
Laboratory 1: Solving differential equations with MAPLE 
 

Functions and graphic representation 
A single variable function can be defined as follows: 
> f:=x->sin(x)/x; 

 := f  → x ( )sin x
x  

> f(3*Pi/2),f(1.5); 

,−
2

3 π 0.6649966577  

> f(a+b); 
( )sin  + a b
 + a b  

For graphical representation we need to load  plots package using  with command 
> with(plots): 
Warning, the name changecoords has been redefined 
 
> plot(f(x),x=-1..1); 

 
We can represent more than one function in the same window: 
> plot([f(x),f(2*x),sin(x)],x=0..2*Pi,color=[red,blue,green]); 

 



In the case of discontinuous points we need to use the option discont = true: 
> plot(tan(x), x = -2*Pi..2*Pi, y = -4..4, discont = true); 
 
 
 

 
If a curve is given in a parametric form (for example:  = ( )x t ( )sin t ,  = ( )y t ( )cos t ,  = t  .. 0 π ;) we use the 
instruction: 
> plot([sin(t),cos(t),t=0..3/2*Pi]); 
 

 
In the case of a curve given by the implicit equation we use the instruction implicitplot: 
> implicitplot(x^2+y^2=1,x=-1..1,y=-1..1); 

 
In the case we need to visualize the parameter dependence of a function we can use the command animate 



(right click on the image, select Animation and Play) 
> animate(sin(x*t),x=-4*Pi..4*Pi,t=0..2,color=red); 

 
If we need more precision we can increase the number of point and frames: 
> animate(sin(x*t),x=-
4*Pi..4*Pi,t=0..2,color=red,numpoints=100,frames=100); 

 
A function with more than one variable can be defined as follows: 
> g:=(x,y)->sin(x)*exp(-y); 

 := g  → ( ),x y ( )sin x e
( )−y

 

For 3d graphical representation we use the command plot3d: 
> plot3d(g(x,y),x=0..Pi,y=0..3,axes=boxed); 

 
The animation of 3D graphs can be made using the instruction animate3d: 



> animate3d(g(t*x,y),x=0..Pi,y=0..3,t=0..2); 

 

The derivation of the functions 
The derivation of the functions can be made in two ways: using diff command or using the derivation 
operator D: 
> f:=x->exp(x^2)+3; 

 := f  → x  + e
( )x2

3  

 The diff command execute the derivation of the given expresion with respect to the specified variable. The 
derivation operator D returns the derivate as a function. 
> diff(f(x),x); 

2 x e
( )x2

 

the second order derivate is given by 
> diff(f(x),x,x); 

 + 2 e
( )x2

4 x2 e
( )x2

 

also we can use the option x$n to get n-order derivative  
> diff(f(x),x$2); 

 + 2 e
( )x2

4 x2 e
( )x2

 

 
> diff(f(x),x$3); 

 + 12 x e
( )x2

8 x3 e
( )x2

 

Using the derivation operator: 
> D(f)(x); 

2 x e
( )x2

 

> D(f)(1); 
2 e  

> (D@D)(f)(x); 

 + 2 e
( )x2

4 x2 e
( )x2

 



> (D@D)(f)(1); 
6 e  

> (D@@2)(f)(x); 

 + 2 e
( )x2

4 x2 e
( )x2

 

> (D@D@D)(f)(x); 

 + 12 x e
( )x2

8 x3 e
( )x2

 

> (D@@3)(f)(x); 

 + 12 x e
( )x2

8 x3 e
( )x2

 

 

Initialization of the solving ODE package 
> restart:             clears the memory of all previously saved values and variables 
> with(DEtools):                  load the differential equations package 
> with(plots):                       load the graphical package 
Warning, the name changecoords has been redefined 
 

Define and solve a first order differential equation 
 = Let consider the differential equation d

d
x ( )y x k ( )y x k where  is a real coeficient. The differential 

equation can be introduse in MAPLE as follows: 
 
> diff_eq1:=diff(y(x),x) = k*y(x); 

 := diff_eq1  = d
d
x ( )y x k ( )y x  

To obtain the general solution of the equation use dsolve command 
 
> dsolve(diff_eq1,y(x)); 

 = ( )y x _C1 e
( )k x

 

The general solution is seen as an expresion. Notice that the undetermined constant is called _C1 
How can we manipulate this expresion? 
We can use the function definition command: 
> sol:=(x,k,c)->c*exp(k*x); 

 := sol  → ( ), ,x k c c e
( )k x

 

If the expresion of the solution is too complicated we can use the command rhs (right hand side) and 
unapply in order to obtain the solution as a function 
> right_hand_expr:=rhs(dsolve(diff_eq1,y(x))); 

 := right_hand_expr _C1 e
( )k x

 

Using the unapply command we transform the expresion sol1 into a function specifying the variables: 
> sol1:=unapply(right_hand_expr,x,k,_C1); 

 := sol1  → ( ), ,x k _C1 _C1 e
( )k x

 



and we get the same result. 

The graphics of ODE solutions 
Let suppose that k:=2. Then the corresponding general solution is: 
> y:=(x,c)->sol(x,2,c); 

:= y  → ( ),x c ( )sol , ,x 2 c  

To draw the solutions curves you just assign some values for the constant c. For example take   
and  

:= c 1 := c 2
 := c −1

> plot([y(x,1),y(x,2),y(x,-1)],x=-2..2); 

 
If you want to obtain the solutions with some specified colors use the command: 
> plot([y(x,1),y(x,2),y(x,-1)],x=-2..2,color=[black,red,blue]); 

 
Also you specify the window of the graphic: 
> plot([y(x,1),y(x,2),y(x,-1)],x=-2..2,y=-10..10,color=[black,red,blue]); 



 
Using this way of manipulation for the solution you can see also how the solutiond depends on the k 
parameter. Let us consider  and assign some values for th parameter k.  := c 1
> y1:=(x,k)->sol(x,k,1); 

:= y1  → ( ),x k ( )sol , ,x k 1  

> plot([y1(x,0.2),y(x,0.5),y(x,-1)],x=-2..2,y=-
10..10,color=[black,red,blue]); 

 

Testing solutions 
For a given differential equation we can test if some given function satisfies or does not satisfy that 
differential equation using odetest command. If odetest returns 0 then the given function is a solution, if 
odetest returns something different from 0 then the given function is not a solution. Let us consider the the 

differential equation  = d
d
x ( )y x 2 ( )y x  = ( )y1 x 4 e

( )2 x
 = ( )y2 x e

( )3 x
 = ( )y3 x ( )cos 2 x and check if  ,  and  

are solution for this equation. 
> restart:with(DEtools): 
> diff_eq:=diff(y(x),x) = 2*y(x); 

 := diff_eq  = d
d
x ( )y x 2 ( )y x  

> y1:=x->4*exp(2*x);y2:=x->exp(3*x);y3:=x->cos(2*x); 
 := y1  → x 4 e

( )2 x
 

 := y2  → x e
( )3 x

 



:= y3  → x ( )cos 2 x  

> odetest(y(x)=y1(x),diff_eq,y(x)); 
0  

 = ( )y1 x 4 e
( )2 x

( )y1 x  odetest returns 0, so for   is a solution of this equation 
> odetest(y(x)=y2(x),diff_eq,y(x)); 

e
( )3 x

 

 = ( )y2 x e
( )3 x

e
( )3 x

( )y2 xodetest returns  which is not 0, so for  is not a solution of the equation, in fact 

odetest evaluates  − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )y x 2 ( )y x  = ( )y x ( )y2 x for , therefore if we get 0 this means that the function is 

a solution, if the result is something different from 0 then the function is not a solution for the differential 
equation. 
> odetest(y(x)=y3(x),diff_eq,y(x)); 

−  − 2 ( )sin 2 x 2 (cos 2 )x  

( )y3 x  is not a solution since the result of odetest is different from 0. also 

Solving an IVP 
Suppose that we want to solve the IVP   = d

d
x ( )y x k ( )y x  with the initial condition   := ( )y 0 1

> restart:with(DEtools): 
> diff_eq:=diff(y(x),x) = k*y(x); 

 := diff_eq  = d
d
x ( )y x k ( )y x  

> in_cond:=y(0)=1; 
:= in_cond  = ( )y 0 1  

> dsolve({diff_eq,in_cond},y(x)); 
 = ( )y x e

( )k x
 

Let consider the case   := k 2
> k:=2; 

:= k 2  

> sol:=dsolve({diff_eq,in_cond},y(x)); 
 := sol  = ( )y x e

( )2 x
 

> yy:=x->(rhs(sol)); 
:= yy  → x ( )rhs sol  

> plot(yy(x),x=-1..1,y=0..4); 



 
You can obtain the graph the IVP directly using the command DEplot: 
> DEplot(diff_eq,y(x),x=-1..1,[[in_cond]]); 

 
In this graph is also represented the direction field of the equation. If you want the graphs of the solutions for 
different initial condition ( ,  = ( )y 0 1  = ( )y 0 1.5 ,  = ( )y 0 2 ) you can use the same command and specify the 
list of initial conditions: 
> DEplot(diff_eq,y(x),x=-1..1,[[y(0)=1],[y(0)=1.5],[y(0)=2]]); 

 

Solving a second order ODE 
> restart: 
> with(DEtools): 
> with(plots): 
Warning, the name changecoords has been redefined 



 
Consider the linear differential equation with the constant coeficients 

 =  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ( )y x 3 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )y x 2 ( )y x  + 1 x2   

> deq1:=diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=1+x^2; 

 := deq1  =  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ( )y x 3 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )y x 2 ( )y x  + 1 x2  

To obtain the general solution we use the dsolve command 
> dsolve(deq1,y(x)); 

 = ( )y x  +  −  −  + 
9
4

x2

2
3 x
2 e

( )−2 x
_C1 e

( )−x
_C2  

If we want to study the solution we can use the same technique as in the previous section in order to draw the 
solution graph. 
> sol:=dsolve(deq1,y(x)); 

 := sol  = ( )y x  +  −  −  + 
9
4

x2

2
3 x
2 e

( )−2 x
_C1 e

( )−x
_C2  

> right_hand:=rhs(sol); 

 := right_hand  +  −  −  + 
9
4

x2

2
3 x
2 e

( )−2 x
_C1 e

( )−x
_C2

 

> y_sol:=unapply(right_hand,x,_C1,_C2); 

 := y_sol  → ( ), ,x _C1 _C2  +  −  −  + 
9
4

1
2 x2 3

2 x e
( )−2 x

_C1 e
( )−x

_C2
 

Now we are able to one ore more than one solution graphs using the plot command. 
> plot([y_sol(x,0,0),y_sol(x,0,1),y_sol(x,1,0)],x=-2..2,y=-10..10); 

 
In the case of initial value problem we have two initial conditions, for example lets take  = ( )y 0 1  and 
y'(0)=0. 
> in_cond:=y(0)=1,D(y)(0)=0; 

:= in_cond , = ( )y 0 1  = ( )( )D y 0 0  

To obtain the corresponding solution we use dsolve command in the following form: 
> dsolve({deq1,in_cond},y(x)); 



 = ( )y x  +  −  −  − 
9
4

x2

2
3 x
2

1
4 e

( )−2 x
e

( )−x
 

Now we can use the previous technique (rhs and unapply comands) to construct the solution as a function 
and after that to represent its graph or we can obtain this graph directly using DEplot command. 
> DEplot(deq1,y(x),x=-2..2,y=-10..10,[[in_cond]]); 

 
If we need to draw more than one solution corresponding to different initial value problem we can use the 
same DEplot command specifying the list of initial conditions: 
> DEplot(deq1,y(x),x=-
2..2,[[y(0)=1,D(y)(0)=0],[y(0)=1,D(y)(0)=1],[y(0)=0,D(y)(0)=0]],y=-
10..10,linecolor=[red,blue,green]); 

 
The general second order linear DE,  =  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ( )y x ( )p x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )y x ( )q x ( )y x ( )f x : 

Note:  Maple is unable to solve most second-order DE's explicitly.  For information on numerically solving 
DE's, see Numerical Solutions with dsolve. 

Consider the differential equation  =  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ( )y x x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )y x ( )y x ( )sin x . Try to use the dsolve 

command. 
> deq2:=diff(y(x),x$2)+x*diff(y(x),x)+y(x)=sin(x); 

 := deq2  =  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ( )y x x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )y x ( )y x ( )sin x  

> dsolve(deq2,y(x)); 



( )y x e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
_C1 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf 1

2 I 2 x e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
_C2 +  = 

1
4 I 2 π e

( )/1 2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf  − 

1
2 I 2 x 2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟erf  + 

1
2 I 2 x 2

2 e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
 + 

 

> in_cond2:=y(0)=1,D(y)(0)=1; 
:= in_cond2 , = ( )y 0 1  = ( )( )D y 0 1  

> dsolve({deq2,in_cond2},y(x)); 

( )y x e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
π 2 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf 1

2 I 2 x I e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
−  +  = 

1
4 I 2 π e

( )/1 2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf  − 

1
2 I 2 x 2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟erf  + 

1
2 I 2 x 2

2 e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
 + 

 

Maple expresses the solution  in terms of  the error function erf. 
We can obtain the numerical solution using in the dsolve command the option ' ' and the 
odeplot comand to draw the corresponding graph. 

 = type numeric

> n_sol:=dsolve({deq2,in_cond2},y(x),type=numeric): 
> odeplot(n_sol); 

 
 
 
 


	Laboratory 1: Solving differential equations with MAPLE
	Functions and graphic representation
	The derivation of the functions
	Initialization of the solving ODE package
	Define and solve a first order differential equation
	The graphics of ODE solutions
	Testing solutions
	Solving an IVP
	Solving a second order ODE


