ON ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

Antje Mugler

Department of Physical Technology/Computer Sciences, University of Applied Sciences, Zwickau

2000 Mathematics Subject Classification. 35R60, 65N12, 65N30

Keywords and phrases. Random partial differential equation, stochastic Galerkin methods, generalized polynomial chaos.

Based on the article [1] we consider elliptic partial differential equations

$$-\nabla \cdot (\kappa \nabla u) = f$$

with homogeneous boundary conditions, where the coefficient κ and the forcing f are random fields. Under the assumption that there are random variables κ_{min} and κ_{max} such that

$$0 < \kappa_{min} \le \kappa(x) \le \kappa_{max} < \infty$$
 a.e. and a.s

we study the existence of a unique solution of a corresponding weak formulation to this boundary value problem involving different ansatz and test function spaces. Furthermore a priori error estimates for the Stochastic Galerkin approximation to the solution based on (generalized) polynomial chaos can be given under some conditions.

REFERENCES

 J. Galvis, M. Sarkis, Approximating infinity-dimensional stochastic Darcy's equations without uniform ellipticity, SIAM Journal on Numerical Analysis, 47 (2009), pp. 3624-3651.

1