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TWO DIMENSIONAL GAUSSIAN PELL SEQUENCES

SUKRAN UYGUN

Abstract. In this paper, a new approach is taken toward the generalization of
Pell sequences into the complex plane. It is shown that the Pell numbers are
generalized to two dimensions. For special entries of this new sequence, some
relations with classic Pell sequence are constructed. Binet formula, generat-
ing function, explicit closed formula, sum formula for the new two dimensional
Gaussian Pell sequence are investigated. The relation with classic Pell-Lucas
numbers and two dimensional Gaussian Pell numbers are obtained by using the
Binet formula. By matrix algebra, we obtain matrix representations of two di-
mensional Gaussian Pell sequences.
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1. INTRODUCTION AND PRELIMINARIES

Complex numbers z = a + ib, a, b ∈ Z were investigated by Gauss in 1832
so they are called Gaussian numbers. Horadam introduced complex Fibonacci
number called the Gaussian Fibonacci number. Jordan studied two of the
complex Fibonacci sequences and extended some relations which are known
about the Fibonacci sequences. Berzsenyi [1], denoted a natural way of ex-
tension of the Fibonacci numbers into the complex plane and obtained some
interesting identities for the classical Fibonacci numbers. Harman [4], Jordan
[5] demonstrated an extension of Fibonacci and Lucas numbers into the com-
plex plane. Pethe and Horadam [6] studied generalized Gaussian Fibonacci
numbers. Halici and Oz [2] defined Gaussian Pell and Pell-Lucas numbers.
Then they generalized numbers to Gaussian Pell polynomials [3]. Soykan [7]
studied on summing formulas for generalized Fibonacci and Gaussian general-
ized Fibonacci numbers. For n ∈ Z , the classic Pell and Pell-Lucas sequences
are defined by respectively

Pn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1

Qn+2 = 2Qn+1 +Qn, Q0 = 2, Q1 = 2.
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The elements of the classic Pell and Pell-Lucas with negative indices are
demonstrated by

P−n = (−1)n+1 Pn, Q−n = (−1)nQn.

Halıcı and Oz defined the Gaussian Pell {GPn}∞n=0 sequence by

GPn+2 = 2GPn+1 +GPn, GP0 = i, GP1 = 1.

The Gaussian Pell-Lucas sequence {GQn}∞n=0 is defined by

GQn+2 = 2GQn+1 +GQn, GQ0 = 2− 2i, GQ1 = 2 + 2i.

Also, the Gaussian Pell and Pell-Lucas sequences satisfy the following identi-
ties:

GPn = Pn + iPn−1,

GQn = Qn + iQn−1.

The Gaussian Jacobsthal-Lucas sequence {GCn}∞n=0 is defined by the fol-
lowing recurrence relation

GCn = Cn + iCn−1.

2. TWO DIMENSIONAL GAUSSIAN PELL SEQUENCE

Definition 2.1. Let n,m be any integers. The two dimensional Gaussian
Pell sequence is defined by

G(n+ 2,m) = 2G(n+ 1,m) +G(n,m),

G(n,m+ 2) = 2G(n,m+ 1) +G(n,m),

G(0, 0) = 0, G(1, 0) = 1, G(0, 1) = i, G(1, 1) = 2(1 + i).

If we use Definition 2.1 for m = 0 and n = 0 respectively, we get

G(n+ 2, 0) = 2G(n+ 1, 0) +G(n, 0),

G(0,m+ 2) = 2G(0,m+ 1) +G(0,m).

By the initial conditons and the induction method, it is easily obtained that

G(n, 0) = Pn,

G(0,m) = iPm.

Theorem 2.2. Let n be any integer. Then

G(n, 1) = PnG(1, 1) + Pn−1G(0, 1),

G(n, 1) = 2Pn + iPn+1.
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Proof. The induction method is used to prove this theorem. For m = 1,

G(1, 1) = 2P1(1 + i) + iP0.

Assume that the claim is true for m ≤ k. We show that the assertion is
satisfied for m = k + 1

G(k + 1, 1) = 2G(k, 1) +G(k − 1, 1)

= 2[PkG(1, 1) + Pk−1G(0, 1)] + [Pk−1G(1, 1) + Pk−2G(0, 1)]

= G(0, 1) [2Pk−1 + Pk−2] +G(1, 1) [Pk−1 + 2Pk]

= PkG(0, 1) + Pk+1G(1, 1).

□

Theorem 2.3. Let n be any integer. Then

G(1,m) = PmG(1, 1) + Pm−1G(1, 0),

G(1,m) = Pm+1 + 2iPm.

Proof. We use the induction method to prove this theorem. For m = 1,

G(1, 1) = P1(1 + i) + P0.

Suppose that the claim is true for m ≤ k, so

G(1, k) = PkG(1, 1) + Pk−1G(1, 0).

We show that the claim is true for m = k + 1.

G(1, k + 1) = 2G(1, k) +G(1, k − 1)

= 2[Pk2(1 + i) + Pk−1] + [Pk−12(1 + i) + Pk−2]

= 2(1 + i)Pk+1 + Pk.

□

Theorem 2.4. Let n,m be any integers. Then

G(n,m) = PmG(n, 1) + Pm−1G(n, 0).

Proof. We use the induction method to prove this theorem. For m = 1,

G(n, 1) = P1G(n, 1) + P0G(n, 0).

Suppose that the claim is true for k ≤ m, so

G(n, k) = PkG(n, 1) + Pk−1G(n, 0).

It is showed that the claim is satisfied for m = k + 1.

G(n, k + 1) = 2G(n, k) +G(n, k − 1)

= 2[PkG(n, 1) + Pk−1G(n, 0)] + [Pk−1G(n, 1) + Pk−2G(n, 0)]

= Pk+1G(n, 1) + PkG(n, 0).

□
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Corollary 2.5. Let n,m be any integers. Then

(1) G(n,m) = Pm+1Pn + iPmPn+1.

Proof. By Theorems 2.3, 2.7, 2.2, we have

G(n,m) = PmG(n, 1) + Pm−1G(n, 0)

= Pm(2Pn + iPn+1) + Pm−1Pn

= Pm+1Pn + iPmPn+1.

□

Corollary 2.6.

G(n,m) +G(m,n) =
2Qm+n+1 − 2(−1)mQn−m

8
(1 + i).

Proof. By the property of Pell numbers, we can write the folowing identity

Pm+1Pn + PmPn+1 =
2Qm+n+1 − 2(−1)mQn−m

8
.

By adding both sides of the following equalities, the proof is easily obtained:

G(n,m) = Pm+1Pn + iPmPn+1,

G(m,n) = Pn+1Pm + iPnPm+1.

It is seen that the commutative property is not satisfied by G(n,m). □

Theorem 2.7. The elements of the two dimensional Gaussian Pell sequence
with negative indices satisfy the following equality

G(−n,−m) = (−1)n+m+1G(m− 1, n− 1).

Proof. By the equality (1),

G(−n,−m) = P−m+1P−n + iP−mP−n+1

= (−1)n+1 Pn (−1)m Pm−1 + i (−1)n Pn−1 (−1)m+1 Pm

= (−1)m+n+1 (PnPm−1 + iPn−1Pm).

□

Corollary 2.8.

G(n+ 1,m+ 1) = Pn+1Pm+12(1 + i) +G(m,n),

G(n+ 2,m+ 2) = (1 + i)(3Pn+1Pm+1 + 4PnPm) + 6G(n,m) + 2G(m,n).

Proof. By the equality (1),

G(n+ 1,m+ 1) = Pn+1Pm+2 + iPn+2Pm+1

= Pn+1(2Pm+1 + Pm) + iPm+1(2Pn+1 + Pn)

= 2Pn+1Pm+1 + Pn+1Pm

+i(2Pn+1Pm+1 + PnPm+1),
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G(n+ 2,m+ 2) = Pn+2Pm+3 + iPn+3Pm+2

= (2Pn+1 + Pn)(2Pm+2 + Pm+1)

+i(2Pm+1 + Pm)(2Pn+2 + Pn+1)

= (2Pn+1 + Pn)(5Pm+1 + Pm)

+i(2Pm+1 + Pm)(5Pn+1 + Pn)

= 10(1 + iPm+1Pn+1 + 2(1 + i)PnPm

+5G(n,m) + 4G(m,n).

□

Corollary 2.9. By Definition 2.1, it is obtained that

G(n,m) = 2G(n− 1,m) +G(n− 2,m)

= 4G(n− 1,m− 1) + 2G(n− 1,m− 2)

+2G(n− 2,m− 1) +G(n− 2,m− 2).

Theorem 2.10 (Generating Function). The generating function for the two
dimensional Gaussian Pell sequence is

G(x, y) =
∞∑

m,n=0

G(n,m)xnym =
x+ iy + (2 + 2i)xy − 2ixy3

1−2y−y2
− 2yx3

1−2x−x2

1− 4xy − 2x2y − 2xy2 − x2y2
.

Proof. By Corollary 2.8 and
∞∑
n=0

Pnx
n = x

1−2x−x2 , we have

G(x, y) = G(0, 0) +G(1, 0)x+G(0, 1)y +G(1, 1)xy +
∞∑

m,n=2

G(n,m)xnym

− 4xyG(x, y) = −4xyG(0, 0)− 4
∞∑

m,n=2

G(n− 1,m− 1)xnym

−x2y2G(x, y) = −
∞∑

m,n=2

G(n− 2,m− 2)xnym,

−2x2yG(x, y) = −2
∞∑
n=2

G(n− 2, 0)xny − 2
∞∑

m,n=2

G(n− 2,m− 1)xnym

= −2y
∞∑
n=2

Pn−2x
n − 2

∞∑
m,n=2

G(n− 2,m− 1)xnym

=
−2yx3

1− 2x− x2
− 2

∞∑
m,n=2

G(n− 2,m− 1)xnym,
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and

−2xy2G(x, y) = −2
∞∑

m=2

G(0,m− 2)xym − 2
∞∑

m,n=2

G(n− 1,m− 2)xnym

= −2ix

∞∑
m=2

Pm−2y
m −

∞∑
m,n=2

G(n− 1,m− 2)xnym

= − 2ixy3

1− 2y − y2
−

∞∑
m,n=2

G(n− 1,m− 2)xnym

[
1− 4xy − 2x2y − 2xy2 − x2y2

]
G(x, y)

= x+ iy + (2 + 2ixy +
2ixy3

1− y − 2y2
+

2yx3

1− x− 2x2
.

□

Theorem 2.11 (Binet Formula). The Binet Formula for the two dimen-
sional Gaussian Pell sequence is

G(n,m) =
((1 +√

2)m+n+1 + (1−
√
2)m+n+1

8

− (−1)n((1 +
√
2)m−n+1 + (1−

√
2)m−n+1)

8

)
i
((1 +√

2)m+n+1 + (1−
√
2)m+n+1

8

− (−1)m((1 +
√
2)n−m+1 + (1−

√
2)n−m+1)

8
.

Proof. By the equality (1) and the Binet formula for the Pell sequence, it
is obtained that

α = 1 +
√
2, β = 1−

√
2, Pn =

αn − βn

α− β
,

G(n,m) = Pm+1Pn + iPmPn+1

=
αm+1 − βm+1

2
√
2

αn − βn

2
√
2

+ i
αm − βm

2
√
2

αn+1 − βn+1

2
√
2

.

□

Corollary 2.12. By the Binet Formula for the two dimensional Gauss-
ian Pell sequence, the following relation between Pell-Lucas numbers and two
dimensional Gaussian Pell numbers is obtained:

G(n,m) =
Qm+n+1 − (−1)nQm−n+1

8
+ i

Qm+n+1 − (−1)mQn−m+1

8
.
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Theorem 2.13 (Explicit Closed Formula). The explicit closed formula for
two dimensional Gaussian Pell sequence is

G(n,m) =
1

8

⌊m+n+1
2 ⌋∑

k=0

m+ n+ 1

m+ n+ 1− k

(
m+ n+ 1− k

k

)
2m+n+1−k(1 + i)

−(−1)n

8

⌊m−n+1
2 ⌋∑

k=0

m− n+ 1

m− n+ 1− k

(
m− n+ 1− k

k

)
2m−n+1−k.

Proof. The explicit closed formula for Pell-Lucas numbers is

⌊n
2 ⌋∑

k=0

n

n− k

(
n− k

k

)
2n−k.

Then, by Corollary 2.11, we get

G(n,m) = −(−1)m

8

⌊n−m+1
2 ⌋∑

k=0

n−m+ 1

n−m+ 1− k

(
n−m+ 1− k

k

)
2n−m+1−k.

□

Theorem 2.14 (Sum Formula). The sum formula for two dimensional
Gaussian Pell sequence is

n∑
k=0

m∑
j=0

G(k, j) = [
Qn+m+1 + 2Qn+m+2 +Qn+m+3

32
− Qm+2 + 2Qm+1

32

−Qn + 2Qn+1 +Qn+2 − 4

32
−](1 + i)

+i
Qn+m−1 + 2Qn+m +Qn+m+1

32
− i

Qm−1 − 6

32

+i
Qn + 2Qn−1 +Qn−2

32
.

Proof. By Corallary 2.11 and the sum formula for the Pell-Lucas sequence
n∑

k=0

Qk = Qn+1+Qn

2 , we get

n∑
k=0

m∑
j=0

G(k, j) =

n∑
k=0

m∑
j=0

Qk+j+1 − (−1)kQj−k+1

8
+ i

Qk+j+1 − (−1)jQk−j+1

8

=

n∑
k=0

m∑
j=0

Qk+j+1

8
−

n∑
k=0

m∑
j=0

(−1)kQj−k+1

8
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+
n∑

k=0

m∑
j=0

i
Qk+j+1

8
−

n∑
k=0

m∑
i

j=0

(−1)jQk−j+1

8
.

Then

n∑
k=0

m∑
j=0

G(k, j) =

n∑
k=0

m+k+1∑
j=0

Qj

8
−

k∑
j=0

Qj

8


+

n∑
k=0

(−1)k+1

m−k+1∑
j=0

Qj

8
+

0∑
j=1−k

Qj

8


+

n∑
k=0

i

m+k+1∑
j=0

Qj

8
−

k∑
j=0

Qj

8


+

m∑
j=0

(−1)j+1i

n−j+1∑
k=0

Qk

8
+

0∑
k=1−j

Qk

8

 .

By the sum formula of Pell-Lucas sequence

n∑
k=0

m∑
j=0

G(k, j) =

n∑
k=0

(
Qm+k+2 +Qm+k+1

16
− Qk+1 +Qk

16

)

+

n∑
k=0

(−1)k+1

(
−Qm−k+1 +Qm−k+2

16
− Q−k+1 +Q−k+2

16

)

+i

n∑
k=0

(
Qm+k+2 +Qm+k+1

16
− Qk+1 +Qk

16

)

+

m∑
j=0

(−1)j+1i

(
Qn−j+1 +Qn−j+2

16
− Q1−j −Q2−j

16

)
,

n∑
k=0

m∑
j=0

G(k, j) =

n+m+2∑
k=m+2

Qk

16
+

n+m+1∑
k=m+1

Qk

16
−

n+1∑
k=0

Qk − 2

16

−
n∑

k=0

Qk

16
+

n∑
k=0

(−1)k+1Qm−k+1

16

+

n∑
k=0

(−1)k+1Qm−k+2

16

−
n∑

k=0

(−1)k+1Q−k+1

16
−

n∑
k=0

(−1)k+1Q−k+2

16
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+i

[
n+m+2∑
k=m+2

Qk

16
+

n+m+1∑
k=m+1

Qk

16
−

n+1∑
k=0

Qk − 2

16
−

n∑
k=0

Qk

16

]

+i

 m∑
j=0

(−1)j+1Qn−j+1

16
+

m∑
j=0

(−1)j+1Qn−j+2

16


−i

 m∑
j=0

(−1)j+1Q1−j

16
−

m∑
j=0

(−1)j+1Q2−j

16

 ,

n∑
k=0

m∑
j=0

G(k, j) =
Qm+n+3 +Qm+n+2

32
− Qm+3 +Qm+2

32

+
Qm+n+2 +Qm+n+1

32

−Qm+2 +Qm+1

32
− Qn+2 +Qn+1 − 4

32
− Qn+1 +Qn

32

+(−1)m
[
Qm+n+2 +Qm+n+1

32
− Qm+2 +Qm+1

32

]
+(−1)m+1

[
Qm+n+3 +Qm+n+2

32
− Qm+3 +Qm+2

32

]
−Qn−1 +Qn + 4

32
− Qn−2 +Qn−1 + 8

32

+i

[
Qm+n+3 +Qm+n+2

32
− Qm+3 +Qm+2

32

]
+i

[
Qm+n+2 +Qm+n+1

32
− Qm+2 +Qm+1

32

]
−i

[
Qn+2 +Qn+1 − 4

32
− Qn+1 +Qn

32

]
+i(−1)n

[
−Qm+n+1 +Qm+n+2

32
+

Qn+1 +Qn+2

32

]
+i(−1)n+1

[
−Qm+n+2 +Qm+n+3

32
+

Qn+2 +Qn+3

32

]
−i

[
Qm−1 +Qm + 4

32
+

Qm−2 +Qm−1 + 8

32

]
.

After some operations we have

n∑
k=0

m∑
j=0

G(k, j) =
1

16
[Qm+n+3 −Qm+3 −Qn+3 + 2] (1 + i)
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−Qn + iQm + 6(1 + i)

16

+
(−1)m

16
[Qm+n+2 −Qm+2] +

i(−1)n

16
[Qm+n+2 −Qn+2] .

□

Theorem 2.15. The following matrix equalities hold for the two dimen-
sional Gaussian Pell sequence:[

2 1
1 0

]n [
2(1 + i) 1

i 0

]
=

[
G(n+ 1, 1) G(n+ 1, 0)
G(n, 1) G(n, 0)

]
[
2 1
1 0

]n [
1 + i i
1 0

]
=

[
G(1, n+ 1) G(0, n+ 1)
G(1, n) G(0, n)

]
.

Proof. The mathematical induction method is used for the proof. □

Theorem 2.16. The following matrix equalities are satisfied for the two
dimensional Gaussian Pell sequence:

G(n+ 1,m+ 1)
G(n,m+ 1)
G(n+ 1,m)
G(n,m)

 =


4 2 2 1
2 0 1 0
2 1 0 0
1 0 0 0


n 

2(1 + i)
i
1
0


Proof. The mathematical induction method is used for the proof. The as-

sertion is true for n = 1. Now assume that it is true for k ≤ n. For k = n+1,
4 2 2 1
2 0 1 0
2 1 0 0
1 0 0 0


n+1 

2(1 + i)
i
1
0



=


4 2 2 1
2 0 1 0
2 1 0 0
1 0 0 0




G(n+ 1,m+ 1)
G(n,m+ 1)
G(n+ 1,m)
G(n,m)

 =


G(n+ 2,m+ 2)
G(n+ 1,m+ 2)
G(n+ 2,m+ 1)
G(n+ 1,m+ 1)


Thus, the proof is completed. □

3. CONCLUSION

In this study firstly we carried out the Pell sequence to the complex plane,
then we defined the sequence into two dimensions. We called this general-
ized sequence two dimensional Gaussian Pell sequence. We investigated Binet
formula, generating function, sum formula, explicit closed formula, and some
relations between Pell sequence. Also, we get matrix equality for obtaining
elements of the two-dimensional Gaussian Pell sequence.
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