HOMOGENIZATION IN DOMAINS WITH MIXED BOUNDARY CONDITIONS

Doina Cioranescu

Laboratoire J.-L. Lions, Université Pierre et Marie Curie, France [cioran@ann.jussieu.fr]

2000 Mathematics Subject Classification. 49J45, 35B27, 74Q05 Keywords and phrases. Homogenization, periodic unfolding.

We study the asymptotic behavior as $\varepsilon \to 0$ of a class of second order elliptic problems in perforated domains with small holes distributed periodically with a period ε , and of size $r(\varepsilon)$ with $r(\varepsilon)/\varepsilon \to 0$. As an example, we consider the case where in each period, there are holes of size of order of $\varepsilon \delta_1(\varepsilon)$, and holes of size of order of $\varepsilon \delta_2(\varepsilon)$ with $\delta_1 \to 0$ and $\delta_2 \to 0$. We prescribe a homogeneous Dirichlet condition on the boundary of holes of size $\varepsilon \delta_2$ and a non homogeneous Neumann one on the boundary of holes of size $\varepsilon \delta_1$. The use of the periodic unfolding method allows us to consider general operators with highly oscillating (with ε) coefficients. Suppose that δ_1 and δ_2 are such that there exist k_1 and k_2 with

$$k_1 = \lim_{\varepsilon \to 0} \frac{\delta_1^{n-1}}{\varepsilon}, \quad 0 \le k_1 < \infty \text{ and } k_2 = \lim_{\varepsilon \to 0} \frac{\delta_2^{n/2-1}}{\varepsilon}, \quad 0 \le k_2 < \infty,$$

where $n \geq 3$ is the dimension of the space. The limit problem contains two additional terms: a zero order one (depending on k_2) representing the contributions of Dirichlet holes, and a second extra right-hand side term (depending on k_1) generated by the Neumann holes. Several other situations are discussed, in particular that mixing homogeneous and nonhomogeneous Neumann conditions.

1