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Partial Differential Equations 
 
 

Partial Derivatives with diff 
Partial derivatives of an expression can be calculated using diff command. The structure of diff is 
 
diff(a, x1, x2, ..., xn) 
 
diff computes the partial derivative of the expression a with respect to x1, x2, ..., xn, respectively. The most 
frequent use is diff(f(x),x), which computes the derivative of the function f(x) with respect to x. Note that 
where n is greater than 1, the call to diff is the same as diff called recursively. Thus diff(f(x), x, y); is 
equivalent to the call diff(diff (f(x), x), y).  
The sequence operator $ is useful for forming higher-order derivatives. diff(f(x),x$4), for example, is 
equivalent to diff(f(x),x,x,x,x) and diff(g(x,y),x$2,y$3) is equivalent to diff(g(x,y),x,x,y,y,y)  
 

Let's consider the function  ( )f ,x y e
( )x y2

> f:=(x,y)->exp(x+y^2); 

 := f ( ),x y e
( )x y2

 

The first order partial derivatives 

x

(f ,x y )  and 

y

(f ,x y )  can be obtained as follows: 

> diff(f(x,y),x); 

e
( )x y2

 

> diff(f(x,y),y); 

2 y e
( )x y2

 

The second order partial derivatives 

2

x2 ( )f ,x y ,  
2

y x
( )f ,x y , 


2

y2 (f ,x y )  have the expressions: 

> diff(f(x,y),x,x); 

e
( )x y2

 

or  
> diff(f(x,y),x$2); 

e
( )x y2

 

> diff(f(x,y),x,y); 

2 y e
( )x y2

 

> diff(f(x,y),y$2); 

2 e
( )x y2

4 y2 e
( )x y2

 



We can calculate also higher order partial derivatives using the sequnce operator $. For example 

 
5

y3 x2 (f ,x y )  is 

> diff(f(x,y),x$2,y$3); 

12 y e
( )x y2

8 y3 e
( )x y2

 

>  

Partial derivatives with D 
When we need to evaluate some partial derivative in some given point we have to use the operator D. The 
structure is 
 
D[i](f) 
 
f - expression which can be applied as a function 
i - positive integer or expression or sequence of such integers 
 
Given f, a function of one argument, the call D(f) computes the derivative of the function f. For example, D(sin) 
returns cos. The derivative is a function of one argument such that D(f)(x) = diff(f(x), x). That is, D(f) = 
unapply(diff(f(x), x), x). Thus D is a mapping from unary functions to unary functions.  
Given f, a function of n arguments, the call D[i](f) computes the partial derivative of f with respect to its ith 
argument. More generally, D[i, j](f) is equivalent to D[i](D[j](f)), and D[ ](f) = f. Thus D[i] is a mapping from 
n-ary functions to n-ary functions. 
It is an error to specify a call to the derivative of a function with respect to the k-th variable and apply it to 
fewer than k variables. For instance, D[2](f)(x) yields an error.  
 

Let's consider, again, the function  ( )f ,x y e
( )x y2

The first order partial derivatives 

x

(f ,x y )  and 

y

(f ,x y )  can be obtained as follows: 

> D[1](f)(x,y); 

e
( )x y2

 

> D[2](f)(x,y); 

2 y e
( )x y2

 

Using D operator we can obtain directly the value of  

x

f  (0,0) and 

y

f  ( ) : ,0 ( )ln 2

> D[1](f)(0,0); 
1  

> D[2](f)(0,ln(2)); 

2 ( )ln 2 e
( )( )ln 2 2

 

> evalf(%); 
2.241369972  



The second order partial derivatives 

2

x2 ( )f ,x y ,  
2

y x
( )f ,x y , 


2

y2 (f ,x y )  have the expressions: 

> D[1,1](f)(x,y); 

e
( )x y2

 

> D[1,2](f)(x,y); 

2 y e
( )x y2

 

> D[2,2](f)(x,y); 

2 e
( )x y2

4 y2 e
( )x y2

 

For higher order partial derivatives we have to specify the list with the derivation order, for example 

 
5

y3 x2 (f ,x y )  is 

> D[1,1,2,2,2](f)(x,y); 

12 y e
( )x y2

8 y3 e
( )x y2

 

or simply 
> D[1$2,2$3](f)(x,y); 

12 y e
( )x y2

8 y3 e
( )x y2

 

> restart; 

Partial differential equations 
Partial differential equations can be solved using pdsolve command. 
 
First we load the partial differential equation package 
> with(PDEtools): 
 
The results of pdsolve are returned, by default, in one of three forms. 

  a) When the general solution to the PDE is obtained, the function returns an explicit result for the 
indeterminate function. 

        For example in the case of the equation: x 








y

( )u ,x y y 








x

( )u ,x y 0  

> eq:=x*diff(u(x,y),y)-y*diff(u(x,y),x) = 0; 

 := eq x 








y

( )u ,x y y 








x

( )u ,x y 0  

> pdsolve(eq,u(x,y)); 
( )u ,x y ( )_F1 x2 y2

 

_F1 is an arbitrary function. In order to get some particular solution we have to consider particular cases for the 

function _F1 and to compute . For example if _F1(t)=t^2 then  is a 
particular solution of this equation. We can check if some given function is a solution of some given partial 
differential equation using pdetest command. 

(_F1 x2 y2 ) ( )u ,x y ( )x2 y2
2



> u1:=(x,y)->(x^2+y^2)^2; 

 := u1 ( ),x y ( )x2 y2
2

 

> pdetest(u(x,y)=u1(x,y),eq); 
0  

If pdetest returns 0 then the specified function is a solution, if pdetest returns something different from 0 

then it is not. For example  is not a solution of this equation ( )u2 ,x y ( )x2 y2
2

x
> u2:=(x,y)->(x^2+y^2)^2+x; 

 := u2 ( ),x y ( )x2 y2
2

x  

> pdetest(u(x,y)=u2(x,y),eq); 
y  

>  
 

  b) When a solution, but not the most general one, is obtained pdsolve expresses the result using the internal 
PDESolStruc function, displayed using &where, with the functional form found for the indeterminate 
function as the first argument. The second argument contains a list with any ODEs found while separating 
the variables, as well as any arbitrary functions or changes of variables introduced by pdsolve. 
PDESolStruc enables the user to see how particular the solution obtained is. In these cases, an explicit 
result for the indeterminate function, a particular solution, can be obtained from this PDE solution structure 
by using the build command. See the examples below. 

   

> eq2:=u(x,y)*diff(u(x,y),y,x) + diff(u(x,y),x)*diff(u(x,y),y) = 1; 

 := eq2 ( )u ,x y






 

2

y x
( )u ,x y 









x

( )u ,x y 








y

( )u ,x y 1

 

> sol:=pdsolve(eq2,u(x,y)); 
sol ( )( )u ,x y ( )_F1 x ( )_F2 y &where := 











{ },
d
d
x

( )_F1 x
_c

1

( )_F1 x


d
d
y

( )_F2 y
1
2

1
( )_F2 y _c

1

 

> u1:=build(sol); 

 := u1 ( )u ,x y
2 _c

1
x _C1 _c

1
y _C2 _c

1

2

_c
1

 

The obtained answer is not a function, so we have to use unapply command in order to transform the 
expression in function 
> u_s:=unapply(rhs(u1),x,y,_c[1],_C1,_C2); 

 := u_s ( ), , , ,x y _c_1 _C1 _C2
2 _c_1 x _C1 _c_1 y _C2 _c_1 2

_c_1

 

Now, we can obtain some particular solution given some values to the parameters _c[1], _C1, _C2 
> u_s(x,y,1,1,0); 

2 x 1 y  



A particular result can be obtained by separating the variables by product.  
> sol2:=pdsolve(eq2,HINT=f(x)*g(y)); 

 := sol2 ( )( )u ,x y ( )f x ( )g y &where










{ },
d
d
x

( )f x
_c

1

( )f x


d
d
y

( )g y
1
2

1
( )g y _c

1

 

> u2:=build(sol2); 

 := u2 ( )u ,x y
2 _c

1
x _C1 _c

1
y _C2 _c

1

2

_c
1

 

Use the HINT option to obtain a general solution, getting some inspiration from the solution above.  
 
> sol3:=pdsolve(eq2,HINT=P(x,y)^(1/2)); 

 := sol3 ( )u ,x y  ( )_F2 x ( )_F1 y 2 x y  

>  
>  

   

  c) When pdsolve fails, it returns NULL. 
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