Laboratory 4: Partial Differential Equations

1. Compute first order and second order partial derivatives for the following functions:
(a) $f(x, y)=x^{2}+5 x y+6 y^{4}+10 y$;
(b) $f(x, y)=e^{x y}-\sin (x y)$;
(c) $f(x, y, z)=x y z-x^{2} y^{2} z^{2}$;
(d) $f(x, y, z)=\cos (x y z)+\tan (x)-e^{\ln (y)}$.
2. Compute first order and second order partial derivatives and evaluate them in the specified points:
(a) $f(x, y)=x^{2}+5 x y+6 y^{4}+10 y$ in $(3,2)$
(b) $f(x, y)=e^{x^{2} y^{2}}-5 x^{2} y^{2}$ in $(1,1)$
(c) $f(x, y)=\tan (x y)+e^{x y}$ in $(0,1)$
(d) $f(x, y, z)=\cos (x y z)+\tan (x)-e^{\ln (y)}$ in $(1,0,1)$
3. Let's consider the function:

$$
f(x, y)=\frac{x^{2}+y^{2}}{x y}
$$

Find: $\frac{\partial^{3} f}{\partial x^{2} \partial y}(1,2), \frac{\partial^{3} f}{\partial x \partial y^{2}}(1,1), \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}}(1,2), \frac{\partial^{4} f}{\partial x \partial y^{3}}(2,1)$.
4. Find the general solution for the following first order partial differential equations:
(a) $(x+2 y) \frac{\partial f}{\partial x}-y \frac{\partial f}{\partial y}=0$;
(b) $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=0$;
(c) $(x) \frac{\partial f}{\partial x}-2 y \frac{\partial f}{\partial y}-z \frac{\partial f}{\partial z}=0$;
(d) $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+x y \frac{\partial f}{\partial z}=0$;
(e) $\left(y^{2}+z^{2}-x^{2}\right) \frac{\partial f}{\partial x}-2 x y \frac{\partial f}{\partial y}-2 x z \frac{\partial f}{\partial z}=0$;
5. Find the solution for the following second order partial differential equations:
(a) $u_{x x}-4 u_{y y}=0$;
(b) $4 u_{x x}-4 u_{x y}-2 u_{y y}=0$;
(c) $x^{2} u_{x x}+4 y^{2} u_{y y}=0$
(d) $u_{x x}+x^{2} y^{2} u_{y y}=0$;
6. Let's consider the following partial differential equation:
$x f_{y}-y f_{x}=0$
(a) Find the general solution.
(b) Plot the graph of the particular solution corresponding to the following generator functions: $F(t)=\ln (t), F(t)=e^{t}, F(t)=$ $\sin (t)$.

