Seminar on Fixed Point Theory Cluj-Napoca, Volume 1, 2000, 39-54 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

RETRACTION METHODS IN FIXED POINT THEORY

Andrei Horvat-Marc

Babeş-Bolyai University Cluj-Napoca, Romania

Abstract. To obtain fixed point theorems for nonself-mappings there are two possibilities. One consists in using continuation methods of Leray-Schauder type. Roughly speaking, by means of a continuation theorem we can obtain a solution of a given equation starting from one of the solutions of a more simpler equations (see [21]). The other way makes use of the retraction mapping principle. This technique was presented by I.A. Rus in [29].

In this report we adopt the way of a retraction mapping principle. Our goal is to show that under suitable geometrical conditions, continuation theorems of Leray-Schauder type can be alternatively obtained by means of the retraction mapping principle. We shall consider only the boundary conditions of Leray-Schauder, Browder-Petryshyn and Cramer-Ray and we shall restrict ourselves to the case of Banach spaces and vector lattices.

Keywords: fixed point structures, Hilbert space, retractible mapping AMS Subject Classification: 47H10, 54H25

1 Fixed point structures

Let X be a nonempty set and $Y \in P(X)$, where P(X) denote the set of all nonempty subset of X. We denote by M(X) the set of all mapping $f: X \to X$.

Definition 1.1. (see [28]) A triple (X, S, M) is a fixed point structure if

- (i) $S \subset P(X)$ is a nonempty subset of P(X);
- (ii) $M: P(X) \to \bigcup_{Y \in P(X)} M(Y), Y \subset M(Y)$ is a mapping such that, if $Z \subset Y$

then

$$M(Z) \supset \{f|_Z : f \in M(Y) \text{ and } f(Z) \subset Z\};$$

(iii) Every $Y \in S$ has the fixed point property with respect to M(Y).

Example 1.1. Let X is a nonempty set, $S = \{\{x\} : x \in X\}$ and M(Y) = M(Y). **Example 1.2.** (Knaster, Tarski, Birkhoff) (X, \leq) is a complete lattice, $S = \{Y \in$

 $P(X): (Y, \leq)$ is a complete sublattice of X and $M(Y) = \{f : Y \to Y : f \text{ is order-preserving mapping}\}.$

Example 1.3. (Banach, Caccioppoli) (X, d) is a complete metric space, $S = P_d(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is a contraction}\}.$

Example 1.4. (Nemytzki, Edelstein) (X, d) is a complete metric space, $S = P_{cp}(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is a contractive mapping}\}.$

Example 1.5. (Schauder) X is a Banach space, $S = P_{cp,cv}(X)$ and M(Y) = C(Y,Y).

Example 1.6. (Dotson) X is a Banach space, $S = P_{cp,cl}(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is a nonexpansive mapping}\}.$

Example 1.7. (Browder) X is a Hilber space, $S = P_{b,cl,cv}(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is a nonexpansive mapping}\}.$

Example 1.8. (Tychonov) X is a Banach space, $S = P_{wcp,cv}(X)$ and $M(Y) = \{f: Y \to Y : f \text{ is weakly continuous}\}.$

Example 1.9. (Schauder) X is a Banach space, $S = P_{b,cl,cv}(X)$ and $M(Y) = \{f: Y \to Y : f \text{ is completely continuous}\}$.

Example 1.10. (Tychonov) X is a locally convex space, $S = P_{cp,cv}(X)$ and M(Y) = C(Y, Y).

If more generally we let X be a Banach space, $S = P_{cl,cv}(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is continuous and there is } x_0 \in Y \text{ such that for any } C \in P_b(Y) \text{ relation}$ $\overline{C} \subset \overline{cv}\{\{x_0\}Yf(C)\}$ implies \overline{C} compact}, then the triple (X, S, M) is a fixed point structure in a generalized sense, when (ii) does not hold (see [17]).

2 The retraction notion

Let X be a nonempty set and $Y \subset X$ a nonempty subset of X.

Definition 2.1. ([9]) A mapping $\rho : X \to Y$ is called a retraction of X onto Y if and only if $\rho|_Y = 1_Y$, i.e. $\rho(x) = x$ for any $x \in Y$.

If X has a certain structure, the mapping ρ must be compatible with that structure. For example a retraction of a topological space will be assumed to be continuous.

2.1 An example of retraction in Hilbert spaces

In this paragraph we consider H be a Hilbert space and $K \subset H$ a nonempty, convex and closed subset, i.e. $K \in P_{cv,cl}(X)$. We will show that $P: H \to K$ the projection mapping of H onto K, is a retraction. At first we present some additional results.

Theorem 2.2.1. Let $K \subset H$ be a nonempty, convex and closed subset of H, and $u \in H$. Let

$$d = \inf_{v \in K} ||u - v|| = d(u, K).$$

Then there exists a unique element $w \in K$ with d = ||u - w|| = d(u, K).

Proof. For any $v \in K$, we have $||u - v|| \ge 0$, so for a given $u \in H$, the set of real numbers $\{||u - v|| : v \in H\}$ is lower bounded by zero. So $d = \inf_{v \in K} ||u - v|| = d(u, K)$.

Let $(v_n)_{n\geq 1} \subset K$ be a sequences of points from H such that $||u - v_n|| \to d$, as $n \to \infty$. Since K is convex and $v_n, v_m \in K$ for any $m, n \in N$, we have $\lambda v_m + (1 - \lambda)v_n \in K$ for all $m, n \in N$ and $0 \le \lambda \le 1$. Put $\lambda = \frac{1}{2}$. Then $\frac{v_n + v_m}{2} \in K$, so $\left\| u - \frac{v_n + v_m}{2} \right\| \ge d$. Recall the parallelogram's equality

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 for all $x, y \in H$.

We consider $x = u - v_m$ and $y = u - v_n$. Hence

$$\|v_n - v_m\|^2 = 2(\|u - v_m\|^2 + \|u - v_n\|^2) - 4\left\|u - \frac{v_m + v_n}{2}\right\|^2$$

Then

$$||v_n - v_m||^2 \le 2(||u - v_m||^2 + ||u - v_n||^2) - 4d^2.$$

When $m, n \to \infty$, we obtain $||v_n - v_m|| \to 0$. This implies that the sequence $(v_n)_{n \ge 1} \subset$ K is fundamental, so it has a limit w. Since $(v_n)_{n\geq 1} \subset K$ and K is closed, it follows that $w = \lim_{n \to \infty} v_n \in K$. Hence $||u - v_n|| \to ||u - w|| = d$ as $n \to \infty$. In this way, we have shown that there exists $w \in K$ such that

$$||u - w|| = d = \inf_{v \in K} ||u - v||.$$

For the uniqueness, we assume that there exists $q \in K$, $q \neq w$ such that ||u - w|| =d = ||u - q||. Since K is convex, we have $\frac{q + w}{2} \in K$, hence

$$d = \inf_{v \in K} \|u - v\| \le \left\|u + \frac{q + w}{2}\right\| = \left\|\frac{1}{2}(u - w) + \frac{1}{2}(u - q)\right\| \le \frac{1}{2}\|u - w\| + \frac{1}{2}\|u - q\| = d$$

and

$$d = \left\| u - \frac{q+w}{2} \right\|$$

From the parallelogram's equality, for x = u - w and y = u - q we obtain

$$||w - q||^{2} = 2(||u - w||^{2} + ||u - q||^{2}) - 4 \left||u - \frac{w + q}{2}\right||^{2} = 2(d^{2} + d^{2}) - 4d^{2} = 0.$$

So ||w - q|| = 0, which is equivalent to w = q. \Box Now we formulate

Definition 2.2.1. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. Let $P: H \to K$ be the mapping giving by P(u) = w, where $w \in K$ is such as

$$|u - w|| = d = \inf_{v \in K} ||u - v||.$$

The mapping P is called the metric projection of H onto K.

We have the following results (see [12]).

Theorem 2.2.2. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. The following statements are equivalent:

(i) $w \in K$, $||u - w|| \le ||u - v||$ for every $v \in K$;

(ii) $w \in K$, Re $(u - w, v - w) \leq 0$ for every $v \in K$;

(iii) $w \in K$, Re $(u - v, w - v) \ge 0$ for every $v \in K$.

Theorem 2.2.3. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. The metric projection of X onto K is a nonexpansive mapping, i.e.

$$||P(u) - P(v)|| \le ||u - v||, \ \forall \ u, v \in H.$$

A consequence of this theorem is the continuity of P. Indeed, for any $u \in H$ and any sequence $(u_n)_{n\geq 1} \subset H$ which is norm convergent at u, we have $||P(u) - P(u_n)|| \leq ||u - u_n||$. Since $||u_n - u||to0$, as $n \to \infty$, it follows that

$$||P(u_n) - P(u)|| \to 0$$
, as $n \to \infty$,

i.e. P is continuous.

Thus we may conclude that the mapping given by Definition 3.2.1 is a topological retraction of H onto K.

Remark 2.2.1. For the uniqueness of the element $w \in K$ satisfying d = ||u-w|| = d(u, K) the parallelogram's equality is an important tool. This is in connexion with the structure of Hilbert space. Thus, Definition 3.2.1 cannot be given for an arbitrary Banach space. However, if K is a nonempty, closed, convex set of an uniformly convex Banach space the metric projection P is univoque and continuous (see [23]).

Definition 2.2.2. Let X be a space with the norm $\|\cdot\|$ and $Y \subset X$ a closed subspace of X. A linear continuous mapping $P: X \to Y$ is called projection mapping of X onto Y if it is a surjection and P(y) = y for any $y \in Y$.

Definition 2.2.3. A closed subspace Y of a Banach space X is called complementabely if there exists a projection of X onto Y.

Theorem 2.2.4. (see [16]) If any closed subspace of a Banach space X is complementably, then X is isomorph with a Hilbert space.

Examples.

 c_0 is not complementably in l^{∞}

C[0,1] is not complementabely in $L^{\infty}(0,1)$.

2.2 An example of retraction onto Banach spaces

Let X be a Banach space, $U \subset X$ a nonempty, convex and closed subset of X and $u_0 \in intU$.

For every pair $u, v \in X$, the set $[u, v] = \{w \in X : w = (1 - \lambda)u + \lambda v, \lambda \in [0, 1]\}$ is called the segment between u and v. For any $u \in X$ we make the notation $Z(u) = [u, u_0] \cap \partial U$. Now, we define the mapping $\varphi : X \to \mathbb{R}$ by

$$\varphi(u) = \begin{cases} \|u - u_0\| & \text{if } Z(u) = \emptyset\\ \max_{v \in Z(u)} \|v - u_0\| & \text{if } Z(u) \neq \emptyset \end{cases}$$

By means of this mapping we construct the operator $\rho: X \to \overline{U}$, where

(2.3.1)
$$\rho(u) = \frac{\varphi(u)}{\|u - u_0\|} u + \left(1 + \frac{\varphi(u)}{\|u - u_0\|}\right) u_0$$

This mapping is a retraction. Indeed, if $u \in int U$ then $Z(u) = \emptyset$, so $\varphi(u) = ||u - u_0||$ and this implies $\rho(u) = u$. If $u \in \partial U$ then $\varphi(u) = ||u - u_0||$ and again $\rho(u) = u$. Hence $\rho(u) = u$ for any $u \in \overline{U}$. If $u \notin \overline{U}$ then $Z(u) \neq \emptyset$ and $\varphi(u) < ||u - u_0||$.

So $\frac{\varphi(u)}{\|u-u_0\|} \in (0,1)$ and consequently $\rho(u) \in [u, u_0]$, i.e. the image of any point $u \in X \setminus \overline{U}$ by ρ lies on the segment $[u, u_0]$.

Moreover, we have

$$\begin{aligned} \|\rho(u) - u_0\| &= \left\| \frac{\varphi(u)}{\|u - u_0\|} u + \left(1 - \frac{\varphi(u)}{\|u - u_0\|} \right) u_0 - u_0 \right\| = \\ &= \left\| \frac{\varphi(u)}{\|u - u_0\|} u + - \frac{\varphi(u)}{\|u - u_0\|} u_0 \right\| = \varphi(u). \end{aligned}$$

In conclusion, if $u \in X \setminus \overline{U}$ then $\rho(u)$ is the intersection point of the segment $[u, u_0]$ with ∂U , which is the most nearly by u. So ρ is a continuous retraction.

If $U = B(u_0, r) = \{u \in X : ||u - u_0|| < r\} \subset X$ the mapping $\rho : X \to \overline{U}$ is giving by

$$\rho(u) = \begin{cases} u & \text{if } u \in \overline{U} \\ \frac{r}{\|u - u_0\|} u + \left(1 - \frac{r}{\|u - u_0\|}\right) u_0 & \text{if } u \notin \overline{U} \end{cases}$$

and it is call "the radial retraction".

2.3 An example of retraction onto ordered spaces

Let X be a real vectorial space. X is a vector lattice (ordered space) if X is lattice and

i) for any $z \in X$, $x \leq y$ then $x + z \leq y + z$ ii) if $x \geq 0$ and $\lambda \geq 0$ then $\lambda x \geq 0$.

In any ordered space X, denote by

$$[x,y] = \{z \in X : x \le z \le y\}$$

the interval with respect to order (ordered interval).

The set $X_+ = \{x \in X : x \ge 0\}$ is called the cone of positifs elements of vectorial lattice X.

For every $x \in X$, the element $x_+ = x \vee 0$ is called the positive part of x and $x_- = (-x) \vee 0 = (-x)_+$ the negative part. The element $|x| = x_+ + x_-$ means the absolute value of x. For any $x \in X$ we have $x = x_+ - x_-$.

Let $v \in X_+$. Demote with Y = [-v, v] and define the application $\varphi : X \to Y$,

(2.4.1)
$$\varphi(u) = \begin{cases} u & \text{if } u \in Y \\ \sup\{[0, u_+] \cap [0, v]\} - \sup\{[0, u_-] \cap [0, v]\} & \text{if } u \notin Y \end{cases}$$

We make the notations

$$Y_+ = [0, v]$$
 $U_+ = [0, u_+]$ and $U_- = [0, u_-]$

The application φ is a retraction of X onto Y which is compatible with structure of space X, i.e. it is continuous and for every $u_1, u_2 \in X, u_1 \leq u_2$ we have $\varphi(u_1) \leq \varphi(u_2)$.

Andrei Horvat-Marc

Indeed, let $u_1, u_2 \in X$ with $u_1 \leq u_2$.

1. Suppose that $-v \leq u_1 \leq u_2 \leq v$, i.e. $u_1, u_2 \in Y$. Then $\varphi(u_1) = u_1 \leq u_2 = \varphi(u_2)$.

2. If $u_1 \in Y$ and $u_2 \notin Y$ the $\varphi(u_1) = u_1$ and $\varphi(u_2) = \sup\{U_{2+} \cap Y_+\} - \sup\{U_{2-} \cap Y_+\}$.

From $u_1 \leq u_2$ we have $u_{1+} \leq u_{2+}$ and $u_{2-} \leq u_{1-}$. Since $u_1 \in Y$ we obtain $u_{1+} \leq v$ and $u_{1-} \leq v$. We have $u_{1+} \leq u_{2+}$ and $u_{1+} \leq v$, hence

$$u_{1+} \le \sup\{U_{2+} \cap Y_+\}.$$

From $u_{2-} \leq u_{1-}$ and $u_{1-} \leq v$ results

$$u_{1-} \ge \sup\{U_{2-} \cap Y+\}.$$

Then

$$\varphi(u_1) = u_1 = u_{1+} - u_{1-} \le \sup\{U_{2+} \cap Y_+\} - \sup\{U_{2-} \cap Y_+\} = \varphi(u_2).$$

If $u_1 \notin Y$ and $u_2 \in Y$ the proof is similary. 3. If $u_1 \notin Y$ and $u_2 \notin Y$ then

$$\varphi(u_i) = \sup\{U_{i+} \cap Y_+\} - \sup\{U_{i-} \cap Y_+\}, \quad i = \overline{1, 2}$$

Since $u_1 \leq u_2$ we have $u_{1+} \leq u_{2+}$ and $u_{2-} \leq u_{1-}$. Then $U_{1+} \subset U_{2+}$ and $U_{2-} \subset U_{1-}$. Results

$$\sup\{U_{1+} \cap Y_+\} \le \sup\{U_{2+} \cap Y_+\}$$

and

$$\sup\{U_{2-} \cap Y_+\} \le \sup\{U_{1-} \cap Y_+\}.$$

Finally, we have

$$\varphi(u_1) = \sup\{U_{1+} \cap Y_+\} - \sup\{U_{1-} \cap Y_+\} \le$$
$$\le \sup\{U_{2+} \cap Y_+\} - \sup\{U_{2-} \cap Y_+\} = \varphi(u_2).$$

In conclusion, for any $u_1, u_2 \in X$ with $u_1 \leq u_2$ we have $\varphi(u_1) \leq \varphi(u_2)$. In other words φ is increasing.

3 Boundary conditions

We recall Leray-Schauder boundary condition and show its equivalence to those of Browder-Petryshyn and Cramer-Ray when the domain is a ball. For all there definitions U is a subset of a Banach space X, $u_0 \in int U$ and $T: U \to X$ is a mapping.

For r > 0 and $u \in X$ we let B(u, r) be the open ball of X of radius r and center u, i.e.

$$B(u,r) = \{ v \in X : \|u - v\| < r \}.$$

For every pair $u, v \in X$, the set $[u, v] = \{w \in X : w = (1 - \lambda)u + \lambda v, \lambda \in [0, 1]\}$ is called the segment between u and v.

We shall assume $u_0 \in int U$.

Definition 3.1. (Leray-Schauder, see [15]) Let $u \in \partial U$. T satisfies the Leray-Schauder boundary condition (LSB) at u relative to U if and only if

(1)
$$(1-\lambda)u_0 + \lambda T(u) \neq u \text{ for every } \lambda \in [0,1].$$

Remark 3.1. The definition has the equivalent form

(2)
$$T(u) - u_0 \neq k(u - u_0) \text{ for } \lambda \in [0, 1].$$

In fact Definition 3.1 says that T satisfies LSB at u if and only if the point u doesn't lie on the segment $[u_0, T(u)]$.

Definition 3.2. (Browder-Petryshyn, see [8]) Let $u \in U$ with $u \neq T(u)$. T satisfies the Browder-Petryshyn condition (BP) at u relative to U if and only if

(3)
$$B(T(u), ||T(u) - u||) \cap U \neq \emptyset.$$

Remark 3.2. (i) The relation (3) is equivalent to the existence of an element $v \in U$ such that

$$||T(u) - v|| < ||T(u) - u||.$$

(ii) Obviously, if $T(u) \in U$ or $u \in int U$, then T satisfies BP at u relative to U.

Definition 3.3. (Cramer-Ray, see [22]) Let $u \in U$ with $u \neq T(u)$. T satisfies the Cramer-Ray condition (CR) at u relative to U if and only if

(4)
$$\liminf_{h \to 0^+} \frac{d((1-h)u + hT(u), U)}{h} < \|u - T(u)\|.$$

Lemma 3.1. Let U be convex and $u \in U$ with $u \neq T(u)$. T satisfies CR at u if and only if there exists $v \in U$ and $0 < h \leq 1$ such that

(5)
$$\frac{\|(1-h)u + hT(u) - v\|}{h} < \|u - T(u)\|.$$

Proof. \Rightarrow) Obvious.

 \Leftarrow) Without loss of generality, choose 0 < k < 1 such that

$$\frac{\|(1-h)u + hT(u) - v\|}{h} < k\|u - T(u)\|.$$

For each $a \in (0,1)$ let z(a) = u + a(v - u). Since $z(a) \in [u, v]$ and U is convex we have $z(a) \in U$. Now, it suffices to show that for any $a \in (0,1)$, z(a) satisfies

$$\frac{\|(1-ah)u + ahT(u) - z(a)\|}{ah} \le k\|u - T(u)\|.$$

Andrei Horvat-Marc

Since

$$\frac{\|(1-ah)u+ahT(u)-z(a)\|}{ah} = \frac{\|u-ahu+ahT(u)-u-a(v-u)\|}{ah} = \frac{\|(1-h)u+hT(u)-v\|}{b} \le k\|u-T(u)\|.$$

Thus the lemma is proved. \Box

Remark 3.3. If X is a Hilbert space, with inner product (\cdot, \cdot) , it is possible to introduce the Leray-Schauder condition (LS), see [31], in the following way:

Let $u \in U$ with $u \neq T(u)$ and

$$LS(u, T(u)) = \{ v \in X : \text{Re} (T(u) - u, v - u) > 0 \}.$$

The mapping T satisfies (LS) at u relative to U if and only if

$$LS * u, T(u)) \cap U \neq \emptyset.$$

If U is convex and $u \in U$ with $u \neq T(u)$ then (see [31])

T satisfies LS at u if and only if T satisfies BP at u

and

(6)

T satisfies LS at u if and only if T satisfies CR at u.

Proposition 3.1. Let X be a Banach space, $U = \overline{B}(u_0, r)$ and $u \in \partial U$ such that $u \neq T(u)$. T satisfies LSB at u if and only if T satisfies BP at u.

Proof. \Leftarrow) Assume that T satisfies BP and we wish T satisfies LSB. We know that

$$||T(u) - u_0|| \le ||T(u) - v|| + ||v - u_0||$$

for any $v \in U$. If T satisfies BP at u then conform of remark 3.2 exists $v \in U$ such that

$$||T(u) - v|| < ||T(u) - u||$$

Since $u \in \partial U$ we have

$$||u_0 - v|| < ||u_0 - u|| = r.$$

 \mathbf{So}

$$||T(u) - u_0|| < ||T(u) - u|| + ||u - u_0||.$$

In conclusion $u \notin [u_0, T(u)]$, i.e. T satisfies LSB.

 \Rightarrow) Assume that T satisfies LSB and we wish T satisfies BP. Without loss of generality we can consider $||u_0 - T(u)|| > r$. Affirm that

$$v = \frac{r}{\|T(u) - u_0\|} T(u) + \left(1 - \frac{r}{\|T(u) - u_0\|}\right) u_0 \in U \cap B(T(u), \|T(u) - u\|).$$

46

Indeed, we have

$$\|v - u_0\| = \left\|\frac{r}{\|T(u) - u_0\|}T(u) + \left(1 - \frac{r}{\|T(u) - u_0\|}\right)u_0 - u_0\right\| = r$$

hence $v \in U$.

On the other side

$$||T(u) - v|| = \left|1 - \frac{r}{||T(u) - u_0||}\right| ||T(u) - u_0|| = ||T(u) - u_0|| - ||v - u_0||.$$

Since T satisfies LSB results

$$||T(u) - u_0|| < ||T(u) - u|| + ||u - u_0||.$$

Then

$$||T(u) - v|| < ||T(u) - u|| + ||u - u_0|| - ||v - v_0|| = ||u - T(u)||,$$

since $||u_0 - v|| = ||u_0 - u|| = r$. Then ||T(u) - v|| < ||T(u) - u||, i.e. $v \in B(T(u), ||T(u) - u||)$. \Box If $U \neq \overline{B}(u_0, r)$, the last proposition is not true. **Example 3.1.** Let $X = \mathbb{R}^2$, with euclidian's norm and

 $U = \{ (x, y) \in \mathbb{R}^2, \ |x| \le 1, \ |y| \le 1 \},\$

i.e. U is the square with vertex (1,1), (-1,1), (-1,-1), (1,-1). Choose $u_0 = (0,0)$, $u = \left(1, \frac{1}{n}\right)$ with n > 1 and suppose that exists a mapping $T : U \to \mathbb{R}^2$ such that $T(u) = \left(k, \frac{k}{n}\right)$, for k > 1. Under of this assumption, we have T(u) = ku for k > 1,

so remark 1.1 said T does not satisfies LSB. Bur for $k > \frac{n+1}{2}$, T satisfies BP.

Now, we fix the point v = (1, 1) and obtain

$$||T(u) - v||^2 = (k-1)^2 + \left(\frac{k}{n} - 1\right)^2 = \frac{n^2(k-1)^2 + (k-n)^2}{n^2}.$$

Moreover

$$||T(u) - u||^2 = (k-1)^2 + \left(\frac{k}{n} - \frac{1}{n}\right)^2 = \frac{(n^2+1)(k-1)^2}{n^2}.$$

The mapping T satisfies BP is equivalent with

$$|T(u) - v|| < ||T(u) - u||,$$

that is to say

$$(n^{2}+1)(k-1)^{2} > n^{2}(k-1)^{2} + (k-n)^{2}$$
$$(k-1)^{2} > (k-n)^{2}$$
$$2k(n-1) > n^{2} - 1$$
$$k > \frac{n+1}{2}.$$

So for $k > \frac{n+1}{2}$, T satisfies BP, but T not satisfies LSB.

3.1 Conditions of retractibility

In following, we denote by F_f the set of fixed point of the mapping f.

Definition 3.2.1. ([9]) A mapping $f: Y \to X$ is retractible onto Y if there is a retraction $\rho: X \to Y$ such that $F_{\rho \circ f} = F_f$.

Condition (i) $F_{\rho \circ f} = F_f$ is equivalent with:

(ii) if $x \in \rho(f(Y) \setminus Y)$, then $f(x) \notin \rho^{-1}(x) \setminus \{x\}$.

Indeed, theorem 1.1 from [7] - the retraction mapping principle - shows that condition (ii) implies (i); now we suppose $F_{\rho \circ f} = F_f$ and there exists $x \in \rho(f(Y) \setminus Y)$ such that $f(x) \in \rho^{-1}(x) \setminus \{x\}$. Hence $x \notin F_f$, but on the other side $x = \rho(f(x))$, i.e. $x \in F_{\rho \circ f}$. This is a contradiction, so (i) implies (ii). In conclusion Definition 3.2.1 is equivalent with the definition given by Brown (see [7]).

Example 2.1. (Poincaré, Bohl, Leray-Schauder, Rothe, Altman, Furi-Vignoli,...) Let X be a Banach space and $Y = \overline{B}(0, R) \subset X$. If $f : \overline{B}(0, R) \to X$ is such that ||x|| = R, $f(x) = \lambda x$ implies $\lambda \leq 1$, then f is retractible onto $\overline{B}(0, R)$ with respect to the radial retraction $\rho : X \to \overline{B}(0, R)$.

Example 2.2. (Altman) Let X be a Banach space and $f: X \to X$ a norme contraction mapping. Then there exists R > 0 such that $f: \overline{B}(0, R) \to X$ is retractible onto $\overline{B}(0, R)$ with respect to the radial retraction.

Example 2.3. (Halpern-Beroman) Let X be a strictly convex normed linear space. Let $Y \subset X$ be a compact convex subset of X and $\rho : X \to Y$ the metric projection onto Y. If $f: Y \to X$ is nowhere normal-outward, then f is retractible onto Y with respect to ρ .

Example 2.4. Let X be a set, $Y \subset X$ a subset of X and $\rho: X \to Y$ a retraction. If $f: Y \to X$ is such that $x \in Y \setminus F_f$ implies $f(x) \in X \setminus \rho^{-1}(x)$, then f is retractible onto Y with respect to ρ .

In this paragraph we will give some theorems with form: if T satisfies a kind of boundary conditions then T is retractible.

Theorem 3.2.1. Let X be a Hilbert space, $U \in P_{cv,cl}(X)$. If the mapping $T : U \to X$ satisfies BP for any $u \in \partial U$ then T is retractible onto U with respect to the projection mapping of X to U.

Proof. Here $\rho = P$ denote the metric projection. Assume that $F_{\rho \circ f} \neq F_f$. Let $u \in F_{P \circ \Gamma} \setminus F_{\Gamma} \neq \emptyset$. Then u = P(T(u)) and $u \in \partial U$. This is equivalent with $T(u) \neq u$ and 0 < ||u - T(u)|| < ||T(u) - v||, for any $v \in U$. Results a contradiction with T satisfies BP condition. \Box

Let X be a Hilbert space, $U \subset X$ convex, $u \in U$ with $u \neq T(u)$. From Remark 3.3 results T satisfies BP at u iff T satisfies CR at u. Then we have

Theorem 3.2.2. Let X be a Hilbert space, $U \in P_{cv,cl}(X)$. If the mapping $T : U \to X$ satisfies CR for any $u \in \partial U$, then T is retractible onto U with respect to the metric projection of X onto U.

For a Banach space X we will consider the retraction ρ given by relation (2.3.1).

Theorem 3.2.3. Let X be a Banach space, $U \in P_{cv,cl}(X)$, $u_0 \in int U$ and the mapping $T: U \to X$. If T satisfies LSB for any $u \in \partial U$, then T is retractible onto U with respect of the retraction ρ .

Proof. Assume that $F_{\rho \circ f} \neq F_f$. Let $u \in F_{P \circ \Gamma} \setminus F_{\Gamma} \neq \emptyset$, i.e. $T(u) \neq u$ and

48

 $u = \rho(T(u)) \in \partial U$. From definition of ρ results that there exists $k \in (0, 1)$ such that $u = kT(u) + (1 - k)u_0$. We get a contraction with T satisfies LSB for $u \in \partial U$. In conclusion T is retractible onto U with respect to ρ . \Box

By Proposition 3.1 if $U = \overline{B}(u_0, r)$, then T satisfies LSB at u is equivalent with T satisfies BP. Then we have

Theorem 3.2.4. Let X be a Banach space and $u_0 \in X$. If the mapping $T : \overline{B}(u_0, r) \to X$ satisfies BP for any $u \in \partial \overline{B}(u_0, r)$ then T is retractible onto $\overline{B}(u_0, r)$ with respect to the radial retraction.

Theorem 3.2.5. Let X be a vector lattice (ordered space), $v \in X_+$ and $T : [-v, v] \rightarrow X$ be an operator.

If $T(u) \notin Y$ implies

$$\sup\{[0, T(u)_+] \cap [0, v]\} - \sup\{[0, T(u)_- \cap [0, v]\} \neq u$$

then T is retractible onto [-v, v] with respect of retraction φ given by relation (2.4.1). **Proof.** Let $u \in F_{\varphi \circ T} \setminus F_T \neq \emptyset$. Then $u = (\varphi \circ T)(u)$ and $u \neq T(u)$. Results $T(u) \notin [-v, v]$ so

 $u = \varphi(T(u)) = \sup\{[0, T(u)_+] \cap [0, v]\} - \sup\{[0, T(u)_- \cap [0, v]\}.$

We get a contradiction, hence $F_{\varphi \circ \Gamma} \subset F_{\Gamma}$. This implies $F_{\varphi \circ \Gamma} = F_{\Gamma}$, i.e. T is retractible onto [-v, v] with respect to φ . \Box

4 Fixed points of retractible mappings

4.1

Let us starting with

Lemma 4.1. (see [29]) Let (X, S, M) be a fixed point structure. Let $Y \in S$ and $\rho: X \to Y$ a retraction. Let $f: Y \to X$ be such that

(i) $\rho \circ f \in M(Y)$ (ii) f is retractible onto Y by ρ .

Then $F_f \neq \emptyset$.

Proof. From (i) we obtain $F_{\rho \circ f} \neq \emptyset$ and from (ii) we have $F_{\rho \circ f} = F_f$. Results $F_f \neq \emptyset$. \Box

4.2

Theorem 4.2.1. Let X be a Hilbert space, $U \in P_{cv,cl,b}(X)$ and $T : U \to X$ is a nonexpansive mapping. If T satisfies BP for any $u \in \partial U$, then $F_f \neq \emptyset$.

Proof. We take (X, S, M) as in example 1.7 and ρ the projection mapping of X onto Y. Since ρ and T is nonexpansive mapping hence (i) from lemma 4.1 is verified. By Theorem 3.2.1 we have T is retractible onto U with respect to the metric projection, then (ii) is satisfied. \Box

Obviously, we have

Theorem 4.2.2. Let X be a Hilbert space, $U \in P_{cv,cl,b}(X)$ and $T: U \to X$ is a nonexpansive mapping. If T satisfies CR for any $u \in \partial U$, then $F_f \neq \emptyset$.

4.3 A Leray-Schauder type theorem

Let X be a Banach space, $Y \in P_{cl,cv}(X)$ and $x_0 \in int Y$. A mapping $T: Y \to Y$ is said to be a Mönch operator if and only if T is continuous and for any $C \in P_b(X)$ satisfies $\overline{C} \subset \overline{cv}\{\{x_0\} \cup T(C)\}$ we have that \overline{C} is compact. In what follows we denote by α a measure of noncompactness on X.

Remark 4.3.1. If $T: Y \to Y$ is α -condensing (i.e. T is continuous and for any $C \in P_b(X)$ with $a(C) \neq 0$ we have $\alpha(T(C)) < \alpha(C)$) then T is a Mönch operator. Indeed, for $C \in P_b(X)$, since $\overline{C} \subset \overline{cv}\{\{x_0\} \cup T(C)\}$ we have $\alpha(\overline{C}) < \alpha(\overline{c}\{\{x_0\} \cup T(C)\}) = \alpha(T(C)) < \alpha(C)$. Hence $\alpha(C) = 0$, that is \overline{C} is compact.

Remark 4.3.2. If $T: Y \to Y$ is a (α, a) -contraction (i.e. T is continuous and there is $a \in [0, 1)$ such that for any $C \in P_b(X)$ we have $\alpha(T(C)) < a\alpha(C)$) then T is a Mönch operator. Indeed, if $C \in P_b(X)$ satisfies $\overline{C} \subset \overline{cv}\{\{x_0\} \cup T(C)\}$, then

$$\alpha(\overline{C}) < \alpha(\overline{cv}\{\{x_0\} \cup T(C)\}) = \alpha(T(C)) < a\alpha(C).$$

Hence $\alpha(C)(1-a) < 0$. Thus a > 1. This is a contradiction with $a \in [0,1)$, so $\alpha(C) = 0$.

Remark 4.3.3. If $T: Y \to Y$ is complet continuous (i.e. T is continuous and for any $C \in P_b(X)$, $\overline{T(C)}$ is compact), then T is a Mönch operator. Indeed, if $C \in P_b(X)$ and $\overline{C} \subset \overline{cv}\{\{x_0\} \cup T(C)\}$ then

$$\alpha(\overline{C}) < \alpha(\overline{cv}\{\{x_0\} \cup T(C)\}) = \alpha(T(C)) = 0,$$

i.e. \overline{C} is compact.

Now we present a new proof of a result by Mönch [17], in the particular case that the domain of the operator is convex.

Theorem 4.3.1. Let X be a Banach space, $Y \in P_{cl,cv}(X)$, $x_0 \in int Y$ and $T: Y \to X$ a Mönch operator. If T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

Proof. Let $\rho: X \to Y$ be the retraction given by (2.3.1). Obviously, $\rho \circ T: Y \to Y$ is continuous, and T is retractible onto Y by ρ . We wish to prove that $\rho \circ T: Y \to Y$ is a Mönch operator. For this, let $C \in P_b(X)$ such that $\overline{C} \subset \overline{cv}\{\{x_0\} \cup (\rho \circ T)(C)\}$. By the definition of ρ , we have

$$(\rho \circ T)(C) \subset \overline{cv}\{\{x_0\} \cup T(C)\}.$$

Then

$$\overline{C} \subset \overline{cv}\{\{x_0\} \cup (\rho \circ T)(C)\} \subset \overline{cv}\{\{x_0\} \cup T(C)\}$$

Since T is a Mönch operator, we have \overline{C} compact. Hence $\rho \circ T$ is a Mönch operator. \Box

Using Remark 4.3.1, 4.3.2 and 4.3.3 we can derive from Theorem 4.3.1 the following results:

Theorem 4.3.2. Let X be a Banach space, $Y \in P_{cl,cv}(X)$, $x_0 \in int Y$. If $T: Y \to X$ is α -condensing and T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

Theorem 4.3.3. Let X be a Banach space, $Y \in P_{cl,cv}(X)$, $x_0 \in int Y$. If $T: Y \to X$ is a (α, a) -contraction and T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

50

Theorem 4.3.4. (The classical principle of Leray-Schauder, see [15]) Let X be a Banach space, $Y \in P_{clcv}(X)$, $x_0 \in int Y$. If $T^{"}Y \to X$ is completely continuous and T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

If $Y = \overline{B}(x_0, R)$, then T satisfies LSB if and only if T satisfies BP. Thus, we have: **Theorem 4.3.5.** Let X be a Banach space, and $T: Y = \overline{B}(x_0, R) \to X$ a Mönch operator. If T satisfies BP for any $x \in \partial Y$, then $F_T \neq \emptyset$.

4.4

We have the following result (see [30])

Theorem 4.4.1. Let (X, d, \leq) be an ordered metric space, $f : X \to X$ an operator and $x, y \in X$ such that $x < y, x \leq f(x)$ and $f(y) \leq y$.

Assume that

(i) f is increasing;

(ii) f is weakly Picard operator.

Then

a) $x \le f^{\infty}(x) \le f^{\infty}(y) \le y$

b) $f^{\infty}(x)$ is the minimal fixed point of f in $F_f \cap [x, y]$ and $f^{\infty}(y)$ is the maximal fixed point of f in $F_f \cap [x, y]$.

Now we can prove the most important result of this paragraph.

Theorem 4.4.2. Let X be an ordered space, $v \in X$, and let the operator $T : [-v, v] \to X$ be continuous and increasing. If $T(u) \notin [-v, v]$ implies

$$\sup\{[0, T(u)_+] \cap [0, v]\} - \sup\{[0, T(u)_-] \cap [0, v]\} \neq u$$

for any $u \in [-v, v]$, then there exists \underline{u} and \overline{u} , the minimal solution, respectively the maximal solution of the equation T(u) = u.

Proof. We can define the operator $h : [-v, v] \to [-v, v]$, $h = \varphi \circ T$ with φ the retraction giving by (2.4.1). We have $F_h = F_T$ and application h is continuous and increasing. Much more $-v \leq h(v)$ and $h(v) \leq v$. So, hypothesis from theorem 4.4.1 is satisfied. Then

$$-v \le h^{\infty}(-v) \le h^{\infty}(v) \le v$$

and $h^{\infty}(-v) = \underline{u}$ is the minimal fixed point of h in [-v, v], $h^{\infty}(v) = \overline{u}$ is the maximal fixed point of h in [-v, v]. Since $\underline{u}, \overline{u} \in F_h$, hence $\underline{u}, \overline{u} \in F$)T and $\underline{u} \leq u \leq \overline{u}$ for every $y \in F_T$. \Box

For a similar result when T is decreasing see [20].

References

- M. Altman, A fixed point theorem in Hilbert space, Bull. Acad. Pol. Sc., 5(1957), 19-22.
- [2] M. Altman, A fixed point theorem in Banach space, Bull. Acad. Pol. Sc., 5(1957), 89-92.

Andrei Horvat-Marc

- [3] M.C. Anisiu, On fixed point theorems for mapping defined on spheres in metric spaces, Seminar on Mathematical Analysis, Preprint Nr.7, 1991, 95-100.
- [4] M.C. Anisiu, Fixed point theorems for retractibles mappings, Seminar on Functional Analysis and Numerical Methods, Preprint Nr.1, 1989, 1-10.
- [5] M.C. Anisiu and V. Anisiu, On some conditions for the existence of the fixed points in Hilbert spaces, Itinerant seminar on functional equations, approximation and convexity, Cluj-Napoca, 1989, 93-100.
- [6] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sc., 53(1965), 1272-1276.
- [7] F.E. Browder, A new generalization of the Schauder fixed point theorem, Math. Ann., 174(1967), 285-290.
- [8] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20(1967), 197-228.
- [9] R.F. Brown, Retraction methods in Nielsen fixed point theory, Pacific J. Math., 115(1984), 277-297.
- [10] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. A.M.S., 215(1976), 241-251.
- [11] J. Danes and J. Kolomy, Fixed point, surjectivity and invariance of domain theorems for weakly continuous mappings, Bull. U.M.I., 13(1975), 369-394.
- [12] G. Dinca, Metode variaționale și aplicații, Ed. Tehnică, București, 1980.
- [13] J. Dugundji amd A. Granas, Fixed point theory, Warszawa, 1982.
- [14] B.R. Halpern and G.M. Bergman, A fixed point theorem for inward and outward maps, TRans. A.M.S., 130(1968), 353-358.
- [15] J. Leray and J. Schauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole Norm. Sup (3), 51(1934), 45-78.
- [16] I.V. Kantorovich and G.P. Akilov, Analiză funcțională, Ed. Stiințifică şi Pedagogică, Bucureşti, 1986.
- [17] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of secondary in Banach spaces, Nonlinear Anal. 4(1980), 985-999.
- [18] R. Precup, Nonlinear integral equations (Romanian), Babeş-Bolyai Univ., Cluj-Napoca, 1993.
- [19] R. Precup, Existence theorems for nonlinear problems by continuation methods, Nonlinear Anal. 30(1997), 3313-3322.

- [20] R. Precup, Monotone iterations for decreasing maps in ordered Banach spaces, Proc. Sci. Comm. Meeting of "Aurel Vlaicu" Univ., Arad, 1996, 105-108.
- [21] D. O'Regan and R. Precup, *Theorems of Leray-Schauder type and applications*, Gordon and Breach, in press.
- [22] W.O. Ray and W.J. Cramer, Some remarks on the Leray-Schauder boundary conditions, Talk delivered by Cramer such that Fixed Point Workshop, Univ. de Sherbrooke, Canada, June 2-20, (1980).
- [23] J.R. Rice, Approximation of function, Addison-Wesley, Reading, Mass., 1969.
- [24] I. Rival, The problem of fixed points in ordered sets, Ann. Disc. Math. 8(1980).
- [25] I.A. Rus, Principii şi aplicaţii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
- [26] I.A. Rus, *Generalized contractions*, Seminar of fixed point theory, Cluj-Napoca, Preprint Nr.3(1983), 1-130.
- [27] I.A. Rus, Retraction method in the fixed point theory in ordered structures, Seminar of fixed point structures, Cluj-Napoca, Preprint Nr.3, 1988.
- [28] I.A. Rus, Fixed point structures, Mathematica, Cluj-Napoca, 1985.
- [29] I.A. Rus, The fixed point structures and the retraction mapping principles, Proceedings of the Conference on Differential Equation, Cluj-Napoca, November 21-23, 1985.
- [30] I.A. Rus, Some open problems of fixed point theory, Seminar of fixed point theory, Cluj-Napoca, Preprint Nr.3, 1999, 19-39.
- [31] T.E. Jr. Williamson, *The Leray-Schauder condition is necessary for the existence of solutions*, Vol.886, Lecture Notes in Math., Springer-Verlag, Berlin.