Laboratory 1: Solving differential equations with MAPLE

Functions and graphic representation

A single variable function can be defined as follows:
> f:=x->sin(x)/x;

$$
f:=x \rightarrow \frac{\sin (x)}{x}
$$

$>f(3 * P i / 2), f(1.5) ;$

$$
-\frac{2}{3 \pi}, 0.6649966577
$$

$>f(a+b) ;$

$$
\frac{\sin (a+b)}{a+b}
$$

For graphical representation we need to load plots package using with command > with(plots): Warning, the name changecoords has been redefined
$>p \operatorname{lot}(f(x), x=-1 . .1)$;

We can represent more than one function in the same window:
> plot ([f(x),f(2*x), sin(x)],x=0..2*Pi, color=[red,blue,green]);

In the case of discontinuous points we need to use the option discont = true:
$>\operatorname{plot}(\tan (x), x=-2 * P i . .2 * P i, y=-4 . .4$, discont $=$ true);

If a curve is given in a parametric form (for example: $\mathrm{x}(t)=\sin (t), \mathrm{y}(t)=\cos (t), t=0 . . \pi ;$) we use the instruction:
> plot([sin(t), cos(t),t=0..3/2*Pi]);

In the case of a curve given by the implicit equation we use the instruction implicitplot: > implicitplot(x^2+y^2=1, x=-1..1, y=-1..1);

In the case we need to visualize the parameter dependence of a function we can use the command animate
(right click on the image, select Animation and Play)
> animate(sin(x*t), x=-4*Pi..4*Pi, $\mathrm{t}=0$. . 2 , color=red);

If we need more precision we can increase the number of point and frames:
$>$ animate(sin($\left.x^{*} t\right), x=-$
4*Pi..4*Pi, t=0..2, color=red, numpoints=100, frames=100);

A function with more than one variable can be defined as follows:
$>g:=(x, y)->\sin (x) * \exp (-y)$;

$$
g:=(x, y) \rightarrow \sin (x) \mathrm{e}^{(-y)}
$$

For 3d graphical representation we use the command plot3d:
> plot3d(g(x,y),x=0..Pi,y=0..3, axes=boxed) ;

The animation of 3D graphs can be made using the instruction animate3d:

```
> animate3d(g(t*x,y),x=0..Pi,y=0..3,t=0..2);
```


The derivation of the functions

The derivation of the functions can be made in two ways: using diff command or using the derivation operator D:
$>f:=x->\exp \left(x^{\wedge} 2\right)+3$;

$$
f:=x \rightarrow \mathbf{e}^{\left(x^{2}\right)}+3
$$

The diff command execute the derivation of the given expresion with respect to the specified variable. The derivation operator \mathbf{D} returns the derivate as a function.
>diff(f(x), x);

$$
2 x \mathbf{e}^{\left(x^{2}\right)}
$$

the second order derivate is given by
$>\operatorname{diff}(f(x), x, x)$;

$$
2 \mathrm{e}^{\left(x^{2}\right)}+4 x^{2} \mathrm{e}^{\left(x^{2}\right)}
$$

also we can use the option $\mathbf{x} \mathbf{\$ n}$ to get n-order derivative $>\operatorname{diff}(f(x), x \$ 2)$;

$$
2 \mathrm{e}^{\left(x^{2}\right)}+4 x^{2} \mathrm{e}^{\left(x^{2}\right)}
$$

>diff(f(x),x\$3);

$$
12 x \mathbf{e}^{\left(x^{2}\right)}+8 x^{3} \mathbf{e}^{\left(x^{2}\right)}
$$

Using the derivation operator:
>D(f)(x);

$$
2 x \mathbf{e}^{\left(x^{2}\right)}
$$

>D(f)(1);

$$
2 \text { e }
$$

>(D@D)(f)(x);

$$
2 \mathrm{e}^{\left(x^{2}\right)}+4 x^{2} \mathrm{e}^{\left(x^{2}\right)}
$$

> > (D@D)(f)(1);
>(D@@2)(f)(x);

$$
2 \mathbf{e}^{\left(x^{2}\right)}+4 x^{2} \mathbf{e}^{\left(x^{2}\right)}
$$

>(D@D@D)(f)(x);

$$
12 x \mathbf{e}^{\left(x^{2}\right)}+8 x^{3} \mathbf{e}^{\left(x^{2}\right)}
$$

>(D@@3)(f)(x);

$$
12 x \mathbf{e}^{\left(x^{2}\right)}+8 x^{3} \mathbf{e}^{\left(x^{2}\right)}
$$

Initialization of the solving ODE package

> restart:
> with(DEtools):
> with(plots):
clears the memory of all previously saved values and variables
) load the graphical package
Warning, the name changecoords has been redefined

Define and solve a first order differential equation

Let consider the differential equation $\frac{d}{d x} y(x)=k y(x)$ where k is a real coeficient. The differential equation can be introduse in MAPLE as follows:

$$
\begin{aligned}
> & \operatorname{diff} _ \text {eq1: }=\operatorname{diff}(\mathbf{y}(\mathbf{x}), \mathbf{x})= \\
& \mathbf{k}^{*} \mathrm{y}(\mathbf{x}) ; \\
& \text { diff_eq1:=} \frac{d}{d x} \mathrm{y}(x)=k \mathrm{y}(x)
\end{aligned}
$$

To obtain the general solution of the equation use dsolve command

> > dsolve(diff_eq1,y(x)) ;

$$
\mathrm{y}(x)=_C 1 \mathrm{e}^{(k x)}
$$

The general solution is seen as an expresion. Notice that the undetermined constant is called _C1 How can we manipulate this expresion?
We can use the function definition command:
> sol: $=(x, k, c)->c * \exp \left(k^{*} x\right)$;

$$
\text { sol }:=(x, k, c) \rightarrow c \mathbf{e}^{(k x)}
$$

If the expresion of the solution is too complicated we can use the command rhs (right hand side) and unapply in order to obtain the solution as a function

```
> right_hand_expr:=rhs(dsolve(diff_eq1,y(x)));
```

$$
\text { right_hand_expr := _C1 } \mathrm{e}^{(k x)}
$$

Using the unapply command we transform the expresion sol1 into a function specifying the variables:
> sol1:=unapply(right_hand_expr, x, k, C1);

$$
\text { sol1 }:=\left(x, k,{ }_{2} C 1\right) \rightarrow \text { _C1 } \mathrm{e}^{(k x)}
$$

and we get the same result.

The graphics of ODE solutions

Let suppose that $\mathrm{k}:=2$. Then the corresponding general solution is:
$>y:=(x, c)->\operatorname{sol}(x, 2, c)$;

$$
y:=(x, c) \rightarrow \operatorname{sol}(x, 2, c)
$$

To draw the solutions curves you just assign some values for the constant c . For example take $c:=1 \quad c:=2$ and $c:=-1$
$>p \operatorname{lot}([y(x, 1), y(x, 2), y(x,-1)], x=-2 . .2)$;

If you want to obtain the solutions with some specified colors use the command:
$>\operatorname{plot}([y(x, 1), y(x, 2), y(x,-1)], x=-2 . .2$, color=[black,red,blue]);

Also you specify the window of the graphic:
$>\operatorname{plot}([y(x, 1), y(x, 2), y(x,-1)], x=-2 . .2, y=-10 . .10$, color=[black,red,blue]);

Using this way of manipulation for the solution you can see also how the solutiond depends on the k parameter. Let us consider $c:=1$ and assign some values for th parameter k .
> y1:=(x,k)->sol(x,k,1);

$$
y 1:=(x, k) \rightarrow \operatorname{sol}(x, k, 1)
$$

$>\operatorname{plot}([y 1(x, 0.2), y(x, 0.5), y(x,-1)], x=-2 . .2, y=-$ 10..10, color=[black,red,blue]);

Testing solutions

For a given differential equation we can test if some given function satisfies or does not satisfy that differential equation using odetest command. If odetest returns $\mathbf{0}$ then the given function is a solution, if odetest returns something different from 0 then the given function is not a solution. Let us consider the the differential equation $\frac{d}{d x} y(x)=2 y(x)$ and check if $y 1(x)=4 e^{(2 x)}, y 2(x)=e^{(3 x)}$ and $y 3(x)=\cos (2 x)$ are solution for this equation.

```
> restart:with(DEtools):
> diff_eq:=diff(y(x),x) = 2*y(x);
```

$$
\begin{gathered}
\text { diff_eq }:=\frac{d}{d x} \mathrm{y}(x)=2 \mathrm{y}(x) \\
>\mathrm{y} 1:=\mathrm{x}->4^{*} \exp \left(2^{*} \mathrm{x}\right) ; \mathrm{y} 2:=\mathrm{x}->\exp (3 * \mathrm{x}) ; \mathrm{y} 3:=\mathrm{x}->\cos \left(2^{*} \mathrm{x}\right) ; \\
y 1:=x \rightarrow 4 \mathrm{e}^{(2 x)} \\
y 2:=x \rightarrow \mathrm{e}^{(3 x)}
\end{gathered}
$$

$$
y 3:=x \rightarrow \cos (2 x)
$$

> odetest(y(x)=y1(x),diff_eq,y(x));

$$
0
$$

for $\mathrm{y} 1(x)=4 \mathrm{e}^{(2 x)}$ odetest returns $\mathbf{0}$, so $\mathrm{y} 1(x)$ is a solution of this equation > odetest $(y(x)=y 2(x)$, diff_eq, $y(x))$;

$$
\mathbf{e}^{(3 x)}
$$

for $\mathrm{y} 2(x)=\mathbf{e}^{(3 x)}$ odetest returns $\mathrm{e}^{(3 x)}$ which is not $\mathbf{0}$, so $\mathrm{y} 2(x)$ is not a solution of the equation, in fact odetest evaluates $\left(\frac{d}{d x} y(x)\right)-2 y(x)$ for $y(x)=y 2(x)$, therefore if we get $\mathbf{0}$ this means that the function is a solution, if the result is something different from $\mathbf{0}$ then the function is not a solution for the differential equation.

```
> odetest(y(x)=y3(x),diff_eq,y(x));
    -2 sin(2x)-2 cos(2x)
```

also $\mathrm{y} 3(x)$ is not a solution since the result of odetest is different from $\mathbf{0}$.

Solving an IVP

Suppose that we want to solve the IVP $\frac{d}{d x} y(x)=k y(x)$ with the initial condition $y(0):=1$

```
> restart:with(DEtools):
>diff_eq:=diff(y(x),x) = k*y(x);
    diff_eq:=\frac{d}{dx}}\textrm{y}(x)=k\textrm{y}(x
```

> in_cond: =y(0)=1;
in_cond: $=y(0)=1$
> dsolve(\{diff_eq,in_cond\},y(x));
$y(x)=e^{(k x)}$

Let consider the case $k:=2$
>k: $=2$;

$$
k:=2
$$

> sol:=dsolve(\{diff_eq,in_cond\},y(x));

$$
\text { sol }:=y(x)=\mathbf{e}^{(2 x)}
$$

> yy:=x->(rhs(sol));

$$
y y:=x \rightarrow \operatorname{rhs}(\text { sol })
$$

>plot (yy(x), x=-1..1,y=0..4);

You can obtain the graph the IVP directly using the command DEplot: > DEplot(diff_eq, y(x), x=-1..1,[[in_cond]]);

In this graph is also represented the direction field of the equation. If you want the graphs of the solutions for different initial condition $(y(0)=1, y(0)=1.5, y(0)=2)$ you can use the same command and specify the list of initial conditions:
> DEplot (diff_eq, $y(x), x=-1 . .1,[[y(0)=1],[y(0)=1.5],[y(0)=2]])$;

Solving a second order ODE

> restart:

> with(DEtools):
> with(plots):
Warning, the name changecoords has been redefined

Consider the linear differential equation with the constant coeficients
$\left(\frac{d^{2}}{d x^{2}} y(x)\right)+3\left(\frac{d}{d x} y(x)\right)+2 y(x)=1+x^{2}$
> deq1: $=\operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+2 * y(x)=1+x^{\wedge} 2 ;$

$$
\text { deq1 }:=\left(\frac{d^{2}}{d x^{2}} \mathrm{y}(x)\right)+3\left(\frac{d}{d x} \mathrm{y}(x)\right)+2 \mathrm{y}(x)=1+x^{2}
$$

To obtain the general solution we use the dsolve command > dsolve(deq1, y(x));

$$
\mathrm{y}(x)=\frac{9}{4}+\frac{x^{2}}{2}-\frac{3 x}{2}-\mathbf{e}^{(-2 x)} _C 1+\mathbf{e}^{(-x)}-C 2
$$

If we want to study the solution we can use the same technique as in the previous section in order to draw the solution graph.
> sol:=dsolve(deq1,y(x));

$$
\text { sol := } \mathrm{y}(x)=\frac{9}{4}+\frac{x^{2}}{2}-\frac{3 x}{2}-\mathbf{e}^{(-2 x)} _C 1+\mathrm{e}^{(-x)} _C 2
$$

> right_hand:=rhs(sol);
right_hand $:=\frac{9}{4}+\frac{x^{2}}{2}-\frac{3 x}{2}-\mathrm{e}^{(-2 x)} __{-} C 1+\mathrm{e}^{(-x)}{ }_{-} C 2$
> y_sol:=unapply(right_hand, X,_C1,_C2) ;
y_{-}sol $:=\left(x, _C 1, _C 2\right) \rightarrow \frac{9}{4}+\frac{1}{2} x^{2}-\frac{3}{2} x-\mathrm{e}^{(-2 x)} _C 1+\mathrm{e}^{(-x)}{ }_{-} C 2$
Now we are able to one ore more than one solution graphs using the plot command.
> plot ([y_sol(x,0,0),y_sol(x,0,1),y_sol(x,1,0)],x=-2..2,y=-10..10);

In the case of initial value problem we have two initial conditions, for example lets take $y(0)=1$ and $y^{\prime}(0)=0$.
> in_cond: $=y(0)=1, D(y)(0)=0$;
in_cond $:=\mathrm{y}(0)=1, \mathrm{D}(y)(0)=0$
To obtain the corresponding solution we use dsolve command in the following form:
> dsolve(\{deq1,in_cond\},y(x));

$$
y(x)=\frac{9}{4}+\frac{x^{2}}{2}-\frac{3 x}{2}-\frac{1}{4} e^{(-2 x)}-e^{(-x)}
$$

Now we can use the previous technique (rhs and unapply comands) to construct the solution as a function and after that to represent its graph or we can obtain this graph directly using DEplot command.
> DEplot (deq1, $y(x), x=-2.2, y=-10 . .10,\left[\left[i n _c o n d\right]\right]$);

If we need to draw more than one solution corresponding to different initial value problem we can use the same DEplot command specifying the list of initial conditions:
> DEplot (deq1, $y(x)$, $x=-$
 10..10, linecolor=[red,blue, green]);

The general second order linear DE, $\left(\frac{d^{2}}{d x^{2}} y(x)\right)+p(x)\left(\frac{d}{d x} y(x)\right)+q(x) y(x)=f(x)$:
Note: Maple is unable to solve most second-order DE's explicitly. For information on numerically solving DE's, see Numerical Solutions with dsolve.
Consider the differential equation $\left(\frac{d^{2}}{d x^{2}} y(x)\right)+x\left(\frac{d}{d x} y(x)\right)+y(x)=\sin (x)$. Try to use the dsolve command.

$$
\begin{aligned}
& >\operatorname{deq} 2:=\operatorname{diff}(\mathbf{y}(\mathbf{x}), \mathbf{x} \$ 2)+\mathrm{x}^{*} \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x})=\sin (\mathrm{x}) ; \\
& \\
& \operatorname{deq} 2:=\left(\frac{d^{2}}{d x^{2}} \mathrm{y}(x)\right)+x\left(\frac{d}{d x} \mathrm{y}(x)\right)+\mathrm{y}(x)=\sin (x)
\end{aligned}
$$

```
> dsolve(deq2,y(x));
```

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{y}(x)= \mathrm{e}^{\left(-\frac{x^{2}}{2}\right)} _C 1 \text { erf }\left(\frac{1}{2} I \sqrt{2} x\right)+\mathrm{e}^{\left(-\frac{x^{2}}{2}\right)}-C 2 \\
&+\frac{1}{4} I \sqrt{2} \sqrt{\pi} \mathrm{e}^{(1 / 2)}\left(\operatorname{erf}\left(\frac{1}{2} I \sqrt{2} x-\frac{\sqrt{2}}{2}\right)+\operatorname{erf}\left(\frac{1}{2} I \sqrt{2} x+\frac{\sqrt{2}}{2}\right)\right) \mathrm{e}^{\left(-\frac{x^{2}}{2}\right)} \\
&> \text { in_cond2: }=\mathrm{y}(0)=1, \mathrm{D}(\mathrm{y})(0)=1 ; \\
& \text { in_cond } 2:=\mathrm{y}(0)=1, \mathrm{D}(y)(0)=1
\end{aligned} \\
& >
\end{aligned}
$$

Maple expresses the solution in terms of the error function erf.
We can obtain the numerical solution using in the dsolve command the option ' type = numeric ' and the odeplot comand to draw the corresponding graph.
> n_sol:=dsolve(\{deq2,in_cond2\}, $y(x)$, type=numeric):
> odeplot(n_sol);

