
$$

In conclusion, if $u \in X \backslash \bar{U}$ then $\rho(u)$ is the intersection point of the segment [u, u_{0}] with ∂U, which is the most nearly by u. So ρ is a continuous retraction.

If $U=B\left(u_{0}, r\right)=\left\{u \in X:\left\|u-u_{0}\right\|<r\right\} \subset X$ the mapping $\rho: X \rightarrow \bar{U}$ is giving by

$$
\rho(u)= \begin{cases}u & \text { if } \quad u \in \bar{U} \\ \frac{r}{\left\|u-u_{0}\right\|} u+\left(1-\frac{r}{\left\|u-u_{0}\right\|}\right) u_{0} & \text { if } \quad u \notin \bar{U}\end{cases}
$$

and it is call "the radial retraction".

2.3 An example of retraction onto ordered spaces

Let X be a real vectorial space. X is a vector lattice (ordered space) if X is lattice and
i) for any $z \in X, x \leq y$ then $x+z \leq y+z$
ii) if $x \geq 0$ and $\lambda \geq 0$ then $\lambda x \geq 0$.

In any ordered space X, denote by

$$
[x, y]=\{z \in X: x \leq z \leq y\}
$$

the interval with respect to order (ordered interval).
The set $X_{+}=\{x \in X: x \geq 0\}$ is called the cone of positifs elements of vectorial lattice X.

For every $x \in X$, the element $x_{+}=x \vee 0$ is called the positive part of x and $x_{-}=(-x) \vee 0=(-x)_{+}$the negative part. The element $|x|=x_{+}+x_{-}$means the absolute value of x. For any $x \in X$ we have $x=x_{+}-x_{-}$.

Let $v \in X_{+}$. Demote with $Y=[-v, v]$ and define the application $\varphi: X \rightarrow Y$,

$$
\varphi(u)= \begin{cases}u & \text { if } \quad u \in Y \tag{2.4.1}\\ \sup \left\{\left[0, u_{+}\right] \cap[0, v]\right\}-\sup \left\{\left[0, u_{-}\right] \cap[0, v]\right\} & \text { if } \quad u \notin Y\end{cases}
$$

We make the notations

$$
Y_{+}=[0, v] \quad U_{+}=\left[0, u_{+}\right] \quad \text { and } \quad U_{-}=\left[0, u_{-}\right]
$$

The application φ is a retraction of X onto Y which is compatible with structure of space X, i.e. it is continuous and for every $u_{1}, u_{2} \in X, u_{1} \leq u_{2}$ we have $\varphi\left(u_{1}\right) \leq \varphi\left(u_{2}\right)$.

Indeed, let $u_{1}, u_{2} \in X$ with $u_{1} \leq u_{2}$.

1. Suppose that $-v \leq u_{1} \leq u_{2} \leq v$, i.e. $u_{1}, u_{2} \in Y$. Then $\varphi\left(u_{1}\right)=u_{1} \leq u_{2}=$ $\varphi\left(u_{2}\right)$.
2. If $u_{1} \in Y$ and $u_{2} \notin Y$ the $\varphi\left(u_{1}\right)=u_{1}$ and $\varphi\left(u_{2}\right)=\sup \left\{U_{2+} \cap Y_{+}\right\}-\sup \left\{U_{2-} \cap\right.$ $\left.Y_{+}\right\}$.

From $u_{1} \leq u_{2}$ we have $u_{1+} \leq u_{2+}$ and $u_{2-} \leq u_{1-}$. Since $u_{1} \in Y$ we obtain $u_{1+} \leq v$ and $u_{1-} \leq v$. We have $u_{1+} \leq u_{2+}$ and $u_{1+} \leq v$, hence

$$
u_{1+} \leq \sup \left\{U_{2+} \cap Y_{+}\right\}
$$

From $u_{2-} \leq u_{1-}$ and $u_{1-} \leq v$ results

$$
u_{1-} \geq \sup \left\{U_{2-} \cap Y+\right\}
$$

Then

$$
\varphi\left(u_{1}\right)=u_{1}=u_{1+}-u_{1-} \leq \sup \left\{U_{2+} \cap Y_{+}\right\}-\sup \left\{U_{2-} \cap Y_{+}\right\}=\varphi\left(u_{2}\right)
$$

If $u_{1} \notin Y$ and $u_{2} \in Y$ the proof is similary.
3. If $u_{1} \notin Y$ and $u_{2} \notin Y$ then

$$
\varphi\left(u_{i}\right)=\sup \left\{U_{i+} \cap Y_{+}\right\}-\sup \left\{U_{i-} \cap Y_{+}\right\}, \quad i=\overline{1,2}
$$

Since $u_{1} \leq u_{2}$ we have $u_{1+} \leq u_{2+}$ and $u_{2-} \leq u_{1-}$. Then $U_{1+} \subset U_{2+}$ and $U_{2-} \subset U_{1-}$. Results

$$
\sup \left\{U_{1+} \cap Y_{+}\right\} \leq \sup \left\{U_{2+} \cap Y_{+}\right\}
$$

and

$$
\sup \left\{U_{2-} \cap Y_{+}\right\} \leq \sup \left\{U_{1-} \cap Y_{+}\right\}
$$

Finally, we have

$$
\begin{aligned}
& \varphi\left(u_{1}\right)=\sup \left\{U_{1+} \cap Y_{+}\right\}-\sup \left\{U_{1-} \cap Y_{+}\right\} \leq \\
& \leq \sup \left\{U_{2+} \cap Y_{+}\right\}-\sup \left\{U_{2-} \cap Y_{+}\right\}=\varphi\left(u_{2}\right)
\end{aligned}
$$

In conclusion, for any $u_{1}, u_{2} \in X$ with $u_{1} \leq u_{2}$ we have $\varphi\left(u_{1}\right) \leq \varphi\left(u_{2}\right)$. In other words φ is increasing.

3 Boundary conditions

We recall Leray-Schauder boundary condition and show its equivalence to those of Browder-Petryshyn and Cramer-Ray when the domain is a ball. For all there definitions U is a subset of a Banach space $X, u_{0} \in \operatorname{int} U$ and $T: U \rightarrow X$ is a mapping.

For $r>0$ and $u \in X$ we let $B(u, r)$ be the open ball of X of radius r and center u, i.e.

$$
B(u, r)=\{v \in X:\|u-v\|<r\} .
$$

For every pair $u, v \in X$, the set $[u, v]=\{w \in X: w=(1-\lambda) u+\lambda v, \lambda \in[0,1]\}$ is called the segment between u and v.

We shall assume $u_{0} \in \operatorname{int} U$.
Definition 3.1. (Leray-Schauder, see [15]) Let $u \in \partial U . T$ satisfies the LeraySchauder boundary condition (LSB) at u relative to U if and only if

$$
\begin{equation*}
(1-\lambda) u_{0}+\lambda T(u) \neq u \text { for every } \lambda \in[0,1] . \tag{1}
\end{equation*}
$$

Remark 3.1. The definition has the equivalent form

$$
\begin{equation*}
T(u)-u_{0} \neq k\left(u-u_{0}\right) \text { for } \lambda \in[0,1] . \tag{2}
\end{equation*}
$$

In fact Definition 3.1 says that T satisfies LSB at u if and only if the point u doesn't lie on the segment $\left[u_{0}, T(u)\right]$.

Definition 3.2. (Browder-Petryshyn, see [8]) Let $u \in U$ with $u \neq T(u)$. T satisfies the Browder-Petryshyn condition (BP) at u relative to U if anf only if

$$
\begin{equation*}
B(T(u),\|T(u)-u\|) \cap U \neq \emptyset . \tag{3}
\end{equation*}
$$

Remark 3.2. (i) The relation (3) is equivalent to the existence of an element $v \in U$ such that

$$
\|T(u)-v\|<\|T(u)-u\|
$$

(ii) Obviously, if $T(u) \in U$ or $u \in \operatorname{int} U$, then T satisfies BP at u relative to U.

Definition 3.3. (Cramer-Ray, see [22]) Let $u \in U$ with $u \neq T(u)$. T satisfies the Cramer-Ray condition (CR) at u relative to U if and only if

$$
\begin{equation*}
\liminf _{h \rightarrow 0^{+}} \frac{d((1-h) u+h T(u), U)}{h}<\|u-T(u)\| \tag{4}
\end{equation*}
$$

Lemma 3.1. Let U be convex and $u \in U$ with $u \neq T(u)$. T satisfies $C R$ at u if and only if there exists $v \in U$ and $0<h \leq 1$ such that

$$
\begin{equation*}
\frac{\|(1-h) u+h T(u)-v\|}{h}<\|u-T(u)\| . \tag{5}
\end{equation*}
$$

Proof. \Rightarrow) Obvious.
$\Leftarrow)$ Without loss of generality, choose $0<k<1$ such that

$$
\frac{\|(1-h) u+h T(u)-v\|}{h}<k\|u-T(u)\| .
$$

For each $a \in(0,1)$ let $z(a)=u+a(v-u)$. Since $z(a) \in[u, v]$ and U is convex we have $z(a) \in U$. Now, it suffices to show that for any $a \in(0,1), z(a)$ satisfies

$$
\frac{\|(1-a h) u+a h T(u)-z(a)\|}{a h} \leq k\|u-T(u)\| .
$$

Since

$$
\begin{gathered}
\frac{\|(1-a h) u+a h T(u)-z(a)\|}{a h}=\frac{\|u-a h u+a h T(u)-u-a(v-u)\|}{a h}= \\
=\frac{\|(1-h) u+h T(u)-v\|}{h} \leq k\|u-T(u)\|
\end{gathered}
$$

Thus the lemma is proved.
Remark 3.3. If X is a Hilbert space, with inner product (\cdot, \cdot), it is possible to introduce the Leray-Schauder condition (LS), see [31], in the following way:

Let $u \in U$ with $u \neq T(u)$ and

$$
L S(u, T(u))=\{v \in X: \operatorname{Re}(T(u)-u, v-u)>0\}
$$

The mapping T satisfies (LS) at u relative to U if and only if

$$
\begin{equation*}
L S * u, T(u)) \cap U \neq \emptyset \tag{6}
\end{equation*}
$$

If U is convex and $u \in U$ with $u \neq T(u)$ then (see [31])
T satisfies LS at u if and only if T satisfies BP at u
and
T satisfies LS at u if and only if T satisfies CR at u.
Proposition 3.1. Let X be a Banach space, $U=\bar{B}\left(u_{0}, r\right)$ and $u \in \partial U$ such that $u \neq T(u)$. T satisfies $L S B$ at u if and only if T satisfies BP at u.

Proof. $\Leftarrow)$ Assume that T satisfies BP and we wish T satisfies LSB. We know that

$$
\left\|T(u)-u_{0}\right\| \leq\|T(u)-v\|+\left\|v-u_{0}\right\|
$$

for any $v \in U$. If T satisfies BP at u then conform of remark 3.2 exists $v \in U$ such that

$$
\|T(u)-v\|<\|T(u)-u\|
$$

Since $u \in \partial U$ we have

$$
\left\|u_{0}-v\right\|<\left\|u_{0}-u\right\|=r
$$

So

$$
\left\|T(u)-u_{0}\right\|<\|T(u)-u\|+\left\|u-u_{0}\right\|
$$

In conclusion $u \notin\left[u_{0}, T(u)\right]$, i.e. T satisfies LSB.
\Rightarrow) Assume that T satisfies LSB and we wish T satisfies BP. Without loss of generality we can consider $\left\|u_{0}-T(u)\right\|>r$. Affirm that

$$
v=\frac{r}{\left\|T(u)-u_{0}\right\|} T(u)+\left(1-\frac{r}{\left\|T(u)-u_{0}\right\|}\right) u_{0} \in U \cap B(T(u),\|T(u)-u\|)
$$

Indeed, we have

$$
\left\|v-u_{0}\right\|=\left\|\frac{r}{\left\|T(u)-u_{0}\right\|} T(u)+\left(1-\frac{r}{\left\|T(u)-u_{0}\right\|}\right) u_{0}-u_{0}\right\|=r
$$

hence $v \in U$.
On the other side

$$
\|T(u)-v\|=\left|1-\frac{r}{\left\|T(u)-u_{0}\right\|}\right|\left\|T(u)-u_{0}\right\|=\left\|T(u)-u_{0}\right\|-\left\|v-u_{0}\right\|
$$

Since T satisfies LSB results

$$
\left\|T(u)-u_{0}\right\|<\|T(u)-u\|+\left\|u-u_{0}\right\| .
$$

Then

$$
\|T(u)-v\|<\|T(u)-u\|+\left\|u-u_{0}\right\|-\left\|v-v_{0}\right\|=\|u-T(u)\|
$$

since $\left\|u_{0}-v\right\|=\left\|u_{0}-u\right\|=r$.
Then $\|T(u)-v\|<\|T(u)-u\|$, i.e. $v \in B(T(u),\|T(u)-u\|)$.
If $U \neq \bar{B}\left(u_{0}, r\right)$, the last proposition is not true.
Example 3.1. Let $X=\mathbb{R}^{2}$, with euclidian's norm and

$$
U=\left\{(x, y) \in \mathbb{R}^{2},|x| \leq 1,|y| \leq 1\right\}
$$

i.e. U is the square with vertex $(1,1),(-1,1),(-1,-1),(1,-1)$. Choose $u_{0}=(0,0)$, $u=\left(1, \frac{1}{n}\right)$ with $n>1$ and suppose that exists a mapping $T: U \rightarrow \mathbb{R}^{2}$ such that $T(u)=\left(k, \frac{k}{n}\right)$, for $k>1$. Under of this assumption, we have $T(u)=k u$ for $k>1$, so remark 1.1 said T does not satisfies LSB. Bur for $k>\frac{n+1}{2}, T$ satisfies BP.

Now, we fix the point $v=(1,1)$ and obtain

$$
\|T(u)-v\|^{2}=(k-1)^{2}+\left(\frac{k}{n}-1\right)^{2}=\frac{n^{2}(k-1)^{2}+(k-n)^{2}}{n^{2}}
$$

Moreover

$$
\|T(u)-u\|^{2}=(k-1)^{2}+\left(\frac{k}{n}-\frac{1}{n}\right)^{2}=\frac{\left(n^{2}+1\right)(k-1)^{2}}{n^{2}}
$$

The mapping T satisfies BP is equivalent with

$$
\|T(u)-v\|<\|T(u)-u\|
$$

that is to say

$$
\begin{gathered}
\left(n^{2}+1\right)(k-1)^{2}>n^{2}(k-1)^{2}+(k-n)^{2} \\
(k-1)^{2}>(k-n)^{2} \\
2 k(n-1)>n^{2}-1 \\
k>\frac{n+1}{2}
\end{gathered}
$$

So for $k>\frac{n+1}{2}, T$ satisfies BP, but T not satisfies LSB.

3.1 Conditions of retractibility

In following, we denote by F_{f} the set of fixed point of the mapping f.
Definition 3.2.1. ([9]) A mapping $f: Y \rightarrow X$ is retractible onto Y if there is a retraction $\rho: X \rightarrow Y$ such that $F_{\rho \circ f}=F_{f}$.

Condition (i) $F_{\rho \circ f}=F_{f}$ is equivalent with:
(ii) if $x \in \rho(f(Y) \backslash Y)$, then $f(x) \notin \rho^{-1}(x) \backslash\{x\}$.

Indeed, theorem 1.1 from [7] - the retraction mapping principle - shows that condition (ii) implies (i); now we suppose $F_{\rho \circ f}=F_{f}$ and there exists $x \in \rho(f(Y) \backslash Y)$ such that $f(x) \in \rho^{-1}(x) \backslash\{x\}$. Hence $x \notin F_{f}$, but on the other side $x=\rho(f(x))$, i.e. $x \in F_{\rho \circ f}$. This is a contradiction, so (i) implies (ii). In conclusion Definition 3.2.1 is equivalent with the definition given by Brown (see [7]).

Example 2.1. (Poincaré, Bohl, Leray-Schauder, Rothe, Altman, Furi-Vignoli,...) Let X be a Banach space and $Y=\bar{B}(0, R) \subset X$. If $f: \bar{B}(0, R) \rightarrow X$ is such that $\|x\|=R, f(x)=\lambda x$ implies $\lambda \leq 1$, then f is retractible onto $\bar{B}(0, R)$ with respect to the radial retraction $\rho: X \rightarrow \bar{B}(0, R)$.

Example 2.2. (Altman) Let X be a Banach space and $f: X \rightarrow X$ a norme contraction mapping. Then there exists $R>0$ such that $f: \bar{B}(0, R) \rightarrow X$ is retractible onto $\bar{B}(0, R)$ with respect to the radial retraction.

Example 2.3. (Halpern-Beroman) Let X be a strictly convex normed linear space. Let $Y \subset X$ be a compact convex subset of X and $\rho: X \rightarrow Y$ the metric projection onto Y. If $f: Y \rightarrow X$ is nowhere normal-outward, then f is retractible onto Y with respect to ρ.

Example 2.4. Let X be a set, $Y \subset X$ a subset of X and $\rho: X \rightarrow Y$ a retraction. If $f: Y \rightarrow X$ is such that $x \in Y \backslash F_{f}$ implies $f(x) \in X \backslash \rho^{-1}(x)$, then f is retractible onto Y with respect to ρ.

In this paragraph we will give some theorems with form: if T satisfies a kind of boundary conditions then T is retractible.

Theorem 3.2.1. Let X be a Hilbert space, $U \in P_{c v, c l}(X)$. If the mapping T : $U \rightarrow X$ satisfies $B P$ for any $u \in \partial U$ then T is retractible onto U with respect to the projection mapping of X to U.

Proof. Here $\rho=P$ denote the metric projection. Assume that $F_{\rho \circ f} \neq F_{f}$. Let $u \in F_{P \circ \Gamma} \backslash F_{\Gamma} \neq \emptyset$. Then $u=P(T(u))$ and $u \in \partial U$. This is equivalent with $T(u) \neq u$ and $0<\|u-T(u)\|<\|T(u)-v\|$, for any $v \in U$. Results a contradiction with T satisfies BP condition.

Let X be a Hilbert space, $U \subset X$ convex, $u \in U$ with $u \neq T(u)$. From Remark 3.3 results T satisfies BP at u iff T satisfies CR at u. Then we have

Theorem 3.2.2. Let X be a Hilbert space, $U \in P_{c v, c l}(X)$. If the mapping T : $U \rightarrow X$ satisfies $C R$ for any $u \in \partial U$, then T is retractible onto U with respect to the metric projection of X onto U.

For a Banach space X we will consider the retraction ρ given by relation (2.3.1).
Theorem 3.2.3. Let X be a Banach space, $U \in P_{c v, c l}(X), u_{0} \in \operatorname{int} U$ and the mapping $T: U \rightarrow X$. If T satisfies $L S B$ for any $u \in \partial U$, then T is retractible onto U with respect of the retraction ρ.

Proof. Assume that $F_{\rho \circ f} \neq F_{f}$. Let $u \in F_{P \circ \Gamma} \backslash F_{\Gamma} \neq \emptyset$, i.e. $T(u) \neq u$ and
$u=\rho(T(u)) \in \partial U$. From definition of ρ results that there exists $k \in(0,1)$ such that $u=k T(u)+(1-k) u_{0}$. We get a contraction with T satisfies LSB for $u \in \partial U$. In conclusion T is retractible onto U with respect to ρ.

By Proposition 3.1 if $U=\bar{B}\left(u_{0}, r\right)$, then T satisfies LSB at u is equivalent with T satisfies BP. Then we have

Theorem 3.2.4. Let X be a Banach space and $u_{0} \in X$. If the mapping T : $\bar{B}\left(u_{0}, r\right) \rightarrow X$ satisfies $B P$ for any $u \in \partial \bar{B}\left(u_{0}, r\right)$ then T is retractible onto $\bar{B}\left(u_{0}, r\right)$ with respect to the radial retraction.

Theorem 3.2.5. Let X be a vector lattice (ordered space), $v \in X_{+}$and T : $[-v, v] \rightarrow X$ be an operator.

If $T(u) \notin Y$ implies

$$
\sup \left\{\left[0, T(u)_{+}\right] \cap[0, v]\right\}-\sup \left\{\left[0, T(u)_{-} \cap[0, v]\right\} \neq u\right.
$$

then T is retractible onto $[-v, v]$ with respect of retraction φ given by relation (2.4.1).
Proof. Let $u \in F_{\varphi \circ T} \backslash F_{T} \neq \emptyset$. Then $u=(\varphi \circ T)(u)$ and $u \neq T(u)$. Results $T(u) \notin[-v, v]$ so

$$
u=\varphi(T(u))=\sup \left\{\left[0, T(u)_{+}\right] \cap[0, v]\right\}-\sup \left\{\left[0, T(u)_{-} \cap[0, v]\right\}\right.
$$

We get a contradiction, hence $F_{\varphi \circ \Gamma} \subset F_{\Gamma}$. This implies $F_{\varphi \circ \Gamma}=F_{\Gamma}$, i.e. T is retractible onto $[-v, v]$ with respect to φ.

4 Fixed points of retractible mappings

4.1

Let us starting with
Lemma 4.1. (see [29]) Let (X, S, M) be a fixed point structure. Let $Y \in S$ and $\rho: X \rightarrow Y$ a retraction. Let $f: Y \rightarrow X$ be such that
(i) $\rho \circ f \in M(Y)$
(ii) f is retractible onto Y by ρ.

Then $F_{f} \neq \emptyset$.
Proof. From (i) we obtain $F_{\rho \circ f} \neq \emptyset$ and from (ii) we have $F_{\rho \circ f}=F_{f}$. Results $F_{f} \neq \emptyset$.

4.2

Theorem 4.2.1. Let X be a Hilbert space, $U \in P_{c v, c l, b}(X)$ and $T: U \rightarrow X$ is a nonexpansive mapping. If T satisfies $B P$ for any $u \in \partial U$, then $F_{f} \neq \emptyset$.

Proof. We take (X, S, M) as in example 1.7 and ρ the projection mapping of X onto Y. Since ρ and T is nonexpansive mapping hence (i) from lemma 4.1 is verified. By Theorem 3.2.1 we have T is retractible onto U with respect to the metric projection, then (ii) is satisfied.

Obviously, we have
Theorem 4.2.2. Let X be a Hilbert space, $U \in P_{c v, c l, b}(X)$ and $T: U \rightarrow X$ is a nonexpansive mapping. If T satisfies $C R$ for any $u \in \partial U$, then $F_{f} \neq \emptyset$.

4.3 A Leray-Schauder type theorem

Let X be a Banach space, $Y \in P_{c l, c v}(X)$ and $x_{0} \in \operatorname{int} Y$. A mapping $T: Y \rightarrow Y$ is said to be a Mönch operator if and only if T is continuous and for any $C \in P_{b}(X)$ satisfies $\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\}$ we have that \bar{C} is compact. In what follows we denote by α a measure of noncompactness on X.

Remark 4.3.1. If $T: Y \rightarrow Y$ is α-condensing (i.e. T is continuous and for any $C \in P_{b}(X)$ with $a(C) \neq 0$ we have $\left.\alpha(T(C))<\alpha(C)\right)$ then T is a Mönch operator. Indeed, for $C \in P_{b}(X)$, since $\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\}$ we have $\alpha(\bar{C})<\alpha\left(\bar{c}\left\{\left\{x_{0}\right\} \cup\right.\right.$ $T(C)\})=\alpha(T(C))<\alpha(C)$. Hence $\alpha(C)=0$, that is \bar{C} is compact.

Remark 4.3.2. If $T: Y \rightarrow Y$ is a (α, a)-contraction (i.e. T is continuous and there is $a \in[0,1)$ such that for any $C \in P_{b}(X)$ we have $\left.\alpha(T(C))<a \alpha(C)\right)$ then T is a Mönch operator. Indeed, if $C \in P_{b}(X)$ satisfies $\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\}$, then

$$
\alpha(\bar{C})<\alpha\left(\overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\}\right)=\alpha(T(C))<a \alpha(C) .
$$

Hence $\alpha(C)(1-a)<0$. Thus $a>1$. This is a contradiction with $a \in[0,1)$, so $\alpha(C)=0$.

Remark 4.3.3. If $T: Y \rightarrow Y$ is complet continuous (i.e. T is continuous and for any $C \in P_{b}(X), \overline{T(C)}$ is compact), then T is a Mönch operator. Indeed, if $C \in P_{b}(X)$ and $\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\}$ then

$$
\alpha(\bar{C})<\alpha\left(\overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\}\right)=\alpha(T(C))=0,
$$

i.e. \bar{C} is compact.

Now we present a new proof of a result by Mönch [17], in the particular case that the domain of the operator is convex.

Theorem 4.3.1. Let X be a Banach space, $Y \in P_{c l, c v}(X), x_{0} \in$ int Y and $T: Y \rightarrow X$ a Mönch operator. If T satisfies $L S B$ for any $x \in \partial Y$, then $F_{T} \neq \emptyset$.

Proof. Let $\rho: X \rightarrow Y$ be the retraction given by (2.3.1). Obviously, $\rho \circ T: Y \rightarrow Y$ is continuous, and T is retractible onto Y by ρ. We wish to prove that $\rho \circ T: Y \rightarrow Y$ is a Mönch operator. For this, let $C \in P_{b}(X)$ such that $\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup(\rho \circ T)(C)\right\}$. By the definition of ρ, we have

$$
(\rho \circ T)(C) \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\} .
$$

Then

$$
\bar{C} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup(\rho \circ T)(C)\right\} \subset \overline{c v}\left\{\left\{x_{0}\right\} \cup T(C)\right\} .
$$

Since T is a Mönch operator, we have \bar{C} compact. Hence $\rho \circ T$ is a Mönch operator.
Using Remark 4.3.1, 4.3.2 and 4.3.3 we can derive from Theorem 4.3.1 the following results:

Theorem 4.3.2. Let X be a Banach space, $Y \in P_{c l, c v}(X), x_{0} \in$ int Y. If $T: Y \rightarrow X$ is α-condensing and T satisfies LSB for any $x \in \partial Y$, then $F_{T} \neq \emptyset$.

Theorem 4.3.3. Let X be a Banach space, $Y \in P_{c l, c v}(X), x_{0} \in$ int Y. If $T: Y \rightarrow X$ is a (α, a)-contraction and T satisfies $L S B$ for any $x \in \partial Y$, then $F_{T} \neq \emptyset$.

Theorem 4.3.4. (The classical principle of Leray-Schauder, see [15]) Let X be a Banach space, $Y \in P_{\text {clcv }}(X), x_{0} \in \operatorname{int} Y$. If $T " Y \rightarrow X$ is completely continuous and T satisfies $L S B$ for any $x \in \partial Y$, then $F_{T} \neq \emptyset$.

If $Y=\bar{B}\left(x_{0}, R\right)$, then T satisfies LSB if and only if T satisfies BP. Thus, we have:
Theorem 4.3.5. Let X be a Banach space, and $T: Y=\bar{B}\left(x_{0}, R\right) \rightarrow X$ a Mönch operator. If T satisfies $B P$ for any $x \in \partial Y$, then $F_{T} \neq \emptyset$.

4.4

We have the following result (see [30])
Theorem 4.4.1. Let (X, d, \leq) be an ordered metric space, $f: X \rightarrow X$ an operator and $x, y \in X$ such that $x<y, x \leq f(x)$ and $f(y) \leq y$.

Assume that
(i) f is increasing;
(ii) f is weakly Picard operator.

Then
a) $x \leq f^{\infty}(x) \leq f^{\infty}(y) \leq y$
b) $f^{\infty}(x)$ is the minimal fixed point of f in $F_{f} \cap[x, y]$ and $f^{\infty}(y)$ is the maximal fixed point of f in $F_{f} \cap[x, y]$.

Now we can prove the most important result of this paragraph.
Theorem 4.4.2. Let X be an ordered space, $v \in X$, and let the operator T : $[-v, v] \rightarrow X$ be continuous and increasing. If $T(u) \notin[-v, v]$ implies

$$
\sup \left\{\left[0, T(u)_{+}\right] \cap[0, v]\right\}-\sup \left\{\left[0, T(u)_{-}\right] \cap[0, v]\right\} \neq u
$$

for any $u \in[-v, v]$, then there exists \underline{u} and \bar{u}, the minimal solution, respectively the maximal solution of the equation $T(u)=u$.

Proof. We can define the operator $h:[-v, v] \rightarrow[-v, v], h=\varphi \circ T$ with φ the retraction giving by (2.4.1). We have $F_{h}=F_{T}$ and application h is continuous and increasing. Much more $-v \leq h(v)$ and $h(v) \leq v$. So, hypothesis from theorem 4.4.1 is satisfied. Then

$$
-v \leq h^{\infty}(-v) \leq h^{\infty}(v) \leq v
$$

and $h^{\infty}(-v)=\underline{u}$ is the minimal fixed point of h in $[-v, v], h^{\infty}(v)=\bar{u}$ is the maximal fixed point of h in $[-v, v]$. Since $\underline{u}, \bar{u} \in F_{h}$, hence $\left.\underline{u}, \bar{u} \in F\right) T$ and $\underline{u} \leq u \leq \bar{u}$ for every $y \in F_{T}$.

For a similar result when T is decreasing see [20].

References

[1] M. Altman, A fixed point theorem in Hilbert space, Bull. Acad. Pol. Sc., 5(1957), 19-22.
[2] M. Altman, A fixed point theorem in Banach space, Bull. Acad. Pol. Sc., 5(1957), 89-92.
[3] M.C. Anisiu, On fixed point theorems for mapping defined on spheres in metric spaces, Seminar on Mathematical Analysis, Preprint Nr.7, 1991, 95-100.
[4] M.C. Anisiu, Fixed point theorems for retractibles mappings, Seminar on Functional Analysis and Numerical Methods, Preprint Nr.1, 1989, 1-10.
[5] M.C. Anisiu and V. Anisiu, On some conditions for the existence of the fixed points in Hilbert spaces, Itinerant seminar on functional equations, approximation and convexity, Cluj-Napoca, 1989, 93-100.
[6] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sc., 53(1965), 1272-1276.
[7] F.E. Browder, A new generalization of the Schauder fixed point theorem, Math. Ann., 174(1967), 285-290.
[8] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20(1967), 197-228.
[9] R.F. Brown, Retraction methods in Nielsen fixed point theory, Pacific J. Math., 115(1984), 277-297.
[10] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. A.M.S., 215(1976), 241-251.
[11] J. Danes and J. Kolomy, Fixed point, surjectivity and invariance of domain theorems for weakly continuous mappings, Bull. U.M.I., 13(1975), 369-394.
[12] G. Dinca, Metode variaţionale şi aplicaţii, Ed. Tehnică, Bucureşti, 1980.
[13] J. Dugundji amd A. Granas, Fixed point theory, Warszawa, 1982.
[14] B.R. Halpern and G.M. Bergman, A fixed point theorem for inward and outward maps, TRans. A.M.S., 130(1968), 353-358.
[15] J. Leray and J. Schauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole Norm. Sup (3), 51(1934), 45-78.
[16] I.V. Kantorovich and G.P. Akilov, Analiză funç̧ională, Ed. Stiinţifică şi Pedagogică, Bucureşti, 1986.
[17] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of secondary in Banach spaces, Nonlinear Anal. 4(1980), 985-999.
[18] R. Precup, Nonlinear integral equations (Romanian), Babeş-Bolyai Univ., ClujNapoca, 1993.
[19] R. Precup, Existence theorems for nonlinear problems by continuation methods, Nonlinear Anal. 30(1997), 3313-3322.
[20] R. Precup, Monotone iterations for decreasing maps in ordered Banach spaces, Proc. Sci. Comm. Meeting of "Aurel Vlaicu" Univ., Arad, 1996, 105-108.
[21] D. O'Regan and R. Precup, Theorems of Leray-Schauder type and applications, Gordon and Breach, in press.
[22] W.O. Ray and W.J. Cramer, Some remarks on the Leray-Schauder boundary conditions, Talk delivered by Cramer such that Fixed Point Workshop, Univ. de Sherbrooke, Canada, June 2-20, (1980).
[23] J.R. Rice, Approximation of function, Addison-Wesley, Reading, Mass., 1969.
[24] I. Rival, The problem of fixed points in ordered sets, Ann. Disc. Math. 8(1980).
[25] I.A. Rus, Principii şi aplicaţii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
[26] I.A. Rus, Generalized contractions, Seminar of fixed point theory, Cluj-Napoca, Preprint Nr.3(1983), 1-130.
[27] I.A. Rus, Retraction method in the fixed point theory in ordered structures, Seminar of fixed point structures, Cluj-Napoca, Preprint Nr.3, 1988.
[28] I.A. Rus, Fixed point structures, Mathematica, Cluj-Napoca, 1985.
[29] I.A. Rus, The fixed point structures and the retraction mapping principles, Proceedings of the Conference on Differential Equation, Cluj-Napoca, November 21-23, 1985.
[30] I.A. Rus, Some open problems of fixed point theory, Seminar of fixed point theory, Cluj-Napoca, Preprint Nr.3, 1999, 19-39.
[31] T.E. Jr. Williamson, The Leray-Schauder condition is necessary for the existence of solutions, Vol.886, Lecture Notes in Math., Springer-Verlag, Berlin.

