Laborator 2: Variational Calculus. First and second order variation of a functional

1. Calculate the following integrals:
(a) $\int \cos ^{2}(x) d x$
(b) $\int_{0}^{\pi} \sin (x) d x$
(c) $\int \frac{x}{x^{3}-1} d x$
(d) $\int_{1}^{2} \frac{\sin ^{2}(x)}{x} d x$
(e) $\int_{1}^{4} e^{x^{2}} x d x$
2. Let consider the following integral functionals:
(a) $I[y]=\int_{1}^{2} \frac{\left[y^{\prime}(x)\right]^{2}}{x} d x$
(b) $I[y]=\int_{1}^{2} \frac{\sqrt{1+y^{\prime}(x)^{2}}}{x} d x$
(c) $I[y]=\int_{1}^{2} \frac{\left[y^{\prime}(x)\right]^{2}}{x^{3}} d x$
(d) $I[y]=\int_{1}^{2}\left[\left(y^{\prime}(x)\right)^{2}-8 x y^{\prime}+x\right] d x$

Evaluate these functionals for the following functions:

$$
y(x)=\left(3 x^{3}+5 x^{2}\right) / x+1, y(x)=\sin (x), y(x)=e^{x}, y(x)=x^{2}
$$

3. Calculate first and second order variation for the following functionals:
(a) $I[y]=\int_{0}^{1} y(x)^{3} y^{\prime}(x) d x$
(b) $I[y]=\int_{-1}^{1}\left[y(x)+y(x)^{2}\right] y^{\prime}(x) d x$
(c) $I[y]=\int_{0}^{1}\left[y(x)+x y^{\prime}(x)^{2}\right] d x$
(d) $I[y]=\int_{1}^{2} y(x)^{2} y^{\prime}(x)^{2} d x$
