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SOME RESULTS ON DERIVATIONS
AND GENERALIZED DERIVATIONS IN RINGS

ABDELLAH MAMOUNI, LAHCEN OUKHTITE, and MOHAMMED ZERRA

Abstract. The purpose of this paper is to study derivations and generalized
derivations in prime rings satisfying certain differential identities. Some well-
known results characterizing commutativity of prime rings have been generalized.
Moreover, we provide examples to show that the assumed restrictions cannot be
relaxed.
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1. INTRODUCTION

Throughout this paperR will represent an associative ring with center Z(R).
Recall that a proper ideal P of R is said to be prime if for any x, y ∈ R,
xRy ⊆ P implies that x ∈ P or y ∈ P. The ring R is a prime ring if and
only if (0) is a prime ideal of R. For any x, y ∈ R the symbol [x, y] will
denote the commutator xy − yx; while the symbol x ◦ y will stand for the
anti-commutator xy + yx. An additive mapping d : R −→ R is a derivation
if d(xy) = d(x)y + xd(y) for all x, y ∈ R. Let a ∈ R be a fixed element. A
map d : R −→ R defined by d(x) = [a, x] = ax − xa, x ∈ R, is a derivation
on R, which is called inner derivation defined by a. Many results in literature
indicate how the global structure of a ring R is often tightly connected to the
behaviour of additive mappings defined on R (for example, see [1] and [11]).
A well known result of Posner [12] states that if d is a derivation of the prime
ring R such that [d(x), x] ∈ Z(R), for any x ∈ R, then either d = 0 or R is
commutative. In [9] Lanski generalizes the result of Posner to a Lie ideal.

More recently several authors consider similar situation in the case the
derivation d is replaced by a generalized derivation. More specifically an ad-
ditive map F : R −→ R is said to be a generalized derivation if there exists a
derivation d of R such that, for all x, y ∈ R, F (xy) = F (x)y + xd(y). Basic
examples of generalized derivations are the usual derivations on R and left
R-module mappings from R into itself. An important example is a map of
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the form F (x) = ax + xb, for some a, b ∈ R; such generalized derivations are
called inner. Generalized derivations have been primarily studied on operator
algebras. Therefore any investigation from the algebraic point of view might
be interesting (see for example [7]and [8]).

During the last two decades, many authors have studied commutativity of
prime and semiprime rings admitting suitably constrained additive mappings
acting on appropriate subsets of the rings. Moreover, many of obtained re-
sults extend other ones proven previously just for the action of the considered
mapping on the entire ring. In this direction, the recent literature contains
numerous results on commutativity in prime and semi-prime rings admitting
suitably constrained derivations and generalized derivations, and several au-
thors have improved these results by considering rings with involution (for
example, see [10]). In the present paper we continue this line of investigation
and study the structure of a prime ring admitting a derivations and generalized
derivations satisfying more specific algebraic identities.

2. SOME RESULTS FOR DERIVATIONS

In [12] Posner’s first theorem states that; If R is a 2-torsion free prime ring
and d1, d2 are derivations of R such that the iterate d1d2 is also a derivation
of R, then either d1 = 0 or d2 = 0. The purpose of the following theorem is
to give an improved version of this result, our conclusion is of different kind.

Theorem 2.1. Let R be a ring and P be a prime ideal of R. If d1 and d2
are two derivations of R such that

d1d2(xy)− d1d2(x)y − xd1d2(y) ∈ P for all x, y ∈ R.

1) If char(R/P ) ̸= 2, then d1(R) ⊆ P or d2(R) ⊆ P .

2) If char(R/P ) = 2 and d1(x) ̸= 0, then d1(x) = λd2(x) for some λ in the
extended centroid of R/P .

Proof.

(1) d1d2(xy)− d1d2(x)y − xd1d2(y) ∈ P for all x, y ∈ R.

Because of d2 is a derivation of R, the last expression reduces to

(2) d2(x)d1(y) + d1(x)d2(y) ∈ P for all x, y ∈ R.

Putting ry instead of y in (2) and using it, we can see that

(3) d2(x)rd1(y) + d1(x)rd2(y) ∈ P for all r, x, y ∈ R

in such a way that

(4) d2(x)rd1(x) + d1(x)rd2(x) = 0 for all r, x ∈ R.

Suppose that the characteristic of the ring R/P is different from 2, then ac-
cording to [4, Lemma 1.1], we get

(5) d1(x)rd2(x) = 0 for all r, x ∈ R.
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In light of primeness of R/P , (5) assures that either d1(R) ⊆ P or d2(R) ⊆ P .
Now suppose that the characteristic of R/P is 2, then the relation (2) be-

comes

(6) d2(x)rd1(y)− d1(x)rd2(y) ∈ P for all r, x, y ∈ R.

This may be restated as

(7) d2(x)rd1(x) = d1(x)rd2(x) for all r, x ∈ R.

Invoking [6, Lemma 7.42], there exists λ in the extended centroid of R/P such

that d1(x) = λd2(x). □

If the ring R is prime, then (0) is a prime ideal of R. In this case, application
of Theorem 2.1, yields an improved version of [12, Theorem 1] as follows.

Corollary 2.2. Let R be a prime ring and d1, d2 two derivations of R
such that the composition d1d2 is a derivation of R.

1) If char(R) ̸= 2, then d1 = 0 or d2 = 0.
2) If char(R) = 2, then d1 = λd2 for some λ in the extended centroid of R.

In [5, Theorem 2.1] it is proved that if a prime ring R admits derivations
d, g and h such that d(x) = ag(x) + h(x)b for all x ∈ R, where a, b /∈ Z(R),
then there exists λ in the extended centroid of R such that d(x) = [λab, x],
g(x) = [λb, x] and h(x) = [λa, x] for all x ∈ R.

Our purpose in the following theorem is to study the more general case

d(x)− ag(x)− h(x)b ∈ Z(R) for all x ∈ R

under the hypothesis d(Z(R)) ̸= (0). However, we will provide a counter-
example which proves that the additional assumption “d(Z(R)) ̸= (0)” is not
superfluous.

Theorem 2.3. Let R be a prime ring and d a derivation of R such that
d(Z(R)) ̸= (0). If a, b /∈ Z(R), then there are no derivations g and h of R
satisfying

d(x)− ag(x)− h(x)b ∈ Z(R) for all x ∈ R.

Proof. Suppose there exist derivations g and h of R such that

(8) d(x)− ag(x)− h(x)b ∈ Z(R) for all x ∈ R.

Substituting xz for x in (8), where z ∈ Z(R)\{0}, we obtain

(9) d(x)z+xd(z)−ag(x)z−axg(z)−h(x)zb−xh(z)b ∈ Z(R) for all x ∈ R.

This may be restated as

(10) (d(x)− ag(x)− h(x)b)z + x(d(z)− ag(z)− h(z)b) + [x, a]g(z) ∈ Z(R)

for all x ∈ R. Combining equations (10) with (8) , we arrive at

(11) x(d(z)− ag(z)− h(z)b) + [x, a]g(z) ∈ Z(R) for all x ∈ R
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which leads to [[x, a], x]g(z) = 0, in such a way that

(12) [[x, a], x]Rg(z) = 0 for all x ∈ R.

In light of primeness, the relation (12) implies that either [[x, a], x] = 0 or
g(z) = 0.

Assume that

(13) [[x, a], x] = 0 for all x ∈ R.

Linearizing (13), we can see that

(14) [[x, a], y] + [[y, a], x] = 0 for all x, y ∈ R.

Substituting yx for y in (14), we obtain

(15) [[x, a], y]x+ [y, x][x, a] + [[y, a], x]x = 0 for all x, y ∈ R.

Invoking (14), the last expression reduces to [y, x][x, a] = 0 and therefore

(16) [y, x]R[x, a] = 0 for all x, y ∈ R.

In particular, we get [x, a]R[x, a] = 0 for all x ∈ R. Once again using the
primeness, we get [x, a] = 0 for all x ∈ R and thus a ∈ Z(R), a contradiction.
Accordingly, g(z) = 0 for all z ∈ Z(R)\{0}.

Taking x = z in (8), we obviously get

(17) d(z)− h(z)b ∈ Z(R)

which, because of d(z) ∈ Z(R), forces h(z)b ∈ Z(R). Accordingly,

(18) h(z)R[b, x] = 0.

Since R is prime and b ̸∈ Z(R), the last equation reduces to h(z) = 0.
Now suppose that h(z) = 0 for all z ∈ Z(R), then (11) becomes

(19) xd(z) ∈ Z(R) for all x ∈ R

and therefore

(20) [x, t]Rd(z) = 0 for all x, t ∈ R.

Since R is prime, equation (20) combined with the fact that d(Z(R)) ̸= (0)
yields that

[x, t] = 0 for all x, t ∈ R

proving that R is a commutative and therefore a ∈ Z(R), a contradiction. □

The following example proves that the condition ”d(Z(R)) ̸= (0)” imposed in
the hypotheses of Theorem 2.3 is necessary.

Example 2.4. Let us consider R = M2(Z) and d

(
x y
z t

)
=

(
0 y
−z 0

)
. It

is straightforward to check that R is a prime ring and d is a derivation of R
such that d(X) = 0 for all X ∈ Z(R). Define two derivations g and h on R
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by setting g = h = d. Clearly, a =

(
1 1
0 1

)
/∈ Z(R) and b =

(
0 1
0 0

)
/∈ Z(R).

Furthermore, for X =

(
x y
z t

)
∈ R we have

d(X)− ag(X)− h(X)b =

(
0 y
−z 0

)
−
(
1 1
0 1

)(
0 y
−z 0

)
−
(

0 y
−z 0

)(
0 1
0 0

)
=

(
z 0
0 z

)
which proves that d(X)− ag(X)− h(X)b ∈ Z(R) for all X ∈ R.

The following example shows that the primeness hypothesis in Theorem 2.3
is not superfluous. In particular, our theorem cannot be extended to semi-
prime rings.

Example 2.5. Let us consider R = Q[X] × M2(Z). It is straightforward
to check that R is a noncommutative semi-prime ring. Let d, g and h be
derivations of R such that

d(P,M) = g(P,M) = h(P,M) = (P ′, 0) for all (P,M) ∈ Q[X]×M2(Z).

Let us set a =

(
−X,

(
0 1
0 −1

))
/∈ Z(R), b =

(
X + 1,

(
0 −1
1 0

))
/∈ Z(R).

It is easy to see that d, g and h satisfy the condition

d(P,M)− ag(P,M)− h(P,M)b ∈ Z(R) for all (P,M) ∈ Q[X]×M2(Z).

As an application of Theorem 2.3, we get the following result.

Proposition 2.6. Let d, g and h be derivations of a prime ring R such
that

d(x) = ag(x) + h(x)b for all x ∈ R.

If d(Z(R)) ̸= (0), then either a ∈ Z(R) or b ∈ Z(R).

Proof. Suppose that a /∈ Z(R) and b /∈ Z(R), we have

d(x)− ag(x)− h(x)b = 0 ∈ Z(R)

and

d(Z(R)) ̸= (0).

Using the proof of Theorem 2.3, it follows that R is an integral domain and we
can again employ the argument of [5, Theorem 2.1], there exists λ ∈ C such
that d(x) = [λab, x] so that d = 0, a contradiction. Consequently, a ∈ Z(R)
or b ∈ Z(R). □
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3. SOME RESULTS FOR GENERALIZED DERIVATIONS

In [5, Theorem 3.2] it is proved that a prime ring R must be an integral
domain if it admits derivations d and g such that d(x)x−xg(x) ∈ Z(R) for all x
in a nonzero left ideal U of R and d ̸= 0. In [3, Theorem 3.1], without 2-torsion
freeness hypothesis, it is proved that if a prime ring R admits two generalized
derivations F and G associated with derivations f and g respectively, such
that F (x)x − xG(x) = 0 for all x in a nonzero Jordan ideal J , then R is an
integral domain and F = G or G is a left multiplier and F = G+ f .

Motivated by these results, our fundamental aim is to consider the more
general identity F (x)x − xG(x) ∈ Z(R) for all x ∈ R under the hypothesis
“f(Z(R)) ̸= (0) or g(Z(R)) ̸= (0)”. Furthermore, we will provide a counter-
example which shows that this restriction is not superfluous.

Theorem 3.1. Let R be a 2-torsion free prime ring. Let F and G two
generalized derivations of R associated with derivations f and g, respectively,
such that

F (x)x− xG(x) ∈ Z(R) for all x ∈ R.

If either f(Z(R)) ̸= (0) or g(Z(R)) ̸= (0), then R is an integral domain.

We will need the following lemma.

Lemma 3.2 ([3, Lemma 3.1]). Let R be a 2-torsion free prime ring and
two generalized derivations F and G associated with f and g, respectively. If
F (x)x− xG(x) = 0 for all x ∈ R, then one of the following hold:

(1) R is commutative and F = G;
(2) G is a left multiplier and F = G+ f .

Now we are in a position to prove our result.

Proof of Theorem 3.1. If Z(R) = (0), then R is not commutative and our
hypothesis becomes F (x)x − xG(x) = 0 for all x ∈ R. Invoking Lemma 3.2,
it follows that F = G + f and G is a left multiplier. Therefore g = 0 which
contradicts the fact that g(Z(R)) ̸= (0). Consequently, Z(R) ̸= (0) we are
given that

(21) F (x)x− xG(x) ∈ Z(R) for all x ∈ R.

Linearizing (21), we can see that

(22) F (x)y + F (y)x− xG(y)− yG(x) ∈ Z(R) for all x, y ∈ R.

Substituting yz instead of y in (22), where z ∈ Z(R)\{0}, we get

(23) F (x)yz + F (y)zx+ yf(z)x− xG(y)z − xyg(z)− yzG(x) ∈ Z(R),

for all x, y ∈ R.
Combining equation (23) with (22), we arrive at

(24) yf(z)x− xyg(z) ∈ Z(R) for all x, y ∈ R.
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Once again replacing y by x in (24), we obtain

x2(f(z)− g(z)) ∈ Z(R)

and the primeness of R yields that

x2 ∈ Z(R) for all x ∈ R or f(z) = g(z) for all z ∈ Z(R).

If x2 ∈ Z(R) for all x ∈ R, then R is commutative. Therefore we assume
henceforth that f(z) = g(z) for all z ∈ Z(R), then relation (24) will be

(25) [y, x]f(z) ∈ Z(R) for all x, y ∈ R.

Since R is prime, the fact that f(Z(R)) ̸= (0) forces [y, x] ∈ Z(R) for all
x, y ∈ R. Which yields that R is commutative, and this completes the proof
of our theorem. □

The following example proves that the condition ”f(Z(R)) ̸= (0) or g(Z(R)) ̸=
(0)” is necessary in Theorem 3.1.

Example 3.3. Let us consider R = M2(Z), and F (x) = ax + xb for all
x ∈ R, where

a =

(
2 0
0 2

)
and b =

(
1 1
0 1

)
,

F is a generalized derivation associated with the inner derivation f(x) =
[x, b], which clearly satisfies f(Z(R)) = (0). Let us consider the generalized
derivation G defined by G(x) = (a + b)x for all x ∈ R, and associated with
the zero derivation. Since

F (x)x− xG(x) = (ax+ xb)x− x(a+ b)x

= ax2 + xbx− xax− xbx

= (ax− xa)x = [a, x]x

= 0 ∈ Z(R)

then F and G satisfy the hypothesis of Theorem 3.1, however R is a non
commutative ring.

The following example proves that the primeness hypothesis in Theorem
3.1 is not superfluous. In particular, our theorem cannot be extended to semi-
prime rings.

Example 3.4. Let us consider the noncommutative semi-prime ring R =
Q[X]×M2(Z). Define F (P,M) = (P ′, 0) andG(P,M) = (P, 0) for all (P,M) ∈
R. Then F and G are generalized derivations of R associated with derivations
f = F and g = 0, respectively. Moreover, F and G satisfy the conditions of
Theorem 3.1, but R is a noncommutative ring.

In [14] Rehman proves that if R is a 2-torsion free prime ring provided
with a generalized derivation associated with a nonzero derivation d such that
F ([x, y])− [x, y] = 0 for all x, y in a square closed Lie ideal U , then U ⊆ Z(R).
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Motivated by this results, Quadri et al. [13] with no further assumption on
the characteristic, established that a prime ring R must be commutative if
it admits a generalized derivation F associated with a derivation d such that
F ([x, y])− [x, y] = 0 for all x, y in a nonzero ideal I of R.

Our goal in the following theorem is to investigate a more general context
of differential identity involving a prime ideal P by omitting the primeness
assumption imposed on the considered ring R. This approach allows us to
generalize the preceding results in two direction. First of all, we will assume
that for all x, y ∈ R the expression F ([x, y])− [x, y] belongs to a prime ideal P
rather than F ([x, y])− [x, y] = 0. Secondly, we will investigate the behavior of
the more general expression F (xy)−G(yx) involving two generalized deriva-
tions F and G associated with derivations f and g respectively, instead of the
expression F ([x, y])− [x, y]. Moreover, our result are of more specific interest
because we will characterize not only the structure of the ring R/P , but we
will also prove that the derivations f and g are with range in the prime ideal
P . More precisely we will prove the following result.

Theorem 3.5. Let R be a ring and P a prime ring of R. If F and G are two
generalized derivations of R, associated with derivations f and g respectively,
such that

F (xy)−G(yx) ∈ P for all x, y ∈ R,

then one of the following assertions hold:
1) R/P is an integral domain or (F and G have their images in P );
2) R/P is an integral domain and (F −G)(R) ⊆ P .

Proof. We are given that

(26) F (xy)−G(yx) ∈ P for all x, y ∈ R.

Substituting ry for y in (26), we get

(27) F (xry)−G(ryx) ∈ P for all r, x, y ∈ R.

On the other hand replacing x by xr in (26), we obtain

(28) F (xry)−G(yxr) ∈ P for all r, x, y ∈ R.

Subtracting relation (28) from (27), we arrive at

(29) G([r, yx]) ∈ P for all r, x, y ∈ R.

Now putting xr instead of x in (29), we can see that

(30) G([r, yx])r + [r, yx]g(r) ∈ P for all r, x, y ∈ R.

Once again employing the fact that G([r, yx]) ∈ P by (29), we get

(31) [r, y]xg(r) + y[r, x]g(r) ∈ P for all r, x, y ∈ R.

Writing sy instead of y in the above expression and using it, we obtain

(32) [r, s]yxg(r) ∈ P for all r, s, x, y ∈ R.
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As a special case of the last relation, setting y = yg(r), we may write

(33) [r, s]yg(r)xg(r) ∈ P for all r, s, x, y ∈ R.

In light of primeness of P , we get either g(r) ∈ P or [r,R] ⊆ P for all r ∈ R.
Consequently, R is a union of two additive subgroups G1 and G2, where

G1 = {r ∈ R | [r,R] ⊆ P} and G2 = {r ∈ R | g(r) ∈ P}.

Since a group cannot be a union of two of its proper subgroups, we are forced
to conclude that R = G1 or R = G2. If R = G2, then our hypothesis becomes

(34) F (xy)−G(y)x ∈ P for all x, y ∈ R.

Substituting yx for x in (34) and applying it, we arrive at

xyf(x) ∈ P for all x, y ∈ R.

By view of primeness of P , we conclude that f(R) ⊆ P . Now our hypothesis
becomes F (x)y−yG(x) ∈ P and replacing y by yr and using the last expression
we obtain G(x)R[r, x] ⊆ P , then G(R) ⊆ P or R/P is an integral domain. So
the identity reduces to F (x)y ∈ P , hence F (R) ⊆ P .

Now suppose that R = G1, then R/P is an integral domain, in this direction

replacing y by yx in (26), we arrive at xy(f(x)− g(x)) = 0 for all x, y ∈ R,

accordingly f(x) = g(x). On the other hand our hypothesis yields

F (x)y + xf(y)−G(y)x− yg(x) ∈ P for all x, y ∈ R.

Putting xy instead of y in this relation, we obviously obtain

F (x)xy + xf(x)y + x2f(y)−G(x)yx− xg(y)x− xyg(x) = 0,

for all x, y ∈ R.
So that

(F (x)−G(x))yx = 0 for all x, y ∈ R.

Finally we conclude that

(F −G)(R) ⊆ P.

□

Now if R is a prime ring, then (0) is a prime ideal. Hence we have the
following corollary which is a generalization of [13, Theorem 2.1].

Corollary 3.6. Let R be a prime ring. If F and G are two generalized
derivations of R associated with nonzero derivations f and g respectively, such
that F (xy) − G(yx) = 0 for all x, y ∈ R, then R is an integral domain and
F = G

The next corollary extended the results of Quadri et al. [13, Theorem 2.1]
and Rehman [14, Theorem 3.3] to semi-prime rings.
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Corollary 3.7. Let R be a semi-prime ring. If F and G are two general-
ized derivations of R associated with nonzero derivations f and g respectively,
such that

F (xy)−G(yx) = 0 for all x, y ∈ R,

then R contains a nonzero central ideal.

Proof. Assume that F (xy) − G(yx) = 0 for all x, y ∈ R. Since the ring
R is semi-prime then there exists a family P of prime ideals P such that⋂

P∈P P = (0). Therefore

F (xy)−G(yx) ∈ P for all x, y ∈ R and for all P ∈ P.

Using the proof of Theorem 3.5, it follows from relation (33) that

(35) [r, s]yg(r)xg(r) ∈ P for all r, s, x, y ∈ R and for all P ∈ P.

Replacing x by xr in this expression and combining it with (35), we arrive at

(36) [r, s]yg(r)x[r, g(r)] ∈ P for all P ∈ P.

Now putting yr instead of y in (36), we get

(37) [r, s]yrg(r)x[r, g(r)] ∈ P for all P ∈ P.

On the other hand replacing x by rx in (36), we obtain

(38) [r, s]yg(r)rx[r, g(r)] ∈ P for all P ∈ P.

Subtracting (38) from (37), we find that

(39) [r, s]y[r, g(r)]x[r, g(r)] ∈ P for all P ∈ P.

In particular we have

(40) [r, g(r)]R[r, g(r)]R[r, g(r)] ⊆ P for all r ∈ R and for all P ∈ P.

This means that

[g(r), r]R[g(r), r]R[g(r), r] ⊆
⋂
P∈P

P = (0) ,

for all r ∈ R. Hence the semiprimeness hypothesis forces that [g(r), r] = 0
for all r ∈ R, then we can again employ the argument of [2, Theorem 3], we
conclude that R contains a nonzero central ideal. □
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