SUPERDENSE UNBOUNDED DIVERGENCE OF THE BEST CHEBYSHEV APPROXIMATION WITH RESPECT TO A CLASS OF NODE MATRICES

Alexandru I. Mitrea

Department of Mathematics, Technical University of Cluj-Napoca, Romania Alexandru.Ioan.Mitrea@math.utcluj.ro

2000 Mathematics Subject Classification. 41A10

Keywords and phrases. Chebyshev best approximation, superdense set, unbounded divergence

Given a node matrix \mathcal{M} in [-1, 1] so that each *n*-th row J_n of \mathcal{M} has at least n + 1 points, let us define the operators T_n from C into \mathcal{P}_n , $n \ge 1$, as follows: for each f in C and $n \ge 1$, $T_n f$ is the unique polynomial of \mathcal{P}_n for which the infimum of the set

$$\{\max\{|f(x) - P(x)| : x \in J_n\}: P \in \mathcal{P}_n\}$$

is attained.

The aim of this paper is to establish the superdense unbounded divergence of the operators T_n , $n \ge 1$, with respect to some node matrices \mathcal{M} whose rows J_n have at least n + 2 points (the case card $J_n = n + 1$ leads to the classical Lagrange operators). The double condensation of singularities involving the operators T_n will be discussed, too. We remark that these results contrast with the well-known theorem concerning the uniform convergence of the best approximating polynomials in supremum norm.

1