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Abstract. To obtain fixed point theorems for nonself-mappings there are two possibilities. One
consists in using continuation methods of Leray-Schauder type. Roughly speaking, by means of a
continuation theorem we can obtain a solution of a given equation starting from one of the solutions
of a more simpler equations (see [21]). The other way makes use of the retraction mapping principle.
This technique was presented by I.A. Rus in [29].

In this report we adopt the way of a retraction mapping principle. Our goal is to show that
under suitable geometrical conditions, continuation theorems of Leray-Schauder type can be alterna-
tively obtained by means of the retraction mapping principle. We shall consider only the boundary
conditions of Leray-Schauder, Browder-Petryshyn and Cramer-Ray and we shall restrict ourselves to
the case of Banach spaces and vector lattices.
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1 Fixed point structures

Let X be a nonempty set and Y € P(X), where P(X) denote the set of all nonempty
subset of X. We denote by M (X) the set of all mapping f: X — X.

Definition 1.1. (see [28]) A triple (X, S, M) is a fixed point structure if

(i) S C P(X) is a nonempty subset of P(X);

(i) M : P(X) — |J M), Y c M(Y) is a mapping such that, if Z C Y

YeP(X)
then
M(Z) 5 {flz: f€MY)and f(Z) C Z}:

(iii) Every Y € S has the fixed point property with respect to M(Y).

Example 1.1. Let X is a nonempty set, S = {{z}: € X} and M(Y) = M(Y).

Example 1.2. (Knaster, Tarski, Birkhoff) (X, <) is a complete lattice, S = {Y €
P(X) : (Y,<) is a complete sublattice of X} and M(Y) ={f : Y - Y : fis
order-preserving mapping}.

Example 1.3. (Banach, Caccioppoli) (X,d) is a complete metric space, S =
Py X)and M(Y)={f:Y =Y : fisa contraction}.

Example 1.4. (Nemytzki, Edelstein) (X,d) is a complete metric space, S =
P,(X)and M(Y)={f:Y — Y : fisa contractive mapping}.
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Example 1.5. (Schauder) X is a Banach space, S = Py, o (X) and M(Y) =
CY)Y).

Example 1.6. (Dotson) X is a Banach space, S = P, (X) and M(Y) = {f :
Y — Y : fis a nonexpansive mapping}.

Example 1.7. (Browder) X is a Hilber space, S = Py ¢1,¢o(X) and M(Y) ={f:
Y — Y : fis a nonexpansive mapping}.

Example 1.8. (Tychonov) X is a Banach space, S = Pyep,co(X) and M(Y) =
{f:Y =Y : fis weakly continuous}.

Example 1.9. (Schauder) X is a Banach space, S = Py ¢ (X) and M(Y) =
{f:Y =Y : fiscompletely continuous}.

Example 1.10. (Tychonov) X is a locally convex space, S = P.p cy(X) and
MY)=CY,Y).

If more generally we let X be a Banach space, S = P, (X) and M(Y) = {f :
Y — Y : fis continuous and there is £y € Y such that for any C € P,(Y) relation
C C ev{{xo}Y f(C)} implies C compact}, then the triple (X, S, M) is a fixed point
structure in a generalized sense, when (ii) does not hold (see [17]).

2 The retraction notion

Let X be a nonempty set and Y C X a nonempty subset of X.

Definition 2.1. ([9]) A mapping p: X — Y is called a retraction of X onto Y if
and only if ply = 1y, i.e. p(x) =z for any z € Y.

If X has a certain structure, the mapping p must be compatible with that struc-
ture. For example a retraction of a topological space will be assumed to be continuous.

2.1 An example of retraction in Hilbert spaces

In this paragraph we consider H be a Hilbert space and K C H a nonempty, convex
and closed subset, i.e. K € Py (X). We will show that P : H — K the projection
mapping of H onto K, is a retraction. At first we present some additional results.
Theorem 2.2.1. Let K C H be a nonempty, convex and closed subset of H, and
u € H. Let
d = inf |Ju—v| =d(u, K).
veEK

Then there exists a unique element w € K with d = ||u — w|| = d(u, K).
Proof. For any v € K, we have ||lu — v|| > 0, so for a given u € H, the set of real
numbers {||lu—wv|| : v € H} is lower bounded by zero. So d = inf{ lu—v|| = d(u, K).
IS

Let (vn)n>1 C K be a sequences of points from H such that |ju — v,|| — d, as

n — oo. Since K is convex and v,,v,, € K for any m,n € N, we have v, + (1 —

1 n m
Avn € K for all mn € N and 0 < A < 1. Put A = . Then%ef(,so

Hu _ Un 1 ¥m > d. Recall the parallelogram’s equality

lz+ylI* + llz = ylI* = 2([}]* + [lyl*) for all z,y € H.
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We consider = u — v,,, and y = u — v,,. Hence
2
Um + Un

i = ol = 2= w2+ = ) — - 22

Then
v = vmll* < 2(lu = vin[* + Ju = va|[*) — 4d°.
When m,n — oo, we obtain ||v, —v,, || — 0. This implies that the sequence (vy,)p>1 C

K is fundamental, so it has a limit w. Since (v,)n>1 C K and K is closed, it follows
that w = lim v, € K. Hence ||u — v,|| — |Ju —w|| = d as n — co.

n—

In this way, we have shown that there exists w € K such that

|lu —w| =d= inf [|u—v].
veEK

For the uniqueness, we assume that there exists ¢ € K, ¢ # w such that ||lu—w| =

w
€ K, hence

d = ||lu — g||. Since K is convex, we have g+

1 1 1
d= inf fuol < st 52 = =)+ ju- ) < G-l gl-al =d
and
qgtw
d=fu—-12%
YT

From the parallelogram’s equality, for = u — w and y = u — ¢ we obtain

ol = 20—l + o a1?) 4~ | <2+ ) a2 =0

So ||lw — ¢|| = 0, which is equivalent to w = ¢. O

Now we formulate

Definition 2.2.1. Let H be a Hilbert space, K C H a nonempty, convex and
closed subset of X. Let P : H — K be the mapping giving by P(u) = w, where
w € K is such as

|lu —w| =d= inf |Ju—wv].
veEK

The mapping P is called the metric projection of H onto K.

We have the following results (see [12]).

Theorem 2.2.2. Let H be a Hilbert space, K C H a nonempty, convex and closed
subset of X. The following statements are equivalent:

(i) we K, ||lu—w|| <|u—wvl| for every v e K;

(ii) w € K, Re (u —w,v—w) <0 for every v € K;

(ii) w € K, Re (u—v,w—v) >0 for every v € K.

Theorem 2.2.3. Let H be a Hilbert space, K C H a nonempty, convezr and closed
subset of X. The metric projection of X onto K is a nonexpansive mapping, i.e.

|P(u) — P()|| < lu—wl, VY u,ve€ H.
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A consequence of this theorem is the continuity of P. Indeed, for any v € H and
any sequence (uy)n,>1 C H which is norm convergent at u, we have ||P(u) — P(uy)| <
|lu — wy||. Since ||u, — ul|to0, as n — oo, it follows that

|P(upn) — P(u)|| — 0, as n — oo,

i.e. P is continuous.

Thus we may conclude that the mapping given by Definition 3.2.1 is a topological
retraction of H onto K.

Remark 2.2.1. For the uniqueness of the element w € K satisfying d = |Ju—w|| =
d(u, K) the parallelogram’s equality is an important tool. This is in connexion with
the structure of Hilbert space. Thus, Definition 3.2.1 cannot be given for an arbitrary
Banach space. However, if K is a nonempty, closed, convex set of an uniformly convex
Banach space the metric projection P is univoque and continuous (see [23]).

Definition 2.2.2. Let X be a space with the norm || - || and Y C X a closed
subspace of X. A linear continuous mapping P : X — Y is called projection mapping
of X onto Y if it is a surjection and P(y) =y for any y € Y.

Definition 2.2.3. A closed subspace Y of a Banach space X is called comple-
mentabely if there exists a projection of X onto Y.

Theorem 2.2.4. (see [16]) If any closed subspace of a Banach space X is com-
plementabely, then X is isomorph with a Hilbert space.

Examples.

co is not complementabely in [*°

([0, 1] is not complementabely in L*°(0, 1).

2.2 An example of retraction onto Banach spaces

Let X be a Banach space, U C X a nonempty, convex and closed subset of X and
ug € intU.

For every pair u,v € X, the set [u,v] ={w e X : w=(1-Nu+ v, A €][0,1]}
is called the segment between u and v. For any u € X we make the notation Z(u) =
[, ug] N OU. Now, we define the mapping ¢ : X — R by

lo—ul i Zw)=0
e(u) =9 max |jv—up| if Z(u)#0
vEZ(u)

By means of this mapping we construct the operator p : X — U, where

(2.3.1) plu) = ﬂu + <1 + QP(U)) uo

= o] [lu = ol

This mapping is a retraction. Indeed, if u € intU then Z(u) = 0, so p(u) =
u — uol| and this implies p(u) = u. If u € QU then p(u) = |lu — uo|| and again
p(u) = u. Hence p(u) = ufor any u € U. If u ¢ U then Z(u) # ) and p(u) < ||[u—uo||.
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So M € (0,1) and consequently p(u) € [u,ugl, i.e. the image of any point
U — Uug
u € X \ U by p lies on the segment [u, ug).

Moreover, we have

il — Lu)u _M Uy — Up|| =
o) = ol H||u—uo| +<1 ||u—uoll) s
lw = woll ™" [l = wol]

In conclusion, if u € X \ U then p(u) is the intersection point of the segment [u, ug]
with OU, which is the most nearly by u. So p is a continuous retraction.
If U = B(ug,r) ={u € X : |lu—1up| <r} C X the mapping p: X — U is giving
by
u if wuelU

pluj=q +<1 — )uo if ugU

” _
[l = wo| [l = wo|

and it is call ”the radial retraction”.

2.3 An example of retraction onto ordered spaces

Let X be a real vectorial space. X is a vector lattice (ordered space) if X is lattice
and

i)forany z € X,z <ythenz+z2<y+z

ii) if x > 0 and A > 0 then Az > 0.

In any ordered space X, denote by

[,y ={z€ X: 2 <z<y}

the interval with respect to order (ordered interval).

The set X4 = {z € X : x > 0} is called the cone of positifs elements of vectorial
lattice X.

For every x € X, the element ;. = z V 0 is called the positive part of z and
x_ = (—z) V0 = (—z)4 the negative part. The element |z| = x4 + z_ means the
absolute value of z. For any x € X we have x =z —z_.

Let v € X ;. Demote with Y = [—v, v] and define the application ¢ : X — Y,

u if weY
(2.4.1) p(u) = { sup{[0,us] N [0,v]} —sup{[0,u_] N [0,v]} if wgY

We make the notations
Y+ = [O,’U] U+ = [O,U+] and U_ = [O,’LL_]

The application ¢ is a retraction of X onto Y which is compatible with structure of
space X, i.e. it is continuous and for every uy, us € X, u1 < ug we have o(u1) < @(usg).
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Indeed, let u1,us € X with uy < us.
1. Suppose that —v < u; < ug < v, i.e. up,uz € Y. Then ¢(uy) = u; < ug =

p(uz).
2. Ifuy €Y and ug €Y the p(u1) = uy and p(ug) = sup{Usy NY, } —sup{Us_ N

Y}
From u; < us we have w14 < wgy and us— < wy—. Since uy € Y we obtain
w1+ < v and u;— <wv. We have uyy < ugy and ui4 < v, hence

ury < sup{Usz4 NYy}
From us_ < wuj_ and uij— < v results
uy— > sup{Us— NY+}.
Then
p(ur) = u = w4 —ui- <sup{Usy NYy} —sup{Uz- NYy} = p(uz).

Ifu; €Y and ug € Y the proof is similary.
3. Ifu; €Y and ug € Y then

p(u;) = sup{Uiy N Y4} —sup{U;- NY4}, i=1.2

Since u; < uy we have uiy < woy and wus— < wy—. Then Uy C Usy and
Us_ C Uj_. Results
sup{Ui4 N Y3} <sup{Uz4 N Yy}

and
sup{Ua— NY;} <sup{U;- NY,}.

Finally, we have
@(ur) =sup{Ur4 NY,} —sup{U1-NY,} <

< sup{Uz4 N Y1} —sup{Uz- N Y3} = o(uz).

In conclusion, for any uy,us € X with u; < ug we have p(u1) < p(ug). In other
words ¢ is increasing.

3 Boundary conditions

We recall Leray-Schauder boundary condition and show its equivalence to those of
Browder-Petryshyn and Cramer-Ray when the domain is a ball. For all there defini-
tions U is a subset of a Banach space X, ug € intU and T : U — X is a mapping.
For r > 0 and u € X we let B(u,r) be the open ball of X of radius r and center
u, i.e.
Bu,r)={ve X: |lu—v| <7}
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For every pair u,v € X, the set [u,v] ={w € X : w=(1—-XNu+ v, A €[0,1]}
is called the segment between u and v.

We shall assume ug € int U.

Definition 3.1. (Leray-Schauder, see [15]) Let u € QU. T satisfies the Leray-
Schauder boundary condition (LSB) at u relative to U if and only if

(1) (1 = XNug + AT (u) # u for every A € [0, 1].
Remark 3.1. The definition has the equivalent form
(2) T(u) — ug # k(u — ug) for A € [0,1].

In fact Definition 3.1 says that T satisfies LSB at w if and only if the point «
doesn’t lie on the segment [ug, T'(u)].

Definition 3.2. (Browder-Petryshyn, see [8]) Let v € U with u # T(u). T
satisfies the Browder-Petryshyn condition (BP) at u relative to U if anf only if

3) B(T(w), |T(u) —ul) N U # 0.

Remark 3.2. (i) The relation (3) is equivalent to the existence of an element
v € U such that
1T (u) = vl < |17 (u) = ull.

(ii) Obviously, if T'(u) € U or u € int U, then T satisfies BP at u relative to U.
Definition 3.3. (Cramer-Ray, see [22]) Let u € U with u # T'(u). T satisfies the
Cramer-Ray condition (CR) at u relative to U if and only if

() i inf d((1 = h)u + hT'(u),U)

im in - < =T

Lemma 3.1. Let U be conver and u € U with w # T(u). T satisfies CR at u if

and only if there exists v € U and 0 < h <1 such that

(1 = h)u+ AT (u) — v
h

(5) < lu=T(u)].

Proof. =) Obvious.
< ) Without loss of generality, choose 0 < k < 1 such that

(1 = h)u+ hT(u) — v

W < kllu—T(u)].

For each a € (0,1) let z(a) = u+ a(v — u). Since z(a) € [u,v] and U is convex we
have z(a) € U. Now, it suffices to show that for any a € (0,1), z(a) satisfies
(1 —ah)u + ahT(u) — z(a)||
ah

< kfju = T(u)].
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Since

(1 — ah)u + ahT (u) — z(a)|| _ lu — ahu + ahT(u) — u — a(v — u)||
ah ah

= +hhT<u> il )

Thus the lemma is proved. [J

Remark 3.3. If X is a Hilbert space, with inner product (-,-), it is possible to
introduce the Leray-Schauder condition (LS), see [31], in the following way:

Let w € U with u # T'(u) and

LS(u,T(u)) ={ve X: Re (T(u) —u,v—u) >0}
The mapping T satisfies (LS) at u relative to U if and only if
(6) LS xu,T(u))NU # 0.
If U is convex and u € U with u # T'(u) then (see [31])
T satisfies LS at u if and only if T satisfies BP at u
and
T satisfies LS at u if and only if T satisfies CR at u.

Proposition 3.1. Let X be a Banach space, U = B(uo,r) and u € U such that
u# T(u). T satisfies LSB at u if and only if T satisfies BP at u.

Proof. <« ) Assume that T satisfies BP and we wish T satisfies LSB. We know
that

1T (w) = uoll < 1T (u) = v|l + [[v = uo|

for any v € U. If T satisfies BP at u then conform of remark 3.2 exists v € U such
that
1T (w) = wll < IT(u) —ull.

Since u € OU we have
[uo — || < [lug —uf =1

So
1T(u) — uoll < |T(u) — ull + [lu— uoll-

In conclusion u & [ug, T'(u)], i.e. T satisfies LSB.
= ) Assume that T satisfies LSB and we wish T' satisfies BP. Without loss of
generality we can consider ||ug — T'(u)|| > r. Affirm that

r r

U= ) ol L T (1 ~ 7@ = wol

) up € U 0 B(T (), |T(u) - ul).
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Indeed, we have

r r
lv —wol| = HT(u) + (1 - ) ug — ugl| = r
17 (u) — uol| 7 (u) — uol|
hence v € U.
On the other side
r
1T (u) — vl =|1- ‘ 1T (w) — uoll = |T'(u) — uoll — [lv — uoll|-
17 (w) — wol|

Since T satisfies LSB results
17 (u) —uoll < [|T(w) — ull + [lu — uol|-

Then
1T (w) = vll < IT(w) = ul + lu—uoll = [lv = voll = [[u =T (u),
since ||ug — v|| = [Jug — ul| = 7.
Then ||T(u) —v|| < ||T(uw) — ul|, i.e. v € B(T(u), |T(u) —u|). O

If U # B(ug, ), the last proposition is not true.
Example 3.1. Let X = R2, with euclidian’s norm and

U={(z,y) €eR? || <1, |y| <1},
i.e. U is the square with vertex (1,1), (—=1,1), (-1, —-1), (1,—1). Choose ug = (0,0),
1
U = (1, ) with n > 1 and suppose that exists a mapping 7 : U — R? such that
n

k
T(u) = (k, n)’ for k > 1. Under of this assumption, we have T'(u) = ku for k > 1,

1
so remark 1.1 said T' does not satisfies LSB. Bur for k& > %, T satisfies BP.
Now, we fix the point v = (1,1) and obtain

(0~ ol = =17+ (£ - 1)2 _

Moreover

17 ) —ull? = (k —1)° + (jj - 1) _ @41k -1

n
The mapping T satisfies BP is equivalent with
1T (u) — ol < [[T(u) — ul],
that is to say

(2 +1)(k—1)% >n?*(k — 1)? + (k — n)?

(k=12 > (k —n)?

2k(n —1) >n? -1

n+1
k
~ 2

So for k > nTH, T satisfies BP, but T not satisfies LSB.
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3.1 Conditions of retractibility

In following, we denote by F'; the set of fixed point of the mapping f.

Definition 3.2.1. ([9]) A mapping f : Y — X is retractible onto Y if there is a
retraction p : X — Y such that F,o; = F.

Condition (i) F,of = Fy is equivalent with:

(i) if 2 € p(F(V) \ Y), then f(z) & p~}(x) \ {x}.

Indeed, theorem 1.1 from [7] - the retraction mapping principle - shows that con-
dition (ii) implies (i); now we suppose F,or = Fy and there exists z € p(f(Y)\Y)
such that f(z) € p~!(z) \ {z}. Hence z € Fy, but on the other side x = p(f(x)), i.e.
x € Fjof. This is a contradiction, so (i) implies (ii). In conclusion Definition 3.2.1 is
equivalent with the definition given by Brown (see [7]).

Example 2.1. (Poincaré, Bohl, Leray-Schauder, Rothe, Altman, Furi-Vignoli,...)
Let X be a Banach space and Y = B(0,R) C X. If f : B(0,R) — X is such that
l|lz|| = R, f(z) = Az implies A < 1, then f is retractible onto B(0, R) with respect to
the radial retraction p : X — B(0, R).

Example 2.2. (Altman) Let X be a Banach space and f : X — X a norme con-
traction mapping. Then there exists R > 0 such that f : B(0,R) — X is retractible
onto B(0, R) with respect to the radial retraction.

Example 2.3. (Halpern-Beroman) Let X be a strictly convex normed linear
space. Let Y C X be a compact convex subset of X and p : X — Y the metric
projection onto Y. If f : Y — X is nowhere normal-outward, then f is retractible
onto Y with respect to p.

Example 2.4. Let X be aset, Y C X asubset of X and p: X — Y a retraction.
If f:Y — X is such that x € Y\ Fy implies f(z) € X \ p~!(z), then f is retractible
onto Y with respect to p.

In this paragraph we will give some theorems with form: if 7" satisfies a kind of
boundary conditions then T is retractible.

Theorem 3.2.1. Let X be a Hilbert space, U € Py, (X). If the mapping T :
U — X satisfies BP for any u € OU then T is retractible onto U with respect to the
projection mapping of X to U.

Proof. Here p = P denote the metric projection. Assume that F,o; # Fy. Let
u € Fpor \ FT # . Then v = P(T'(u)) and v € dU. This is equivalent with T'(u) # u
and 0 < |lu —T(u)|| < ||T(u) — v||, for any v € U. Results a contradiction with T
satisfies BP condition. [J

Let X be a Hilbert space, U C X convex, u € U with u # T'(u). From Remark
3.3 results T satisfies BP at u iff T satisfies CR at u. Then we have

Theorem 3.2.2. Let X be a Hilbert space, U € P, (X). If the mapping T :
U — X satisfies CR for any u € OU, then T is retractible onto U with respect to the
metric projection of X onto U.

For a Banach space X we will consider the retraction p given by relation (2.3.1).

Theorem 3.2.3. Let X be a Banach space, U € Py (X), uo € intU and the
mapping T : U — X. If T satisfies LSB for any u € OU, then T is retractible onto U
with respect of the retraction p.

Proof. Assume that F,of # Fy. Let u € Fpor \ Fr # 0, i.e. T(u) # u and
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u = p(T(u)) € OU. From definition of p results that there exists k& € (0, 1) such that
u = kT(u) + (1 — k)ug. We get a contraction with T' satisfies LSB for v € 0U. In
conclusion T is retractible onto U with respect to p. [

By Proposition 3.1 if U = B(ug, ), then T satisfies LSB at u is equivalent with
T satisfies BP. Then we have

Theorem 3.2.4. Let X be a Banach space and ug € X. If the mapping T :
B(ug,r) — X satisfies BP for any u € 9B(ug,r) then T is retractible onto B(ug,T)
with respect to the radial retraction.

Theorem 3.2.5. Let X be a vector lattice (ordered space), v € Xy and T :
[-v,v] — X be an operator.

If T(u) €Y implies

sup{[0, T'(u)+] N [0, v]} — sup{[0, T'(u) - N[0, v]} # u

then T is retractible onto [—v, v] with respect of retraction ¢ given by relation (2.4.1).
Proof. Let uw € Fuor \ Fr # 0. Then u = (¢ o T)(u) and u # T(u). Results
T(u) & [—v,v] so

w = o(T(w)) = sup{[0, ()] N0, v]} — sup{[0, Tu)— N[0, 0]}

We get a contradiction, hence F,or C Fr. This implies Fyor = FT, ie. T is
retractible onto [—v,v] with respect to . O

4 Fixed points of retractible mappings

4.1

Let us starting with

Lemma 4.1. (see [29]) Let (X, S, M) be a fized point structure. Let Y € S and
p: X =Y aretraction. Let f:Y — X be such that

(i) po feM(Y)

(i1) f is retractible onto Y by p.
Then Fy # 0.

Proof. From (i) we obtain F,o; # () and from (ii) we have F,o; = Fy. Results
Fy#90. 0

4.2

Theorem 4.2.1. Let X be a Hilbert space, U € Poy o p(X) and T : U — X is a
nonezpansive mapping. If T' satisfies BP for any u € OU, then Fy # (.

Proof. We take (X,S, M) as in example 1.7 and p the projection mapping of
X onto Y. Since p and T is nonexpansive mapping hence (i) from lemma 4.1 is
verified. By Theorem 3.2.1 we have T is retractible onto U with respect to the metric
projection, then (ii) is satisfied. OJ

Obviously, we have

Theorem 4.2.2. Let X be a Hilbert space, U € Pey i p(X) and T : U — X is a
nonexpansive mapping. If T satisfies CR for any u € OU, then Fy # (.
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4.3 A Leray-Schauder type theorem

Let X be a Banach space, Y € Py (X) and g € intY. A mapping T :Y — Y is
said to be a Monch operator if and only if 7" is continuous and for any C' € Py(X)
satisfies C' C c0{{zo} UT(C)} we have that C is compact. In what follows we denote
by a a measure of noncompactness on X.

Remark 4.3.1. If T: Y — Y is a-condensing (i.e. T is continuous and for any
C € Py(X) with a(C) # 0 we have a(T(C)) < a(C)) then T is a Monch operator.
Indeed, for C € Py(X), since C C ev{{zo} UT(C)} we have a(C) < a(c{{zo} U
T(0)}) = a(T(C)) < a(C). Hence a(C) = 0, that is C is compact.

Remark 4.3.2. If T : Y — Y is a («,a)-contraction (i.e. T is continuous and
there is a € [0,1) such that for any C' € P,(X) we have a(T(C)) < aa(C)) then T is
a Monch operator. Indeed, if C' € Py(X) satisfies C C ev{{zo} UT(C)}, then

a(0) < a(@{{zo} UT(C)}) = a(T(C)) < aa(C).

Hence a(C)(1 —a) < 0. Thus ¢ > 1. This is a contradiction with a € [0,1), so
a(C) =0.
Remark 4.3.3. If T : Y — Y is complet continuous (i.e. T is continuous and for

any C € P,(X), T(C) is compact), then T"is a Monch operator. Indeed, if C' € Py(X)
and C' C eo{{zo} UT(C)} then

a(C) < a(@{{z} UT(C)}) = o(T(C)) = 0,

i.e. C is compact.

Now we present a new proof of a result by Monch [17], in the particular case that
the domain of the operator is convex.

Theorem 4.3.1. Let X be a Banach space, Y € P cp(X), xo € intY and
T:Y — X a Monch operator. If T satisfies LSB for any x € Y, then Fr # (.

Proof. Let p: X — Y be the retraction given by (2.3.1). Obviously, poT :Y — Y
is continuous, and 7T is retractible onto Y by p. We wish to prove that poT:Y — Y
is a Monch operator. For this, let C' € P,(X) such that C' C cv{{zo} U (po T)(CO)}.
By the definition of p, we have

(poT)(C) Cev{{zo} UT(C)}.

Then -
C cavf{{zo} U(poT)(C)} Cev{{zo} UT(C)}

Since T is a Moénch operator, we have C' compact. Hence p o T is a Monch operator.
O

Using Remark 4.3.1, 4.3.2 and 4.3.3 we can derive from Theorem 4.3.1 the following
results:

Theorem 4.3.2. Let X be a Banach space, Y € Py (X)), o € intY. If
T:Y — X is a-condensing and T satisfies LSB for any x € Y, then Fr # (.

Theorem 4.3.3. Let X be a Banach space, Y € Py (X)), o € intY. If
T:Y — X is a (a,a)-contraction and T satisfies LSB for any x € 8Y, then Fr # (.
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Theorem 4.3.4. (The classical principle of Leray-Schauder, see [15]) Let X be a
Banach space, Y € Peeyp (X)), zo €intY. If T”Y — X is completely continuous and
T satisfies LSB for any x € 9Y, then Fr # (.

If Y = B(zo, R), then T satisfies LSB if and only if T satisfies BP. Thus, we have:

Theorem 4.3.5. Let X be a Banach space, and T : Y = B(xg, R) — X a Ménch
operator. If T satisfies BP for any x € 0Y, then Fr # ().

4.4

We have the following result (see [30])

Theorem 4.4.1. Let (X, d, <) be an ordered metric space, f : X — X an operator
and x,y € X such that x <y, x < f(x) and f(y) <y.

Assume that

(i) f is increasing;

(i) f is weakly Picard operator.
Then

a) x < f(x) < f2(y) <y

b) f°(x) is the minimal fized point of f in Fy N [z,y] and f>(y) is the mazimal
fized point of f in Fy N[z, y].

Now we can prove the most important result of this paragraph.

Theorem 4.4.2. Let X be an ordered space, v € X, and let the operator T :
[—v,v] = X be continuous and increasing. If T (u) & [—v,v] implies

sup{[0, T'(uw)+] N[0, 0]} — sup{[0,T'(u) -] N [0,v]} # u

for any u € [—v,v], then there exists u and @, the minimal solution, respectively the
mazimal solution of the equation T'(u) = u.

Proof. We can define the operator h : [—v,v] — [—v,v], h = ¢ o T with ¢ the
retraction giving by (2.4.1). We have Fj, = Fr and application & is continuous and
increasing. Much more —v < h(v) and h(v) < v. So, hypothesis from theorem 4.4.1
is satisfied. Then

—v < h®(—v) <h®W) <w

and h*°(—v) = u is the minimal fixed point of h in [—v,v], h°°(v) = W is the maximal
fixed point of h in [—v,v]. Since u,u € Fj, hence u,w € F)T and u < u <7 for every
ye Fp. O

For a similar result when 7' is decreasing see [20].
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