RETRACTION METHODS IN FIXED POINT THEORY

Andrei Horvat-Marc
Babeș-Bolyai University
Cluj-Napoca, Romania

Abstract. To obtain fixed point theorems for nonself-mappings there are two possibilities. One consists in using continuation methods of Leray-Schauder type. Roughly speaking, by means of a continuation theorem we can obtain a solution of a given equation starting from one of the solutions of a more simpler equations (see [21]). The other way makes use of the retraction mapping principle. This technique was presented by I.A. Rus in [29].

In this report we adopt the way of a retraction mapping principle. Our goal is to show that under suitable geometrical conditions, continuation theorems of Leray-Schauder type can be alternatively obtained by means of the retraction mapping principle. We shall consider only the boundary conditions of Leray-Schauder, Browder-Petryshyn and Cramer-Ray and we shall restrict ourselves to the case of Banach spaces and vector lattices.

Keywords: fixed point structures, Hilbert space, retractible mapping

AMS Subject Classification: 47H10, 54H25

1 Fixed point structures

Let X be a nonempty set and $Y \in P(X)$, where $P(X)$ denote the set of all nonempty subset of X. We denote by $M(X)$ the set of all mapping $f : X \to X$.

Definition 1.1. (see [28]) A triple (X, S, M) is a fixed point structure if
(i) $S \subset P(X)$ is a nonempty subset of $P(X)$;
(ii) $M : P(X) \to \bigcup_{Y \in P(X)} M(Y)$, $Y \subset M(Y)$ is a mapping such that, if $Z \subset Y$ then $M(Z) \supset \{f|_Z : f \in M(Y) \text{ and } f(Z) \subset Z\}$;
(iii) Every $Y \in S$ has the fixed point property with respect to $M(Y)$.

Example 1.1. Let X is a nonempty set, $S = \{\{x\} : x \in X\}$ and $M(Y) = M(Y)$.

Example 1.2. (Knaster, Tarski, Birkhoff) (X, \leq) is a complete lattice, $S = \{Y \in P(X) : (Y, \leq) \text{ is a complete sublattice of } X\}$ and $M(Y) = \{f : Y \to Y : f \text{ is order-preserving mapping}\}$.

Example 1.3. (Banach, Caccioppoli) (X, d) is a complete metric space, $S = P_d(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is a contraction}\}$.

Example 1.4. (Nemytzki, Edelstein) (X, d) is a complete metric space, $S = P_{cp}(X)$ and $M(Y) = \{f : Y \to Y : f \text{ is a contractive mapping}\}$.
Example 1.5. (Schauder) X is a Banach space, $S = P_{cv}(X)$ and $M(Y) = C(Y,Y)$.

Example 1.6. (Dotson) X is a Banach space, $S = P_{cp,cl}(X)$ and $M(Y) = \{ f : Y \to Y : f$ is a nonexpansive mapping $\}$.

Example 1.7. (Browder) X is a Hilbert space, $S = P_{b,cl,cv}(X)$ and $M(Y) = \{ f : Y \to Y : f$ is a nonexpansive mapping $\}$.

Example 1.8. (Tychonov) X is a Banach space, $S = P_{wcp,cv}(X)$ and $M(Y) = \{ f : Y \to Y : f$ is weakly continuous $\}$.

Example 1.9. (Schauder) X is a Banach space, $S = P_{b,cl,cv}(X)$ and $M(Y) = \{ f : Y \to Y : f$ is completely continuous $\}$.

Example 1.10. (Tychonov) X is a locally convex space, $S = P_{cp,cv}(X)$ and $M(Y) = C(Y,Y)$.

If more generally we let X be a Banach space, $S = P_{cl,cv}(X)$ and $M(Y) = \{ f : Y \to Y : f$ is weakly continuous $\}$, then the triple (X,S,M) is a fixed point structure in a generalized sense, when (ii) does not hold (see [17]).

2 The retraction notion

Let X be a nonempty set and $Y \subset X$ a nonempty subset of X.

Definition 2.1. ([9]) A mapping $\rho : X \to Y$ is called a retraction of X onto Y if and only if $\rho|_Y = 1_Y$, i.e. $\rho(x) = x$ for any $x \in Y$.

If X has a certain structure, the mapping ρ must be compatible with that structure. For example a retraction of a topological space will be assumed to be continuous.

2.1 An example of retraction in Hilbert spaces

In this paragraph we consider H be a Hilbert space and $K \subset H$ a nonempty, convex and closed subset, i.e. $K \in P_{cv,cl}(X)$. We will show that $P : H \to K$ the projection mapping of H onto K, is a retraction. At first we present some additional results.

Theorem 2.2.1. Let $K \subset H$ be a nonempty, convex and closed subset of H, and $u \in H$. Let

$$d = \inf_{v \in K} \| u - v \| = d(u,K).$$

Then there exists a unique element $w \in K$ with $d = \| u - w \| = d(u,K)$.

Proof. For any $v \in K$, we have $\| u - v \| \geq 0$, so for a given $u \in H$, the set of real numbers $\{ \| u - v \| : v \in H \}$ is lower bounded by zero. So $d = \inf_{v \in K} \| u - v \| = d(u,K)$.

Let $(v_n)_{n \geq 1} \subset K$ be a sequence of points from H such that $\| u - v_n \| \to d$, as $n \to \infty$. Since K is convex and $v_n, v_m \in K$ for any $m, n \in N$, we have $\lambda v_m + (1 - \lambda)v_n \in K$ for all $m, n \in N$ and $0 \leq \lambda \leq 1$. Put $\lambda = \frac{1}{2}$. Then $\frac{v_n + v_m}{2} \in K$, so

$$\left\| u - \frac{v_n + v_m}{2} \right\| \geq d.$$

Recall the parallelogram's equality

$$\| x + y \|^2 + \| x - y \|^2 = 2(\| x \|^2 + \| y \|^2)$$

for all $x, y \in H$.

Andrei Horvat-Marc
We consider $x = u - v_m$ and $y = u - v_n$. Hence
\[
\|v_n - v_m\|^2 = 2\left(\|u - v_m\|^2 + \|u - v_n\|^2\right) - 4\left\|u - \frac{v_m + v_n}{2}\right\|^2.
\]
Then
\[
\|v_n - v_m\|^2 \leq 2\left(\|u - v_m\|^2 + \|u - v_n\|^2\right) - 4d^2.
\]
When $m, n \to \infty$, we obtain $\|v_n - v_m\| \to 0$. This implies that the sequence $(v_n)_{n \geq 1} \subset K$ is fundamental, so it has a limit w. Since $(v_n)_{n \geq 1} \subset K$ and K is closed, it follows that $w = \lim_{n \to \infty} v_n \in K$. Hence $\|u - v_n\| \to \|u - w\| = d$ as $n \to \infty$.

In this way, we have shown that there exists $w \in K$ such that
\[
\|u - w\| = d = \inf_{v \in K} \|u - v\|.
\]

For the uniqueness, we assume that there exists $q \in K$, $q \neq w$ such that $\|u - w\| = d = \|u - q\|$. Since K is convex, we have $\frac{q + w}{2} \in K$, hence
\[
d = \inf_{v \in K} \|u - v\| \leq \left\| u + \frac{q + w}{2} \right\| = \left\| \frac{1}{2}u + \frac{1}{2}w\right\| \leq \frac{1}{2}\|u - w\| + \frac{1}{2}\|u - q\| = d
\]
and
\[
d = \left\| u - \frac{q + w}{2} \right\|.
\]
From the parallelogram’s equality, for $x = u - w$ and $y = u - q$ we obtain
\[
\|w - q\|^2 = 2\left(\|u - w\|^2 + \|u - q\|^2\right) - 4\left\|u - \frac{w + q}{2}\right\|^2 = 2(d^2 + d^2) - 4d^2 = 0.
\]
So $\|w - q\| = 0$, which is equivalent to $w = q$. □

Now we formulate

Definition 2.2.1. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. Let $P : H \to K$ be the mapping giving by $P(u) = v$, where $w \in K$ is such as
\[
\|u - w\| = d = \inf_{v \in K} \|u - v\|.
\]
The mapping P is called the metric projection of H onto K.

We have the following results (see [12]).

Theorem 2.2.2. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. The following statements are equivalent:

(i) $w \in K$, $\|u - w\| \leq \|u - v\|$ for every $v \in K$;

(ii) $w \in K$, $\text{Re} \ (u - w, v - w) \leq 0$ for every $v \in K$;

(iii) $w \in K$, $\text{Re} \ (u - v, w - v) \geq 0$ for every $v \in K$.

Theorem 2.2.3. Let H be a Hilbert space, $K \subset H$ a nonempty, convex and closed subset of X. The metric projection of X onto K is a nonexpansive mapping, i.e.
\[
\|P(u) - P(v)\| \leq \|u - v\|, \ \forall \ u, v \in H.
\]
A consequence of this theorem is the continuity of P. Indeed, for any $u \in H$ and any sequence $(u_n)_{n \geq 1} \subset H$ which is norm convergent at u, we have $\|P(u) - P(u_n)\| \leq \|u - u_n\|$. Since $\|u_n - u\| \to 0$, as $n \to \infty$, it follows that

$$\|P(u_n) - P(u)\| \to 0, \quad \text{as } n \to \infty,$$

i.e. P is continuous.

Thus we may conclude that the mapping given by Definition 3.2.1 is a topological retraction of H onto K.

Remark 2.2.1. For the uniqueness of the element $w \in K$ satisfying $d = \|u - w\| = d(u, K)$ the parallelogram’s equality is an important tool. This is in connexion with the structure of Hilbert space. Thus, Definition 3.2.1 cannot be given for an arbitrary Banach space. However, if K is a nonempty, closed, convex set of an uniformly convex Banach space the metric projection P is univoque and continuous (see [23]).

Definition 2.2.2. Let X be a space with the norm $\| \cdot \|$ and $Y \subset X$ a closed subspace of X. A linear continuous mapping $P : X \to Y$ is called projection mapping of X onto Y if it is a surjection and $P(y) = y$ for any $y \in Y$.

Definition 2.2.3. A closed subspace Y of a Banach space X is called complementably if there exists a projection of X onto Y.

Theorem 2.2.4. (see [16]) If any closed subspace of a Banach space X is complementably, then X is isomorphic with a Hilbert space.

Examples.

- c_0 is not complementably in l^∞
- $C[0,1]$ is not complementably in $L^\infty(0,1)$.

2.2 An example of retraction onto Banach spaces

Let X be a Banach space, $U \subset X$ a nonempty, convex and closed subset of X and $u_0 \in \text{int}U$.

For every pair $u, v \in X$, the set $[u, v] = \{w \in X : w = (1 - \lambda)u + \lambda v, \, \lambda \in [0,1]\}$ is called the segment between u and v. For any $u \in X$ we make the notation $Z(u) = [u, u_0] \cap \partial U$. Now, we define the mapping $\varphi : X \to \mathbb{R}$ by

$$\varphi(u) = \begin{cases}
\|u - u_0\| & \text{if } Z(u) = \emptyset \\
\max_{v \in Z(u)} \|v - u_0\| & \text{if } Z(u) \neq \emptyset
\end{cases}$$

By means of this mapping we construct the operator $\rho : X \to \overline{U}$, where

$$\rho(u) = \frac{\varphi(u)}{\|u - u_0\|} u + \left(1 + \frac{\varphi(u)}{\|u - u_0\|}\right) u_0$$

(2.3.1)

This mapping is a retraction. Indeed, if $u \in \text{int}U$ then $Z(u) = \emptyset$, so $\varphi(u) = \|u - u_0\|$ and this implies $\rho(u) = u$. If $u \in \partial U$ then $\varphi(u) = \|u - u_0\|$ and again $\rho(u) = u$. Hence $\rho(u) = u$ for any $u \in \overline{U}$. If $u \not\in \overline{U}$ then $Z(u) \neq \emptyset$ and $\varphi(u) < \|u - u_0\|$.
So \(\frac{\varphi(u)}{\|u - u_0\|} \in (0, 1) \) and consequently \(\rho(u) \in [u, u_0] \), i.e. the image of any point \(u \in X \setminus U \) by \(\rho \) lies on the segment \([u, u_0]\).

Moreover, we have

\[
\|\rho(u) - u_0\| = \left\| \frac{\varphi(u)}{\|u - u_0\|} u + \left(1 - \frac{\varphi(u)}{\|u - u_0\|}\right) u_0 - u_0 \right\| = \left\| \frac{\varphi(u)}{\|u - u_0\|} u - \frac{\varphi(u)}{\|u - u_0\|} u_0 \right\| = \varphi(u).
\]

In conclusion, if \(u \in X \setminus U \) then \(\rho(u) \) is the intersection point of the segment \([u, u_0]\) with \(\partial U \), which is the most nearly by \(u \). So \(\rho \) is a continuous retraction.

If \(U = B(u_0, r) = \{ u \in X : \|u - u_0\| < r \} \subset X \) the mapping \(\rho : X \to \overline{U} \) is giving by

\[
\rho(u) = \begin{cases}
 u & \text{if } u \in \overline{U} \\
 \frac{r}{\|u - u_0\|} u + \left(1 - \frac{r}{\|u - u_0\|}\right) u_0 & \text{if } u \notin \overline{U}
\end{cases}
\]

and it is call "the radial retraction".

2.3 An example of retraction onto ordered spaces

Let \(X \) be a real vectorial space. \(X \) is a vector lattice (ordered space) if \(X \) is lattice and

i) for any \(z \in X \), \(x \leq y \) then \(x + z \leq y + z \)

ii) if \(x \geq 0 \) and \(\lambda \geq 0 \) then \(\lambda x \geq 0 \).

In any ordered space \(X \), denote by \([x, y] = \{ z \in X : x \leq z \leq y \}\) the interval with respect to order (ordered interval).

The set \(X_+ = \{ x \in X : x \geq 0 \} \) is called the cone of positifs elements of vectorial lattice \(X \).

For every \(x \in X \), the element \(x_+ = x \lor 0 \) is called the positive part of \(x \) and \(x_- = (-x) \lor 0 = (-x)_+ \) the negative part. The element \(|x| = x_+ - x_- \) means the absolute value of \(x \). For any \(x \in X \) we have \(x = x_+ - x_- \).

Let \(v \in X_+ \). Demote with \(Y = [-v, v] \) and define the application \(\varphi : X \to Y \),

\[
\varphi(u) = \begin{cases}
 u & \text{if } u \in Y \\
 \sup\{0, u_+\} \cap [0, v] - \sup\{0, u_-\} \cap [0, v] & \text{if } u \notin Y
\end{cases}
\]

We make the notations

\[
Y_+ = [0, v] \quad U_+ = [0, u_+] \quad \text{and} \quad U_- = [0, u_-]
\]

The application \(\varphi \) is a retraction of \(X \) onto \(Y \) which is compatible with structure of space \(X \), i.e. it is continuous and for every \(u_1, u_2 \in X \), \(u_1 \leq u_2 \) we have \(\varphi(u_1) \leq \varphi(u_2) \).
Indeed, let \(u_1, u_2 \in X \) with \(u_1 \leq u_2 \).

1. Suppose that \(-v \leq u_1 \leq u_2 \leq v\), i.e. \(u_1, u_2 \in Y \). Then \(\varphi(u_1) = u_1 \leq u_2 = \varphi(u_2) \).

2. If \(u_1 \in Y \) and \(u_2 \not\in Y \) the \(\varphi(u_1) = u_1 \) and \(\varphi(u_2) = \sup\{U_{2+} \cap Y_{+}\} - \sup\{U_{2-} \cap Y_{+}\} \).

From \(u_1 \leq u_2 \) we have \(u_{1+} \leq u_{2+} \) and \(u_{2-} \leq u_{1-} \). Since \(u_1 \in Y \) we obtain \(u_{1+} \leq v \) and \(u_{1-} \leq v \). We have \(u_{1+} \leq u_{2+} \) and \(u_{1+} \leq v \), hence

\[
\varphi(u_1) = u_1 = \sup\{U_{2+} \cap Y_{+}\}.
\]

From \(u_{2-} \leq u_{1-} \) and \(u_{1-} \leq v \) results

\[
u_{1-} \geq \sup\{U_{2-} \cap Y_{+}\}.
\]

Then

\[
\varphi(u_1) = u_1 = u_{1+} - u_{1-} \leq \sup\{U_{2+} \cap Y_{+}\} - \sup\{U_{2-} \cap Y_{+}\} = \varphi(u_2).
\]

If \(u_1 \not\in Y \) and \(u_2 \in Y \) the proof is similary.

3. If \(u_1 \not\in Y \) and \(u_2 \not\in Y \) then

\[
\varphi(u_i) = \sup\{U_{i+} \cap Y_{+}\} - \sup\{U_{i-} \cap Y_{+}\}, \quad i = 1,2.
\]

Since \(u_1 \leq u_2 \) we have \(u_{1+} \leq u_{2+} \) and \(u_{2-} \leq u_{1-} \). Then \(U_{1+} \subset U_{2+} \) and \(U_{2-} \subset U_{1-} \). Results

\[
\sup\{U_{1+} \cap Y_{+}\} \leq \sup\{U_{2+} \cap Y_{+}\}
\]

and

\[
\sup\{U_{2-} \cap Y_{+}\} \leq \sup\{U_{1-} \cap Y_{+}\}.
\]

Finally, we have

\[
\varphi(u_1) = \sup\{U_{1+} \cap Y_{+}\} - \sup\{U_{1-} \cap Y_{+}\} \leq \sup\{U_{2+} \cap Y_{+}\} - \sup\{U_{2-} \cap Y_{+}\} = \varphi(u_2).
\]

In conclusion, for any \(u_1, u_2 \in X \) with \(u_1 \leq u_2 \) we have \(\varphi(u_1) \leq \varphi(u_2) \). In other words \(\varphi \) is increasing.

3 Boundary conditions

We recall Leray-Schauder boundary condition and show its equivalence to those of Browder-Petryshyn and Cramer-Ray when the domain is a ball. For all there definitions \(U \) is a subset of a Banach space \(X \), \(u_0 \in \text{int} \, U \) and \(T : U \rightarrow X \) is a mapping.

For \(r > 0 \) and \(u \in X \) we let \(B(u, r) \) be the open ball of \(X \) of radius \(r \) and center \(u \), i.e.

\[
B(u, r) = \{ v \in X : \| u - v \| < r \}.
\]
For every pair $u, v \in X$, the set $[u, v] = \{ w \in X : w = (1 - \lambda)u + \lambda v, \lambda \in [0, 1] \}$ is called the segment between u and v.

We shall assume $u_0 \in \text{int } U$.

Definition 3.1. (Leray-Schauder, see [15]) Let $u \in \partial U$. T satisfies the Leray-Schauder boundary condition (LSB) at u relative to U if and only if

\[
(1 - \lambda)u_0 + \lambda T(u) \neq u \quad \text{for every } \lambda \in [0, 1].
\]

Remark 3.1. The definition has the equivalent form

\[
T(u) - u_0 \neq k(u - u_0) \quad \text{for } \lambda \in [0, 1].
\]

In fact Definition 3.1 says that T satisfies LSB at u if and only if the point u doesn’t lie on the segment $[u_0, T(u)]$.

Definition 3.2. (Browder-Petryshyn, see [8]) Let $u \in U$ with $u \neq T(u)$. T satisfies the Browder-Petryshyn condition (BP) at u relative to U if and only if

\[
B(T(u), ||T(u) - u||) \cap U \neq \emptyset.
\]

Remark 3.2. (i) The relation (3) is equivalent to the existence of an element $v \in U$ such that

\[
||T(u) - v|| < ||T(u) - u||.
\]

(ii) Obviously, if $T(u) \in U$ or $u \in \text{int } U$, then T satisfies BP at u relative to U.

Definition 3.3. (Cramer-Ray, see [22]) Let $u \in U$ with $u \neq T(u)$. T satisfies the Cramer-Ray condition (CR) at u relative to U if and only if

\[
\liminf_{h \to 0^+} \frac{d((1 - h)u + hT(u), U)}{h} < ||u - T(u)||.
\]

Lemma 3.1. Let U be convex and $u \in U$ with $u \neq T(u)$. T satisfies CR at u if and only if there exists $v \in U$ and $0 < h \leq 1$ such that

\[
\frac{||(1 - h)u + hT(u) - v||}{h} < ||u - T(u)||.
\]

Proof. \Rightarrow) Obvious.

\Leftarrow) Without loss of generality, choose $0 < k < 1$ such that

\[
\frac{||(1 - h)u + hT(u) - v||}{h} < k||u - T(u)||.
\]

For each $a \in (0, 1)$ let $z(a) = u + a(v - u)$. Since $z(a) \in [u, v]$ and U is convex we have $z(a) \in U$. Now, it suffices to show that for any $a \in (0, 1)$, $z(a)$ satisfies

\[
\frac{||(1 - ah)u + ahT(u) - z(a)||}{ah} \leq k||u - T(u)||.
\]
Since
\[
\frac{\| (1 - ah)u + ahT(u) - z(a) \|}{ah} = \frac{\| u - ahu + ahT(u) - u - a(v - u) \|}{ah} = \\
\frac{\| (1 - h)u + hT(u) - v \|}{h} \leq k\| u - T(u) \|.
\]
Thus the lemma is proved. □

Remark 3.3. If \(X \) is a Hilbert space, with inner product \((\cdot, \cdot)\), it is possible to introduce the Leray-Schauder condition (LS), see [31], in the following way:
Let \(u \in U \) with \(u \neq T(u) \) and
\[
LS(u, T(u)) = \{ v \in X : \text{Re} (T(u) - u, v - u) > 0 \}.
\]
The mapping \(T \) satisfies (LS) at \(u \) relative to \(U \) if and only if
\[
(6) \hspace{1cm} LS \ast u, T(u) \cap U \neq \emptyset.
\]
If \(U \) is convex and \(u \in U \) with \(u \neq T(u) \) then (see [31])
\[
T \text{ satisfies LS at } u \text{ if and only if } T \text{ satisfies BP at } u
\]
and
\[
T \text{ satisfies LS at } u \text{ if and only if } T \text{ satisfies CR at } u.
\]

Proposition 3.1. Let \(X \) be a Banach space, \(U = B(u_0, r) \) and \(u \in \partial U \) such that \(u \neq T(u) \). \(T \) satisfies LSB at \(u \) if and only if \(T \) satisfies BP at \(u \).

Proof. \(\Leftarrow \) Assume that \(T \) satisfies BP and we wish \(T \) satisfies LSB. We know that
\[
\| T(u) - u_0 \| \leq \| T(u) - v \| + \| v - u_0 \|
\]
for any \(v \in U \). If \(T \) satisfies BP at \(u \) then conform of remark 3.2 exists \(v \in U \) such that
\[
\| T(u) - v \| < \| T(u) - u \|. \]
Since \(u \in \partial U \) we have
\[
\| u_0 - v \| < \| u_0 - u \| = r.
\]
So
\[
\| T(u) - u_0 \| < \| T(u) - u \| + \| u - u_0 \|.
\]
In conclusion \(u \notin [u_0, T(u)] \), i.e. \(T \) satisfies LSB.

\(\Rightarrow \) Assume that \(T \) satisfies LSB and we wish \(T \) satisfies BP. Without loss of generality we can consider \(\| u_0 - T(u) \| > r \). Affirm that
\[
v = \frac{r}{\| T(u) - u_0 \|} T(u) + \left(1 - \frac{r}{\| T(u) - u_0 \|} \right) u_0 \in U \cap B(T(u), \| T(u) - u \|).
\]
Indeed, we have\[\|v - u_0\| = \|T(u) - u_0\| \cdot T(u) + \left(1 - \frac{r}{\|T(u) - u_0\|}\right) u_0 - u_0 = r\]
hence \(v \in U\).

On the other side\[\|T(u) - v\| = \left|1 - \frac{r}{\|T(u) - u_0\|}\right| \|T(u) - u_0\| = \|T(u) - u_0\| - \|v - u_0\|.
\]
Since \(T\) satisfies LSB results\[\|T(u) - u_0\| < \|T(u) - u\| - \|v - u_0\|.
\]
Then\[\|T(u) - v\| < \|T(u) - u\|, \text{i.e. } v \in B(T(u), \|T(u) - u\|). \quad \square \]
If \(U \neq B(u_0, r)\), the last proposition is not true.

Example 3.1. Let \(X = \mathbb{R}^2\), with euclidian’s norm and \(U = \{(x, y) \in \mathbb{R}^2, |x| \leq 1, |y| \leq 1\}\), i.e. \(U\) is the square with vertex \((1,1), (-1,1), (-1,-1), (1,-1)\). Choose \(u_0 = (0,0)\), \(u = \left(1, \frac{1}{n}\right)\) with \(n > 1\) and suppose that exists a mapping \(T : U \rightarrow \mathbb{R}^2\) such that \(T(u) = \left(k, \frac{k}{n}\right)\), for \(k > 1\). Under of this assumption, we have \(T(u) = ku\) for \(k > 1\), so remark 1.1 said \(T\) does not satisfies LSB. But for \(k > \frac{n + 1}{2}\), \(T\) satisfies BP.

Now, we fix the point \(v = (1,1)\) and obtain\[\|T(u) - v\|^2 = (k - 1)^2 + \left(\frac{k}{n} - 1\right)^2 = \frac{n^2(k - 1)^2 + (k - n)^2}{n^2}.
\]
Moreover\[\|T(u) - u\|^2 = (k - 1)^2 + \left(\frac{k}{n} - 1\right)^2 = \frac{(n^2 + 1)(k - 1)^2}{n^2}.
\]
The mapping \(T\) satisfies BP is equivalent with\[\|T(u) - v\| < \|T(u) - u\|,
\]that is to say\[(n^2 + 1)(k - 1)^2 > n^2(k - 1)^2 + (k - n)^2 \Rightarrow (k - 1)^2 > (k - n)^2 \Rightarrow 2k(n - 1) > n^2 - 1 \Rightarrow k > \frac{n + 1}{2}.
\]
So for \(k > \frac{n + 1}{2}\), \(T\) satisfies BP, but \(T\) not satisfies LSB.
3.1 Conditions of retractibility

In following, we denote by F_f the set of fixed point of the mapping f.

Definition 3.2.1. ([9]) A mapping $f : Y \rightarrow X$ is retractible onto Y if there is a
retraction $\rho : X \rightarrow Y$ such that $F_{\rho \circ f} = F_f$.

Condition (i) $F_{\rho \circ f} = F_f$ is equivalent with:

(ii) if $x \in \rho(f(Y) \setminus Y)$, then $f(x) \notin \rho^{-1}(x) \setminus \{x\}$.

Indeed, theorem 1.1 from [7] - the retraction mapping principle - shows that condi-
tion (ii) implies (i); now we suppose $F_{\rho \circ f} = F_f$ and there exists $f(x) \in \rho(f(Y) \setminus Y)$
such that $f(x) \in \rho^{-1}(x) \setminus \{x\}$. Hence $x \notin F_f$, but on the other side $x = \rho(f(x))$, i.e.
$x \in F_{\rho \circ f}$. This is a contradiction, so (i) implies (ii). In conclusion Definition 3.2.1 is
equivalent with the definition given by Brown (see [7]).

Example 2.1. (Poincaré, Bohr, Leray-Schauder, Rothe, Altman, Furi-Vignoli,...) Let X be a Banach space and $Y = \overline{B}(0, R) \subset X$. If $f : \overline{B}(0, R) \rightarrow X$ is such that $\|x\| = R$, $f(x) = \lambda x$ implies $\lambda < 1$, then f is retractible onto $\overline{B}(0, R)$ with respect to
the radial retraction $\rho : X \rightarrow \overline{B}(0, R)$.

Example 2.2. (Altman) Let X be a Banach space and $f : X \rightarrow X$ a norme con-
traction mapping. Then there exists $R > 0$ such that $f : \overline{B}(0, R) \rightarrow X$ is retractible
onto $\overline{B}(0, R)$ with respect to the radial retraction.

Example 2.3. (Halpern-Beroman) Let X be a strictly convex normed linear
space. Let $Y \subset X$ be a compact convex subset of X and $\rho : X \rightarrow Y$ the
metric projection onto Y. If $f : Y \rightarrow X$ is nowhere normal-outward, then f is retractible
onto Y with respect to ρ.

Example 2.4. Let X be a subset of X and $\rho : X \rightarrow Y$ a retraction.
If $f : Y \rightarrow X$ is such that $x \in Y \setminus F_f$ implies $f(x) \in X \setminus \rho^{-1}(x)$, then f is retractible
onto Y with respect to ρ.

In this paragraph we will give some theorems with form: if T satisfies a kind of
boundary conditions then T is retractible.

Theorem 3.2.1. Let X be a Hilbert space, $U \in P_{\text{cv,cl}}(X)$. If the mapping $T : U \rightarrow X$ satisfies BP for any $u \in \partial U$ then T is retractible onto U with respect to
the projection mapping of X to U.

Proof. Here $\rho = P$ denote the metric projection. Assume that $F_{\rho \circ f} \neq F_f$. Let
$u \in F_{\rho \circ f} \setminus F_f$. Then $u = P(T(u))$ and $u \in \partial U$. This is equivalent with $T(u) \neq u$ and
$0 < \|u - T(u)\| < \|T(u) - v\|$, for any $v \in U$. Results a contradiction with T satisfies BP condition. □

Let X be a Hilbert space, $U \subset X$ convex, $u \in U$ with $u \neq T(u)$. From Remark
3.3 results T satisfies BP at u iff T satisfies CR at u. Then we have

Theorem 3.2.2. Let X be a Hilbert space, $U \in P_{\text{cv,cl}}(X)$. If the mapping $T : U \rightarrow X$ satisfies CR for any $u \in \partial U$, then T is retractible onto U with respect to
the metric projection of X onto U.

For a Banach space X we will consider the retraction ρ given by relation (2.3.1).

Theorem 3.2.3. Let X be a Banach space, $U \in P_{\text{cv,cl}}(X)$, $u_0 \in \text{int} U$ and the
mapping $T : U \rightarrow X$. If T satisfies LSB for any $u \in \partial U$, then T is retractible onto U
with respect of the retraction ρ.

Proof. Assume that $F_{\rho \circ f} \neq F_f$. Let $u \in F_{\rho \circ f} \setminus F_f = \emptyset$, i.e. $T(u) \neq u$ and
Let X be a Banach space and $u_0 \in X$. If the mapping $T : \overline{B}(u_0, r) \to X$ satisfies BP for any $u \in \partial \overline{B}(u_0, r)$ then T is retractible onto $\overline{B}(u_0, r)$ with respect to the radial retraction.

Theorem 3.2.5. Let X be a vector lattice (ordered space), $v \in X_+$ and $T : [-v, v] \to X$ be an operator.

If $T(u) \not\in Y$ implies

$$\sup\{0, T(u)_+ \cap [0, v]\} - \sup\{0, T(u)_- \cap [0, v]\} \neq u$$

then T is retractible onto $[-v, v]$ with respect of retraction φ given by relation (2.4.1).

Proof. Let $u \in F_{\varphi \circ T} \setminus F_T \neq \emptyset$. Then $u = (\varphi \circ T)(u)$ and $u \neq T(u)$. Results $T(u) \not\in [-v, v]$ so

$$u = \varphi(T(u)) = \sup\{0, T(u)_+ \cap [0, v]\} - \sup\{0, T(u)_- \cap [0, v]\}.$$

We get a contradiction, hence $F_{\varphi \circ T} \subset F_T$. This implies $F_{\varphi \circ T} = F_T$, i.e. T is retractible onto $[-v, v]$ with respect to φ. □

4 Fixed points of retractible mappings

4.1

Let us starting with

Lemma 4.1. (see [29]) Let (X, S, M) be a fixed point structure. Let $Y \in S$ and $\rho : X \to Y$ a retraction. Let $f : Y \to X$ be such that

(i) $\rho \circ f \in M(Y)$

(ii) f is retractible onto Y by ρ.

Then $F_f \neq \emptyset$.

Proof. From (i) we obtain $F_{\rho \circ f} \neq \emptyset$ and from (ii) we have $F_{\rho \circ f} = F_f$. Results $F_f \neq \emptyset$. □

4.2

Theorem 4.2.1. Let X be a Hilbert space, $U \in P_{cv,cl,b}(X)$ and $T : U \to X$ is a nonexpansive mapping. If T satisfies BP for any $u \in \partial U$, then $F_f \neq \emptyset$.

Proof. We take (X, S, M) as in example 1.7 and ρ the projection mapping of X onto Y. Since ρ and T is nonexpansive mapping hence (i) from lemma 4.1 is verified. By Theorem 3.2.1 we have T is retractible onto U with respect to the metric projection, then (ii) is satisfied. □

Obviously, we have

Theorem 4.2.2. Let X be a Hilbert space, $U \in P_{cv,cl,b}(X)$ and $T : U \to X$ is a nonexpansive mapping. If T satisfies CR for any $u \in \partial U$, then $F_f \neq \emptyset$.

4.3 A Leray-Schauder type theorem

Let X be a Banach space, $Y \in P_{cl,cv}(X)$ and $x_0 \in \text{int } Y$. A mapping $T : Y \to Y$ is said to be a Mönch operator if and only if T is continuous and for any $C \in P_b(X)$ satisfies $\overline{C} \subset \overline{\varphi}\{x_0\} \cup T(C)$ we have that \overline{C} is compact. In what follows we denote by α a measure of noncompactness on X.

Remark 4.3.1. If $T : Y \to Y$ is α-condensing (i.e. T is continuous and for any $C \in P_b(X)$ with $\alpha(C) \neq 0$ we have $\alpha(T(C)) < \alpha(C)$) then T is a Mönch operator. Indeed, for $C \in P_b(X)$, since $\overline{C} \subset \overline{\varphi}\{x_0\} \cup T(C)$ we have $\alpha(\overline{C}) < \alpha(\overline{\varphi}\{x_0\} \cup T(C)) = \alpha(T(C)) < \alpha(C)$. Hence $\alpha(C) = 0$, that is \overline{C} is compact.

Remark 4.3.2. If $T : Y \to Y$ is a (α, a)-contraction (i.e. T is continuous and there is $a \in [0, 1)$ such that for any $C \in P_b(X)$ we have $\alpha(T(C)) < a\alpha(C)$) then T is a Mönch operator. Indeed, if $C \in P_b(X)$ satisfies $\overline{C} \subset \overline{\varphi}\{x_0\} \cup T(C)$, then

$$\alpha(\overline{C}) < a\alpha(\overline{\varphi}\{x_0\} \cup T(C)) = \alpha(T(C)) < a\alpha(C).$$

Hence $\alpha(C)(1 - a) < 0$. Thus $a > 1$. This is a contradiction with $a \in [0, 1)$, so $\alpha(C) = 0$.

Remark 4.3.3. If $T : Y \to Y$ is complet continuous (i.e. T is continuous and for any $C \in P_b(X)$, $T(\overline{C})$ is compact), then T is a Mönch operator. Indeed, if $C \in P_b(X)$ and $\overline{C} \subset \overline{\varphi}\{x_0\} \cup T(C)$ then

$$\alpha(\overline{C}) < a\alpha(\overline{\varphi}\{x_0\} \cup T(C)) = \alpha(T(C)) = 0,$$

i.e. \overline{C} is compact.

Now we present a new proof of a result by Mönch [17], in the particular case that the domain of the operator is convex.

Theorem 4.3.1. Let X be a Banach space, $Y \in P_{cl,cv}(X)$, $x_0 \in \text{int } Y$ and $T : Y \to X$ a Mönch operator. If T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

Proof. Let $\rho : X \to Y$ be the retraction given by (2.3.1). Obviously, $\rho \circ T : Y \to Y$ is continuous, and T is retractible onto Y by ρ. We wish to prove that $\rho \circ T : Y \to Y$ is a Mönch operator. For this, let $C \in P_b(X)$ such that $\overline{C} \subset \overline{\varphi}\{x_0\} \cup (\rho \circ T)(C)$. By the definition of ρ, we have

$$(\rho \circ T)(C) \subset \overline{\varphi}\{x_0\} \cup T(C).$$

Then

$$\overline{C} \subset \overline{\varphi}\{x_0\} \cup (\rho \circ T)(C) \subset \overline{\varphi}\{x_0\} \cup T(C).$$

Since T is a Mönch operator, we have \overline{C} compact. Hence $\rho \circ T$ is a Mönch operator.

Using Remark 4.3.1, 4.3.2 and 4.3.3 we can derive from Theorem 4.3.1 the following results:

Theorem 4.3.2. Let X be a Banach space, $Y \in P_{cl,cv}(X)$, $x_0 \in \text{int } Y$. If $T : Y \to X$ is α-condensing and T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

Theorem 4.3.3. Let X be a Banach space, $Y \in P_{cl,cv}(X)$, $x_0 \in \text{int } Y$. If $T : Y \to X$ is a (α, a)-contraction and T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.
Theorem 4.3.4. (The classical principle of Leray-Schauder, see [15]) Let X be a Banach space, $Y \in P_{clcv}(X)$, $x_0 \in \text{int} Y$. If $T^* Y \to X$ is completely continuous and T satisfies LSB for any $x \in \partial Y$, then $F_T \neq \emptyset$.

If $Y = \overline{B}(x_0, R)$, then T satisfies LSB if and only if T satisfies BP. Thus, we have:

Theorem 4.3.5. Let X be a Banach space, and $T : Y = \overline{B}(x_0, R) \to X$ a Mönch operator. If T satisfies BP for any $x \in \partial Y$, then $F_T \neq \emptyset$.

4.4

We have the following result (see [30])

Theorem 4.4.1. Let (X, d, \leq) be an ordered metric space, $f : X \to X$ an operator and $x, y \in X$ such that $x < y$, $x \leq f(x)$ and $f(y) \leq y$.

Assume that

(i) f is increasing;

(ii) f is weakly Picard operator.

Then

a) $x \leq f^\infty(x) \leq f^\infty(y) \leq y$

b) $f^\infty(x)$ is the minimal fixed point of f in $F_T \cap [x, y]$ and $f^\infty(y)$ is the maximal fixed point of f in $F_T \cap [x, y]$.

Now we can prove the most important result of this paragraph.

Theorem 4.4.2. Let X be an ordered space, $v \in X$, and let the operator $T : [-v, v] \to X$ be continuous and increasing. If $T(u) \not\in [-v, v]$ implies

$$\sup\{[0, T(u)_+] \cap [0, v]\} - \sup\{[0, T(u)_-] \cap [0, v]\} \neq u$$

for any $u \in [-v, v]$, then there exists \underline{u} and \overline{u}, the minimal solution, respectively the maximal solution of the equation $T(u) = u$.

Proof. We can define the operator $h : [-v, v] \to [-v, v]$, $h = \varphi \circ T$ with φ the retraction giving by (2.4.1). We have $F_h = F_T$ and application h is continuous and increasing. Much more $-v \leq h(v)$ and $h(v) \leq v$. So, hypothesis from theorem 4.4.1 is satisfied. Then

$$-v \leq h^\infty(-v) \leq h^\infty(v) \leq v$$

and $h^\infty(-v) = \underline{u}$ is the minimal fixed point of h in $[-v, v]$, $h^\infty(v) = \overline{u}$ is the maximal fixed point of h in $[-v, v]$. Since $\underline{u}, \overline{u} \in F_h$, hence $\underline{u}, \overline{u} \in F_T$ and $\underline{u} \leq u \leq \overline{u}$ for every $y \in F_T$. \square

For a similar result when T is decreasing see [20].

References

