Laboratory 1: Solving differential equations with MAPLE

- 1. Find the general solution of the differential equations and draw the graph for some solutions:
 - (a) $2x^2y' = x^2 + y^2$ (b) $y' = -\frac{x+y}{y}$ (c) $y'' + y = \sin x + \cos x$ (d) $y'' - y = e^{2x}$
- 2. Solve the following IVPs and draw the solution graph:
 - (a) $y' = 1 + y^2$, y(0) = 1; (b) $y' = \frac{1}{1-x^2}y + 1 + x$, y(0) = 0; (c) y'' - 5y' + 4y = 0, y(0) = 5, y'(0) = 8; (d) $y'' - 4y' + 5y = 2x^2e^x$, y(0) = 2, y'(0) = 3;
- 3. Check if the given functions are solution for the specified differential equation:
 - (a) y' = 1 + x, $y(x) = x^2/2 + x$; (b) y' = y + 1, $y(x) = 2e^x - 1$; (c) y'' - 5y' + 4y = 0, $y(x) = \sin(x)$; (d) $y'' - 2y' + y = 2x^2e^x$, $y(x) = e^{2x}$;
- 4. Let $\alpha \in \mathbb{R}$ and $x(\cdot, \alpha)$ the solution of the IVP

$$x'' - 4x = \alpha t$$
, $x(0) = \alpha$, $x'(0) = 0$.

Prove that $\lim_{\alpha \to 0} x(t, \alpha) = 0$ for any $t \in \mathbb{R}$.

5. Let $\omega > 0$ and $x(\cdot, \omega)$ the solution of the IVP

$$x'' + x = \cos(\omega t), \quad x(0) = x'(0) = 0.$$

Prove that $\lim_{\omega \to 1} x(t, \omega) = x(t, 1)$ for any $t \in \mathbb{R}$.

6. Find the solution of the IVP and draw the corresponding graph

$$x'' + x = f(t), \quad x(0) = 5, \quad x'(0) = 0$$

unde $f(t) = \begin{cases} t, & t \in [0, \pi/2) \\ \pi - t, & t \in [\pi/2, \pi] \\ 0, & t \in (\pi, \infty) \end{cases}$

Hint: to define picewise function use **picewice** command. (see MAPLE help).