L^p -APPROXIMATION OF THE C_0 -SEMIGROUP ASSOCIATED WITH A GENERALIZATION OF KANTOROVICH OPERATORS ON $[0, 1]^N$

Francesco Altomare¹, Mirella Cappelletti Montano²,

Vita Leonessa*3

^{1,2} Dipartimento di Matematica, Università degli Studi di Bari "A. Moro", Campus Universitario, Via E. Orabona, 4, 70125 Bari-Italy. [{altomare, montano}@dm.uniba.it]

³ Dipartimento di Matematica e Informatica, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza-Italy. [vita.leonessa@unibas.it]

2000 Mathematics Subject Classification. 41A36, 47D06, 47F05.

Keywords and phrases. Kantorovich operator, positive approximation process, C_0 positive semigroup, approximation of semigroups.

This talk deals with the approximation properties of a new class of positive linear operators $(C_n)_{n\geq 1}$ introduced and studied in [2, 3].

More precisely, let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences in [0,1] such that $a_n < b_n \ (n \geq 1)$. Then, for every $n \geq 1$, the operator C_n is defined by setting

$$C_{n}(f)(x) = \sum_{h_{1},\dots,h_{N}=0}^{n} \prod_{i=1}^{N} \binom{n}{h_{i}} x_{i}^{h_{i}} (1-x_{i})^{n-h_{i}}$$
$$\times \left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{\frac{h_{1}+a_{n}}{n+1}}^{\frac{h_{1}+b_{n}}{n+1}} \cdots \int_{\frac{h_{N}+a_{n}}{n+1}}^{\frac{h_{N}+b_{n}}{n+1}} f(t_{1},\dots,t_{N}) dt_{1} \cdots dt_{N},$$

1

for every $f \in L^1([0,1]^N)$ $(p \ge 1)$ and $x \in [0,1]^N$.

The operators C_n represent a generalization of the multidimensional Kantorovich operators (first introduced by Zhou in [4]) and present the advantage to allow the reconstruction of any integrable function on $[0, 1]^N$ by means of its mean value on a finite numbers of sub-cells of $[0, 1]^N$ which do not need to be a subdivision of $[0, 1]^N$.

As showed in [2], the sequence $(C_n)_{n\geq 1}$ is a positive approximation process in $C([0,1]^N)$ as well as in $L^p([0,1]^N)$.

Moreover, this new sequence is closely related to an elliptic second order differential operator of the form

$$V_{l}(u)(x) := \frac{1}{2} \sum_{i=1}^{N} x_{i}(1-x_{i}) \frac{\partial^{2} u}{\partial x_{i}^{2}}(x) + \sum_{i=1}^{N} \left(\frac{l}{2} - x_{i}\right) \frac{\partial u}{\partial x_{i}}(x), \quad (1)$$

where $l \in [0, 2], u \in \mathcal{C}^2([0, 1]^N)$ and $x = (x_i)_{1 \le i \le N} \in [0, 1]^N$.

In fact, let $(T_l(t))_{t\geq 0}$ be the Feller semigroup (pre)generated by $(V_l, \mathcal{C}^2([0, 1]^N))$ (such a semigroup exists thanks to [1, Theorem 4.1]).

In [3] we prove that, under suitable assumptions, the semigroup $(T_l(t))_{t\geq 0}$ can be approximate by means of suitable iterates of the operators C_n in the space $C([0,1]^N)$. Further, in the special case of l = 1, it can be extended to a C_0 -semigroup $(\widetilde{T}(t))_{t\geq 0}$ in the space $L^p([0,1]^N)$ for which an approximation formula in terms of iterates of C_n 's holds too.

REFERENCES

- [1] F. Altomare, M. Cappelletti Montano and S. Diomede, *Degenerate* elliptic operators, *Feller semigroups and modified Bernstein-Schnabl* operators, Math. Nachr., to appear.
- [2] F. Altomare, M. Cappelletti Montano and V. Leonessa, On a generalization of Kantorovitch operators on simplices and hypercubes, APAM, to appear.

- [3] F. Altomare, M. Cappelletti Montano and V. Leonessa, L^p -approximation of the C₀-semigroup associated with a generalization of Kantorovich operators on [0, 1]^N, preprint (2010).
 [4] D.X. Zhou, Converse theorems for multidimensional Kantorovich ope-
- rators, Anal. Math. 19 (1993), 85-100.