Laboratory 1: Solving differential equations with MAPLE

1. Find the general solution of the differential equations and draw the graph for some solutions:
(a) $2 x^{2} y^{\prime}=x^{2}+y^{2}$
(b) $y^{\prime}=-\frac{x+y}{y}$
(c) $y^{\prime \prime}+y=\sin x+\cos x$
(d) $y^{\prime \prime}-y=e^{2 x}$
2. Solve the following IVPs and draw the solution graph:
(a) $y^{\prime}=1+y^{2}, y(0)=1$;
(b) $y^{\prime}=\frac{1}{1-x^{2}} y+1+x, y(0)=0$;
(c) $y^{\prime \prime}-5 y^{\prime}+4 y=0, y(0)=5, y^{\prime}(0)=8$;
(d) $y^{\prime \prime}-4 y^{\prime}+5 y=2 x^{2} e^{x}, y(0)=2, y^{\prime}(0)=3$;
3. Check if the given functions are solution for the specified differential equation:
(a) $y^{\prime}=1+x, y(x)=x^{2} / 2+x$;
(b) $y^{\prime}=y+1, y(x)=2 e^{x}-1$;
(c) $y^{\prime \prime}-5 y^{\prime}+4 y=0, y(x)=\sin (x)$;
(d) $y^{\prime \prime}-2 y^{\prime}+y=2 x^{2} e^{x}, y(x)=e^{2 x}$;
4. Let $\alpha \in \mathbb{R}$ and $x(\cdot, \alpha)$ the solution of the IVP

$$
x^{\prime \prime}-4 x=\alpha t, \quad x(0)=\alpha, \quad x^{\prime}(0)=0 .
$$

Prove that $\lim _{\alpha \rightarrow 0} x(t, \alpha)=0$ for any $t \in \mathbb{R}$.
5. Let $\omega>0$ and $x(\cdot, \omega)$ the solution of the IVP

$$
x^{\prime \prime}+x=\cos (\omega t), \quad x(0)=x^{\prime}(0)=0 .
$$

Prove that $\lim _{\omega \rightarrow 1} x(t, \omega)=x(t, 1)$ for any $t \in \mathbb{R}$.
6. Find the solution of the IVP and draw the corresponding graph

$$
x^{\prime \prime}+x=f(t), \quad x(0)=5, \quad x^{\prime}(0)=0,
$$

unde $f(t)=\left\{\begin{array}{cc}t, & t \in[0, \pi / 2) \\ \pi-t, & t \in[\pi / 2, \pi] \\ 0, & t \in(\pi, \infty)\end{array}\right.$.
Hint: to define picewise function use picewice command. (see MAPLE help).

