
Laboratory 1: Solving differential equations with MAPLE

Functions and graphic representation
A single variable function can be defined as follows:
> f:=x->sin(x)/x;

 := f → x ()sin x
x

> f(3*Pi/2),f(1.5);

,−
2

3 π 0.6649966577

> f(a+b);
()sin + a b
 + a b

For graphical representation we need to load plots package using with command
> with(plots):
Warning, the name changecoords has been redefined

> plot(f(x),x=-1..1);

We can represent more than one function in the same window:
> plot([f(x),f(2*x),sin(x)],x=0..2*Pi,color=[red,blue,green]);

In the case of discontinuous points we need to use the option discont = true:
> plot(tan(x), x = -2*Pi..2*Pi, y = -4..4, discont = true);

If a curve is given in a parametric form (for example: = ()x t ()sin t , = ()y t ()cos t , = t .. 0 π ;) we use the
instruction:
> plot([sin(t),cos(t),t=0..3/2*Pi]);

In the case of a curve given by the implicit equation we use the instruction implicitplot:
> implicitplot(x^2+y^2=1,x=-1..1,y=-1..1);

In the case we need to visualize the parameter dependence of a function we can use the command animate

(right click on the image, select Animation and Play)
> animate(sin(x*t),x=-4*Pi..4*Pi,t=0..2,color=red);

If we need more precision we can increase the number of point and frames:
> animate(sin(x*t),x=-
4*Pi..4*Pi,t=0..2,color=red,numpoints=100,frames=100);

A function with more than one variable can be defined as follows:
> g:=(x,y)->sin(x)*exp(-y);

 := g → (),x y ()sin x e
()−y

For 3d graphical representation we use the command plot3d:
> plot3d(g(x,y),x=0..Pi,y=0..3,axes=boxed);

The animation of 3D graphs can be made using the instruction animate3d:

> animate3d(g(t*x,y),x=0..Pi,y=0..3,t=0..2);

The derivation of the functions
The derivation of the functions can be made in two ways: using diff command or using the derivation
operator D:
> f:=x->exp(x^2)+3;

 := f → x + e
()x2

3

 The diff command execute the derivation of the given expresion with respect to the specified variable. The
derivation operator D returns the derivate as a function.
> diff(f(x),x);

2 x e
()x2

the second order derivate is given by
> diff(f(x),x,x);

 + 2 e
()x2

4 x2 e
()x2

also we can use the option x$n to get n-order derivative
> diff(f(x),x$2);

 + 2 e
()x2

4 x2 e
()x2

> diff(f(x),x$3);

 + 12 x e
()x2

8 x3 e
()x2

Using the derivation operator:
> D(f)(x);

2 x e
()x2

> D(f)(1);
2 e

> (D@D)(f)(x);

 + 2 e
()x2

4 x2 e
()x2

> (D@D)(f)(1);
6 e

> (D@@2)(f)(x);

 + 2 e
()x2

4 x2 e
()x2

> (D@D@D)(f)(x);

 + 12 x e
()x2

8 x3 e
()x2

> (D@@3)(f)(x);

 + 12 x e
()x2

8 x3 e
()x2

Initialization of the solving ODE package
> restart: clears the memory of all previously saved values and variables
> with(DEtools): load the differential equations package
> with(plots): load the graphical package
Warning, the name changecoords has been redefined

Define and solve a first order differential equation
 = Let consider the differential equation d

d
x ()y x k ()y x k where is a real coeficient. The differential

equation can be introduse in MAPLE as follows:

> diff_eq1:=diff(y(x),x) = k*y(x);

 := diff_eq1 = d
d
x ()y x k ()y x

To obtain the general solution of the equation use dsolve command

> dsolve(diff_eq1,y(x));

 = ()y x _C1 e
()k x

The general solution is seen as an expresion. Notice that the undetermined constant is called _C1
How can we manipulate this expresion?
We can use the function definition command:
> sol:=(x,k,c)->c*exp(k*x);

 := sol → (), ,x k c c e
()k x

If the expresion of the solution is too complicated we can use the command rhs (right hand side) and
unapply in order to obtain the solution as a function
> right_hand_expr:=rhs(dsolve(diff_eq1,y(x)));

 := right_hand_expr _C1 e
()k x

Using the unapply command we transform the expresion sol1 into a function specifying the variables:
> sol1:=unapply(right_hand_expr,x,k,_C1);

 := sol1 → (), ,x k _C1 _C1 e
()k x

and we get the same result.

The graphics of ODE solutions
Let suppose that k:=2. Then the corresponding general solution is:
> y:=(x,c)->sol(x,2,c);

:= y → (),x c ()sol , ,x 2 c

To draw the solutions curves you just assign some values for the constant c. For example take
and

:= c 1 := c 2
 := c −1

> plot([y(x,1),y(x,2),y(x,-1)],x=-2..2);

If you want to obtain the solutions with some specified colors use the command:
> plot([y(x,1),y(x,2),y(x,-1)],x=-2..2,color=[black,red,blue]);

Also you specify the window of the graphic:
> plot([y(x,1),y(x,2),y(x,-1)],x=-2..2,y=-10..10,color=[black,red,blue]);

Using this way of manipulation for the solution you can see also how the solutiond depends on the k
parameter. Let us consider and assign some values for th parameter k. := c 1
> y1:=(x,k)->sol(x,k,1);

:= y1 → (),x k ()sol , ,x k 1

> plot([y1(x,0.2),y(x,0.5),y(x,-1)],x=-2..2,y=-
10..10,color=[black,red,blue]);

Testing solutions
For a given differential equation we can test if some given function satisfies or does not satisfy that
differential equation using odetest command. If odetest returns 0 then the given function is a solution, if
odetest returns something different from 0 then the given function is not a solution. Let us consider the the

differential equation = d
d
x ()y x 2 ()y x = ()y1 x 4 e

()2 x
 = ()y2 x e

()3 x
 = ()y3 x ()cos 2 x and check if , and

are solution for this equation.
> restart:with(DEtools):
> diff_eq:=diff(y(x),x) = 2*y(x);

 := diff_eq = d
d
x ()y x 2 ()y x

> y1:=x->4*exp(2*x);y2:=x->exp(3*x);y3:=x->cos(2*x);
 := y1 → x 4 e

()2 x

 := y2 → x e
()3 x

:= y3 → x ()cos 2 x

> odetest(y(x)=y1(x),diff_eq,y(x));
0

 = ()y1 x 4 e
()2 x

()y1 x odetest returns 0, so for is a solution of this equation
> odetest(y(x)=y2(x),diff_eq,y(x));

e
()3 x

 = ()y2 x e
()3 x

e
()3 x

()y2 xodetest returns which is not 0, so for is not a solution of the equation, in fact

odetest evaluates − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ()y x 2 ()y x = ()y x ()y2 x for , therefore if we get 0 this means that the function is

a solution, if the result is something different from 0 then the function is not a solution for the differential
equation.
> odetest(y(x)=y3(x),diff_eq,y(x));

− − 2 ()sin 2 x 2 (cos 2)x

()y3 x is not a solution since the result of odetest is different from 0. also

Solving an IVP
Suppose that we want to solve the IVP = d

d
x ()y x k ()y x with the initial condition := ()y 0 1

> restart:with(DEtools):
> diff_eq:=diff(y(x),x) = k*y(x);

 := diff_eq = d
d
x ()y x k ()y x

> in_cond:=y(0)=1;
:= in_cond = ()y 0 1

> dsolve({diff_eq,in_cond},y(x));
 = ()y x e

()k x

Let consider the case := k 2
> k:=2;

:= k 2

> sol:=dsolve({diff_eq,in_cond},y(x));
 := sol = ()y x e

()2 x

> yy:=x->(rhs(sol));
:= yy → x ()rhs sol

> plot(yy(x),x=-1..1,y=0..4);

You can obtain the graph the IVP directly using the command DEplot:
> DEplot(diff_eq,y(x),x=-1..1,[[in_cond]]);

In this graph is also represented the direction field of the equation. If you want the graphs of the solutions for
different initial condition (, = ()y 0 1 = ()y 0 1.5 , = ()y 0 2) you can use the same command and specify the
list of initial conditions:
> DEplot(diff_eq,y(x),x=-1..1,[[y(0)=1],[y(0)=1.5],[y(0)=2]]);

Solving a second order ODE
> restart:
> with(DEtools):
> with(plots):
Warning, the name changecoords has been redefined

Consider the linear differential equation with the constant coeficients

 = + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ()y x 3 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ()y x 2 ()y x + 1 x2

> deq1:=diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=1+x^2;

 := deq1 = + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ()y x 3 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ()y x 2 ()y x + 1 x2

To obtain the general solution we use the dsolve command
> dsolve(deq1,y(x));

 = ()y x + − − +
9
4

x2

2
3 x
2 e

()−2 x
_C1 e

()−x
_C2

If we want to study the solution we can use the same technique as in the previous section in order to draw the
solution graph.
> sol:=dsolve(deq1,y(x));

 := sol = ()y x + − − +
9
4

x2

2
3 x
2 e

()−2 x
_C1 e

()−x
_C2

> right_hand:=rhs(sol);

 := right_hand + − − +
9
4

x2

2
3 x
2 e

()−2 x
_C1 e

()−x
_C2

> y_sol:=unapply(right_hand,x,_C1,_C2);

 := y_sol → (), ,x _C1 _C2 + − − +
9
4

1
2 x2 3

2 x e
()−2 x

_C1 e
()−x

_C2

Now we are able to one ore more than one solution graphs using the plot command.
> plot([y_sol(x,0,0),y_sol(x,0,1),y_sol(x,1,0)],x=-2..2,y=-10..10);

In the case of initial value problem we have two initial conditions, for example lets take = ()y 0 1 and
y'(0)=0.
> in_cond:=y(0)=1,D(y)(0)=0;

:= in_cond , = ()y 0 1 = ()()D y 0 0

To obtain the corresponding solution we use dsolve command in the following form:
> dsolve({deq1,in_cond},y(x));

 = ()y x + − − −
9
4

x2

2
3 x
2

1
4 e

()−2 x
e

()−x

Now we can use the previous technique (rhs and unapply comands) to construct the solution as a function
and after that to represent its graph or we can obtain this graph directly using DEplot command.
> DEplot(deq1,y(x),x=-2..2,y=-10..10,[[in_cond]]);

If we need to draw more than one solution corresponding to different initial value problem we can use the
same DEplot command specifying the list of initial conditions:
> DEplot(deq1,y(x),x=-
2..2,[[y(0)=1,D(y)(0)=0],[y(0)=1,D(y)(0)=1],[y(0)=0,D(y)(0)=0]],y=-
10..10,linecolor=[red,blue,green]);

The general second order linear DE, = + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ()y x ()p x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ()y x ()q x ()y x ()f x :

Note: Maple is unable to solve most second-order DE's explicitly. For information on numerically solving
DE's, see Numerical Solutions with dsolve.

Consider the differential equation = + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ()y x x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ()y x ()y x ()sin x . Try to use the dsolve

command.
> deq2:=diff(y(x),x$2)+x*diff(y(x),x)+y(x)=sin(x);

 := deq2 = + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ()y x x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ()y x ()y x ()sin x

> dsolve(deq2,y(x));

()y x e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
_C1 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf 1

2 I 2 x e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
_C2 + =

1
4 I 2 π e

()/1 2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf −

1
2 I 2 x 2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟erf +

1
2 I 2 x 2

2 e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
 +

> in_cond2:=y(0)=1,D(y)(0)=1;
:= in_cond2 , = ()y 0 1 = ()()D y 0 1

> dsolve({deq2,in_cond2},y(x));

()y x e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
π 2 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf 1

2 I 2 x I e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
− + =

1
4 I 2 π e

()/1 2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟erf −

1
2 I 2 x 2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟erf +

1
2 I 2 x 2

2 e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟−

x2

2
 +

Maple expresses the solution in terms of the error function erf.
We can obtain the numerical solution using in the dsolve command the option ' ' and the
odeplot comand to draw the corresponding graph.

 = type numeric

> n_sol:=dsolve({deq2,in_cond2},y(x),type=numeric):
> odeplot(n_sol);

	Laboratory 1: Solving differential equations with MAPLE
	Functions and graphic representation
	The derivation of the functions
	Initialization of the solving ODE package
	Define and solve a first order differential equation
	The graphics of ODE solutions
	Testing solutions
	Solving an IVP
	Solving a second order ODE

