APPROXIMATION PROBLEMS BY POSITIVE LINEAR OPERATORS IN FUNCTION SPACES ON UNBOUNDED DOMAINS

Francesco Altomare

Department of Mathematics, University of Bari, Italy [altomare@dm.uniba.it]

2000 Mathematics Subject Classification. 41A35, 41A36, 47D07

Keywords and phrases. Korovkin-type approximation theorem, integraltype positive operator, positive semigroups, Laplace operator.

The talk will be devoted to discuss some new Korovkin-type theorems, established in [1] and [2], which hold true in the setting of weighted continuous function spaces $C_0^w(X)$ and $C_*^w(X)$ as well as in that one of $L^p(X,\mu)$ spaces, $1 \leq p < +\infty$, where X is a locally compact Hausdorff space, w a weight on X and μ a regular positive Borel measure on X. In particular, these results furnishe simple tools to easily construct Korovkin subsets in $C_0^w(\mathbb{R}^N)$ and $L^p(\mathbb{R}^N,\mu)$.

Among other things, we show that, if μ is a positive Borel measure on an unbouded locally compact subset of \mathbb{R}^N and if $f_0 \in C(X) \cap$ $L^p(X,\mu)$ is a strictly positive function such that $\|\cdot\|^2 f_0 \in L^p(X,\mu)$ for some $1 \leq p < +\infty$, then the subset $\{f_0, f_0 pr_1, ..., f_0 pr_N, \|\cdot\|^2 f_0\}$ is a Korovkin subset in $L^p(X,\mu)$ (here pr_i denotes the *i*-th coordinate function on $X, 1 \leq i \leq N$).

In particular, if μ is finite and $\|\cdot\|^2 \in L^p(X,\mu)$, then $\{\mathbf{1}, pr_1, ..., pr_N, \|\cdot\|^2\}$ is a Korovkin subset in $L^p(X,\mu)$.

We shall discuss some applications which mainly concern the approximation properties on $C_0^w(\mathbb{R}^N)$ and on $L^p(\mathbb{R}^N, \mu)$ of a sequence

1

of positive linear operators which generalize Gauss-Weierstrass operators and which are defined by

$$G_n(f)(x) := \left(\frac{n}{4\pi\alpha(x)}\right)^{\frac{N}{2}} \int_{\mathbb{R}^N} f(t) e^{-\frac{n}{4\alpha(x)}\|t-x\|^2} dt,$$

for every real valued Borel measurable function f on \mathbb{R}^N for which the integral to the right-hand side is absolutely convergent. Here $\alpha : \mathbb{R}^N \to \mathbb{R}$ is a strictly positive continuous function.

These operators have been introduced and studied in [2]. Among other things, we show that they are a useful tool to approximate not only continuous functions and L^p -functions, but also the positive semigroups (and hence the solutions of the degenerate diffusion equations) related to multiplicative perturbations of the Laplacian ([3]).

REFERENCES

- [1] F. Altomare, Korovkin-type theorems and approximation by positive linear operators, preprint, 2010.
- [2] F. Altomare and S. Milella, On a sequence of integral operators on weighted L^p spaces, Analysis Math. **34** (2008), 237 259.
- [3] F. Altomare, S. Milella and G. Musceo, *Multiplicative perturbation of* the Laplacian and related approximation problems, preprint, 2010.