THE ABSOLUTE FRATTINI AUTOMORPHISMS

PARISA SEIFIZADEH and AMIRALI FAROKHNIAEE

Abstract. Let G be a finite non-abelian p-group, where p is a prime number, and Aut(G) be the group of all automorphisms of G. An automorphism α of G is an absolute central automorphism if $x^{-1}\alpha(x) \in L(G)$, where L(G) is the absolute center of G. In addition, α is an absolute Frattini automorphism if $x^{-1}\alpha(x) \in \Phi(L(G))$, where $\Phi(L(G))$ is the Frattini subgroup of the absolute center of G, and let LF(G) denote the group of all such automorphisms of G. Also, we denote by $C_{LF(G)}(Z(G))$ and $C_{LA(G)}(Z(G))$, respectively, the group of all absolute Frattini automorphisms and the group of all absolute central automorphisms of G fixing elementwise the center Z(G) of G. Here, we give necessary and sufficient conditions on a finite non-abelian p-group G of class two such that $C_{LF(G)}(Z(G)) = C_{LA(G)}(Z(G))$ holds. Moreover, we investigate the conditions under which LF(G) is a torsion-free abelian group.

MSC 2020. Primary: 20D35; Secondary: 20D45.

Key words. Absolute central automorphism, torsion-free, Frattini subgroup, finite group.

1. INTRODUCTION

In this paper, p denotes a prime number. Let G be a finite group. We assume that G', Z(G), $\Phi(G)$, $\exp(G)$, $\operatorname{Aut}(G)$, $\operatorname{Inn}(G)$ and $\exp(G)$, are the commutator subgroup, the centre, Frattini subgroup, the exponent, the group of all automorphisms and the inner automorphisms of G, respectively. For any group G, Hegarty [4] defined the subgroups L(G) and Z(G) of G such that

$$L(G) = \{ g \in G \mid \alpha(g) = g \ \forall \alpha \in \operatorname{Aut}(G) \},\$$

$$Z(G) = \{ g \in G \mid \alpha(g) = g \ \forall \alpha \in \operatorname{Inn}(G) \}$$

and called L(G) the absolute center of G. Note that $L(G) \leq Z(G)$.

An automorphism α of G is called a central automorphism, if $[g, \alpha] = g^{-1}\alpha(g) \in Z(G)$, for each $g \in G$. The central automorphisms fix the commutator subgroup G' of G, elementwise and form a normal subgroup $\operatorname{Aut}^Z(G)$ of $\operatorname{Aut}(G)$, where Z = Z(G). In a similar way, Hegarty [3] defined an absolute central automorphism of G as follows: an automorphism α of G is

DOI: 10.24193/mathcluj.2023.1.14

The authors thank the referee for his helpful comments and suggestions.

Corresponding author: Parisa Seifizadeh.

called an absolute central automorphism if it induces the identity automorphism on G/L(G), or, equivalently, $[g, \alpha] = g^{-1}\alpha(g) \in L(G)$, for each $g \in G$. Let $LA(G) = \operatorname{Aut}^{L(G)}(G)$ denotes the group of all absolute central automorphisms of G. Clearly, LA(G) is a normal subgroup of $\operatorname{Aut}(G)$ contained in $\operatorname{Aut}^{Z}(G)$.

In addition, Moghaddam and Safa [5] have investigated some properties of absolute central automorphisms. Assume that $LF(G) = \operatorname{Aut}^{\Phi(L(G))}(G)$ denotes the group of all absolute Frattini automorphisms, α of G, such that $[g,\alpha] = g^{-1}\alpha(g) \in \Phi(L(G))$, for each $g \in G$. One can easily check that LF(G) is a normal subgroup of Aut(G) and contained in LA(G). Now, let $C_{LF(G)}(Z(G))$ and $C_{LA(G)}(Z(G))$, respectively, to be the group of all absolute Frattini automorphisms and the group of all absolute central automorphisms of G, fixing the center Z(G) of G, elementwise. Shabani Attar [9] gave necessary and sufficient conditions for any finite non-abelian p-group such that $\operatorname{Aut}^{Z}(G) = C_{\operatorname{Aut}^{Z}(G)}(Z(G))$, where $C_{\operatorname{Aut}^{Z}(G)}(Z(G))$ is the group of all central automorphisms of G fixing Z(G), elementwise. On the other hand, Rai [6] obtained necessary and sufficient conditions on a finite p-group G under which $\operatorname{Aut}^{Z}(G) = C_{\operatorname{IA}(G)}(Z(G))$, where $\operatorname{IA}(G)$ and $C_{\operatorname{IA}(G)}(Z(G))$, respectively, the group of all derived automorphisms and the group of all derived automorphisms of G fixing Z(G), elementwise. In another study, Singh and Gumber [10], gave necessary and sufficient conditions on a finite non-abelian p-group G, such that $C_{LA(G)}(Z(G)) = \operatorname{Aut}^{Z}(G)$.

In this article we present neccessary and sufficient conditions on a finite non-abelian *p*-group *G* of class 2, in which $C_{LF(G)}(Z(G)) = C_{LA(G)}(Z(G))$. We also find the conditions on the group *G*, so that LF(G) is a torsion-free abelian group.

Throughout this paper, we utilize the following well-known lemmas and theorem:

LEMMA 1.1 ([1, Lemma 3]). Let G be any group, and let Y be a central subgroup of G contained in a normal subgroup X of G. Then the group of all automorphisms of G that induce the identity on both X and G/Y is isomorphic to $\operatorname{Hom}(G/X, Y)$.

LEMMA 1.2 ([2, Lemma E]). Suppose H is an abelian p-group of exponent p^c , and K is cyclic group of order divisible by p^c . Then Hom(H, K) is isomorphic to H.

LEMMA 1.3 ([4, Lemma 3.1]). Let G be a finite non-abelian p-group. Then $L(G) \leq \Phi(G)$.

REMARK 1.4 ([7]). Let G be a finite group, then $\Phi(G) = G$ if and only if G is the trivial group.

THEOREM 1.5 ([8, Theorem 2.6]). Let G be a purely non-abelian group satisfying maximal and minimal conditions on normal subgroups. Let M be a

central subgroup of G and let $\operatorname{Aut}^{M}(G)$ denote the group of all those automorphisms of G which induce the identity on G/M. Then:

- i) there is a one-one correspondence between $\operatorname{Aut}^M(G)$ and $\operatorname{Hom}(G, M)$, and
- ii) if M is contained in L(G), then $\operatorname{Aut}^M(G) \cong \operatorname{Hom}(G, M)$.

Now, we find necessary and sufficient conditions on a finite non-abelian p-group G of class 2, such that $C_{LA(G)}(Z(G)) = C_{LF(G)}(Z(G))$. Let

$$G/Z(G) = C_{p^{a_1}} \times C_{p^{a_2}} \times \ldots \times C_{p^{a_k}}$$

where $C_{p^{a_i}}$ is a cyclic group of order p^{a_i} , $1 \le i \le k$, and $a_1 \ge a_2 \ge ... \ge a_k \ge 1$. Since $\Phi(L(G)) \le L(G) \le Z(G)$, so we can write

$$\Phi(L(G)) = C_{p^{b_1}} \times C_{p^{b_2}} \times \ldots \times C_{p^{b_l}}$$

and let

$$L(G) = C_{p^{c_1}} \times C_{p^{c_2}} \times \ldots \times C_{p^{c_m}}$$

be the cyclic decompositions of the corresponding abelian group, where $b_i \ge b_{i+1} \ge 1$ and $c_i \ge c_{i+1} \ge 1$. Since $\Phi(L(G))$ is a subgroup of L(G), we have $l \le m$ and $b_j \le c_j$, for all $j, 1 \le j \le l$. Considering the notation above, we prove the main theorem of this paper.

2. MAIN RESULTS

THEOREM 2.1. Let G be a finite non-abelian p-group of class two. Then $C_{LA(G)}(Z(G)) = C_{LF(G)}Z(G)$, if and only if L(G) is the trivial subgroup of G $(\Phi(L(G)) = L(G))$, or $\Phi(L(G)) < L(G)$, l = m, and $a_1 \leq b_s$, where s is the largest integer between 1 and l such that $b_s < c_s$.

Proof. Suppose that $C_{LA(G)}(Z(G)) = C_{LF(G)}(Z(G))$ and $\Phi(L(G)) \neq L(G)$. So we have $\Phi(L(G)) < L(G)$. We claim that l = m, and $a_1 \leq b_s$, where s is the largest integer between 1 and l such that $b_s < c_s$. As $\Phi(L(G)) < L(G) \leq Z(G)$, using Lemma 1.1, we can see that $C_{LA(G)}(Z(G)) \cong \text{Hom}(G/Z(G), L(G))$ and $C_{FA(G)}(Z(G)) \cong \text{Hom}(G/Z(G), \Phi(G))$. So,

$$|C_{LA(G)}(Z(G))| = |\operatorname{Hom}(G/Z(G), L(G))|$$

and

$$|C_{LF(G)}(Z(G))| = |\operatorname{Hom}(G/Z(G), \Phi(L(G)))|.$$

Thus, we have $|\text{Hom}(G/Z(G), \Phi(L(G)))| = \prod_{1 \le i \le k, 1 \le j \le l} p^{\min\{a_i, b_j\}}$ and $|\text{Hom}(G/Z(G), L(G))| = \prod_{1 \le i \le k, 1 \le j \le m} p^{\min\{a_i, c_j\}}.$

As,
$$C_{LF(G)}(Z(G)) = C_{LA(G)}(Z(G))$$
, hence
 $|\operatorname{Hom}(G/Z(G), \Phi(L(G)))| = |\operatorname{Hom}(G/Z(G), L(G))|.$

Therefore, $\prod_{1 \leq i \leq k, 1 \leq j \leq l} p^{\min\{a_i, b_j\}} = \prod_{1 \leq i \leq k, 1 \leq j \leq m} p^{\min\{a_i, c_j\}}.$ Since $\Phi(L(G)) < L(G)$, we have $l \leq m$, and $b_j \leq c_j$, for every $j, 1 \leq j \leq l$, therefore $\min\{a_i, b_j\} \leq \min\{a_i, c_j\}$ for all $i, 1 \leq i \leq k$ and for all $j, 1 \leq j \leq l$. If l < m, then $|\operatorname{Hom}(G/Z(G), \Phi(L(G)))| < |\operatorname{Hom}(G/Z(G), L(G))|$, which is not true. Thus l = m and $\min\{a_i, b_j\} = \min\{a_i, c_j\}$, for all $i, 1 \leq i \leq k$ and for all $j, 1 \leq j \leq l$. If all $j, 1 \leq j \leq l$. Since $\Phi(L(G)) < L(G)$, there exists some j between 1 and l such that $b_j < c_j$. Let s be the largest integer between 1 and l such that $b_s < a_1$. Thus $b_s = \min\{a_1, b_s\} = \min\{a_1, c_s\}$, which is impossible. Therefore, $a_1 \leq b_s$.

Conversely, if $\Phi(L(G)) = L(G)$, then $C_{LA(G)}(Z(G)) = C_{LF(G)}(Z(G))$. Suppose that $\Phi(L(G)) < L(G)$, l = m, and $a_1 \leq b_s$, where s is the largest integer between 1 and l such that $b_s < c_s$. Now

$$|C_{LF(G)}(Z(G))| = |\text{Hom}(G/Z(G), \Phi(L(G)))| = \prod_{1 \le i \le k, 1 \le j \le l} p^{\min\{a_i, b_j\}}$$

and $|C_{LA(G)}(Z(G))| = |\text{Hom}(G/Z(G), L(G))| = \prod_{1 \le i \le k, 1 \le j \le m} p^{min\{a_i, c_j\}}$. Note

that $a_i \leq b_j \leq c_j$, for all $1 \leq i \leq k$ and $1 \leq j \leq s$, whence $\min\{a_i, b_j\} = a_i = \min\{a_i, c_j\}$, for all $1 \leq i \leq k$ and $1 \leq j \leq s$. On the other hand $c_j = b_j$, for all j > s, so we have $\min\{a_i, b_j\} = a_i = \min\{a_i, c_j\}$, for all $1 \leq i \leq k$ and $s + 1 \leq j \leq m$. Therefore $|C_{LF(G)}(Z(G))| = |C_{LA(G)}(Z(G))|$. Because $C_{LF(G)}(Z(G))$ is a subgroup of $C_{LA(G)}(Z(G))$. We have $C_{LF(G)}(Z(G)) = C_{LA(G)}(Z(G))$. The proof of the theorem is complete.

The following corollary is the consequence of the above theorem.

COROLLARY 2.2. Let G be a finite non-abelian p-group of class two and $\exp(L(G)) = p$. Then $\Phi(L(G)) = 1$ and $C_{LF(G)}(Z(G)) = 1$. Hence

$$C_{LA(G)}(Z(G)) \neq C_{LF(G)}(Z(G)).$$

EXAMPLE 2.3. Let $G = M_2(4, 1) = \langle a, b; a^{16} = b^2 = 1, [a, b] = a^8 \rangle$, where p = 2, n = 4 and m = 1. G is a minimal non-abelian finite 2-group, we have $L(G) = Z(G) = \Phi(G) = \mathbb{Z}_8$ and $|G'| = 2, G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. One can easily check that $\Phi(L(G)) = \mathbb{Z}_4$. Appling Theorem 2.1, we can see that $C_{LA(G)}(Z(G)) = C_{LF(G)}(Z(G)) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

LEMMA 2.4. Let G be a non-abelian finitely generated group, in which $\Phi(L(G))$ is indecomposable and torsion free and $G/\Phi(L(G))$ is torsion free abelian. Suppose that $f \in \text{Hom}(G, \Phi(L(G)))$. Then $\Phi(L(G)) \leq \text{Ker}(f)$.

Proof. Since $\Phi(L(G))$ and $G/\Phi(L(G))$ are abelian, so $G' \leq \Phi(L(G)) \cap$ Ker(f) and hence $G/\Phi(L(G)) \cap$ Ker(f) is abelian. The map $\sigma : x(\Phi(L(G)) \cap$ Ker $(f)) \mapsto x\Phi(L(G))$ defines an epimorphism from $G/\Phi(L(G)) \cap$ Ker(f)onto $G/\Phi(L(G))$. Since $G/\Phi(L(G))$ is a free abelian group, by ([7, Theorem 4.2.4]), there exists a homomorphism $\delta : G/\Phi(L(G) \to G/\Phi(L(G)) \cap$ Ker(f)such that $\sigma \circ \delta$ is an identity on $G/\Phi(L(G))$. As Im (δ) is a subgroup of $G/\Phi(L(G)) \cap \operatorname{Ker}(f)$, there exists a subgroup H of G containing $\Phi(L(G)) \cap \operatorname{Ker}(f)$ such that $\operatorname{Im}(\delta) = H/\Phi(L(G) \cap \operatorname{Ker}(f))$. Because $G/\Phi(L(G)) \cap \operatorname{Ker}(f)$ is abelian, $H/\Phi(L(G)) \cap \operatorname{Ker}(f)$ is a normal subgroup of $G/\Phi(L(G)) \cap \operatorname{Ker}(f)$. So H is a normal subgroup of G.

Since δ is an injective homomorphism from $G/\Phi(L(G))$ to $G/\Phi(L(G)) \cap$ $\operatorname{Ker}(f)$ and its image is $H/\Phi(L(G)) \cap \operatorname{Ker}(f)$. This means, if we pull back H via the inverse of δ , then we get G. But the inverse image is $H\Phi(L(G))$. Hence $G = H\Phi(L(G))$. Also, $\Phi(L(G)) \cap H = \Phi(L(G)) \cap \operatorname{Ker}(f)$ because $\sigma \circ \delta$ is an identity on $G/\Phi(L(G))$. Here $H \neq 1$, otherwise if H = 1, then $G = \Phi(L(G))$, and so G is abelian, which is a contradiction as G is non abelian. From the fact that G is finitely generated, it follows that $H/\Phi(L(G)) \cap Ker(f)$, and so $\Phi(L(G))/\Phi(L(G)) \cap \operatorname{Ker}(f)$ is a finitely generated abelian group. Furthermore, $\Phi(L(G))/\Phi(L(G)) \cap \operatorname{Ker}(f)$ is torsion free. Let $t \in \Phi(L(G))$ and $k \in \mathbb{N}$, such that $(t(\Phi(L(G)) \cap \operatorname{Ker}(f)))^k = 1$. Since $\Phi(L(G))$ is torsion free, f(t) =1, and so $t \in \text{Ker}(f)$. Therefore, $t \in \Phi(L(G)) \cap \text{Ker}(f)$. This shows that $\Phi(L(G))/\Phi(L(G)) \cap \operatorname{Ker}(f)$ is free abelian. Hence, by ([7, Theorem 4.2.5]), we have $\Phi(L(G)) = (\Phi(L(G)) \cap \operatorname{Ker}(f)) \times A$, for some $A \leq \Phi(L(G))$. Since $\Phi(L(G))$ is indecomposable, thus $\Phi(L(G)) \cap Ker(f) = 1$ or A = 1. If $\Phi(L(G)) \cap$ $\operatorname{Ker}(f) = 1$, then G' = 1, and so G is abelian. This is a contradiction. Therefore, we must have A = 1, and this means $\Phi(L(G)) = \Phi(L(G)) \cap \text{Ker}(f)$. Thus, $\Phi(L(G))$ is contained in Ker(f) as desired.

THEOREM 2.5. Let G be a non-abelian finitely generated group, in which $\Phi(L(G))$ is indecomposable and torsion free and $G/\Phi(L(G))$ is torsion free abelian, then $\operatorname{Hom}(G, \Phi(L(G)))$ is a torsion free abelian group.

Proof. Let $f \in \text{Hom}(G, \Phi(L(G)))$. Let $\sigma_f : G/\Phi(L(G)) \longrightarrow \Phi(L(G))$ as $\sigma_f(x) = f(x)$. Now, we show that σ_f a homomorphism from $G/\Phi(L(G))$ to $\Phi(L(G))$. First, we prove σ_f is well defined. Suppose that $x_1, x_2 \in G$ and $x_1\Phi(L(G)) = x_2\Phi(L(G))$, then $x_1x_2^{-1} \in \Phi(L(G))$ implies $f(x_1x_2^{-1}) = 1$ by Lemma 2.4, and this means $f(x_1) = f(x_2)$. Clearly, σ_f is a homomorphism. Thus, $\sigma_f \in \text{Hom}(G/\Phi(L(G)), \Phi(L(G)))$. Now, it is easy to see that the map $\phi : f \longmapsto \sigma_f$ is an isomorphism from $\text{Hom}(G, \Phi(L(G)))$ to Hom $(G/\Phi(L(G)), \Phi(L(G)))$, So, $\text{Hom}(G, \Phi(L(G))) \cong \text{Hom}(G/\Phi(L(G)), \Phi(L(G)))$. Since $G/\Phi(L(G))$ is a free abelian group, there exists $n \in \mathbb{N}$, such that $G/\Phi(L(G)) = \mathbb{Z} \times \mathbb{Z} \times ... \times \mathbb{Z}$. Therefore,

$$n-times$$

$$\operatorname{Hom}(G, \Phi(L(G))) \cong \operatorname{Hom}(G/\Phi(L(G)), \Phi(L(G)))$$
$$\cong \operatorname{Hom}(\underbrace{\mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}}_{n-times}, \Phi(L(G)))$$
$$\cong \underbrace{\operatorname{Hom}(\mathbb{Z}, \Phi(L(G))) \times \ldots \times \operatorname{Hom}(\mathbb{Z}, \Phi(L(G)))}_{n-times}$$

 \subseteq

$$\cong \underbrace{\Phi(L(G))) \times \Phi(L(G))) \times \dots \Phi(L(G)))}_{n-times},$$

by ([7, Theorem 4.7 and 4.9]). Since $\Phi(L(G))$ is a torsion-free abelian group, $\operatorname{Hom}(G, \Phi(L(G)))$ is a torsion free abelian group.

Immediate from Theorems 1.5 and 2.5, we get the following corollary.

COROLLARY 2.6. Let G be a purely non-abelian and finitely generated group satisfying maximal and minimal conditions on normal subgroups, in which $\Phi(L(G))$ is indecomposable and torsion free and $G/\Phi(L(G))$ is torsion free abelian, then LF(G) is a torsion free abelian group.

REFERENCES

- J. L. Alperin, Groups with finitely many automorphisms, Pacific J. Math., 12 (1962), 1-5.
- [2] M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra, 29 (2001), 2081–2087.
- [3] P. V. Hegarty, The absolute center of a group, J. Algebra, 169 (1994), 929–935.
- [4] H. Meng and X. Guo, The absolute center of finite groups, J. Group Theory, 18 (2015), 887–904.
- [5] M. R. R. Moghaddam and H. Safa, Some properties of autocentral automorphisms of a group, Ric. Mat., 59 (2010), 257–264.
- [6] P. K. Rai, On class-preserving automorphisms of groups, Proc. Indian Acad. Sci. Sect. A, 124 (2014), 169–173.
- [7] D. J. S. Robinson, Course in the Theory of Groups, Springer-Verlag, New York, 1980.
- [8] S. S. Chahal, D. Gumber and H. Kalra, On Autocentral Automorphisms of Finite p-Groups, Results Math., 76 (2021), 1–8.
- M. Shabani Attar, Finite p-groups in which each central automorphism fixes centre elementwis, Comm. Algebra, 40 (2012), 1096–1102.
- [10] M. Singh and D. Gumber, On the coincidence of the central and absolute central automorphism groups of finite p-groups, Math. Notes, 107 (2020), 863–866.

Received August 10, 2021 Accepted January 11, 2022 University of Birjand Department of Mathematics Birjand, Iran E-mail: paris.seifizadeh@birjand.ac.ir https://orcid.org/0000-0003-1556-3482

University College Dublin School of Electrical and Electronic Engineering, Dublin, Ireland E-mail: amirali.farokhniaee@ucd.ie https://orcid.org/0000-0002-9653-0158