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ON THE COMBINATORIAL NATURE OF TREE
REPRESENTATIONS OF EUCLIDEAN QUIVERS

ÁBEL LŐRINCZI

Abstract. We verify computationally a conjecture on the field independence of
tree representations of Euclidean quivers, with dimension vector bounded by the
minimal radical vector of the quiver. This includes a large class of exceptional
representations, in particular all the regular non-homogeneous exceptionals. In
addition we also present some thought-provoking findings, which further confirms
the combinatorial nature of the category of representations of tame quivers.
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1. INTRODUCTION

Let k be an arbitrary field and Q a quiver. Recall that an indecomposable
representation M = (Mi,Mα) of Q is a tree representation if its matrices
Mα consist only of elements 0 and 1, such that the total number of non-zero
elements is d− 1, where d is the length of M . In [13] Ringel proves that every
exceptional module has a tree representation, hence they are also called tree
modules. One of the steps in the proof involves a choice of basis, which seems
to depend on the underlying field. Ringel posed the question (see Problems
1. and 2. from Section 9. of [13]) whether there exist tree representations
that are independent of this choice of basis, hence being “field independent”.
This problem remains open in general, but in some particular cases it has been

settled: tree representations for the canonically oriented Euclidean quivers Ẽ6

and D̃m were given in [4] and [5], respectively, along with their appendix [6],
where all the given representations were proven to be field independent, thus
giving an affirmative answer to Ringel’s question in these cases.

We note that the representations in the articles mentioned above were ob-
tained by experimentation in Z2 and Z3, and were not specifically constructed
to be field independent. This is probably not a lucky coincidence, and makes
us believe that every tree representation must be field independent.
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The proof in [13] is based on a result by Schofield (see [14]), stating that if
a non-simple module M is exceptional, then there are exceptional modules X
and Y with the properties

Hom(X,Y ) = Hom(Y,X) = Ext1(X,Y ) = 0

and an exact sequence of the following form:

0 −−−→ Xu −−−→ M −−−→ Y v −−−→ 0,

where u and v are positive integers. There are precisely s(M) − 1 such se-
quences, where s(M) is the number of nonzero components in dimM . We call
these short exact sequences Schofield sequence and the pair (Y,X) a Schofield
pair associated to M . The original proof of Schofield assumes an algebraically
closed field, but Ringel later gave a proof in [12] which works for arbitrary
fields.

Szántó and Szöllősi gave a full list of Schofield pairs for all exceptional
modules in the Euclidean case in [16]. Moreover, they proved that if X, Y
and M are exceptional indecomposables such that udimX + vdimY = dimM ,
then we have a Schofield sequence

0 −−−→ Xu −−−→ M −−−→ Y v −−−→ 0

if and only if
⟨dimX,dimY ⟩ = 0.

Thus proving that Schofield sequences and pairs depend only on the dimen-
sion vectors of indecomposables, hence their existence is field independent,
which further confirms Ringel’s question.

All of the cases mentioned above reassured our initial feeling, that every tree
representation is field independent. In order to tackle this question, we used
computational methods to check whether every exceptional tree representation
with dimension vector smaller than the minimal radical of the quiver is field
independent or not.

An affirmative answer in general would reveal a deep combinatorial nature
of the category of representations of tame quivers.

2. TREE REPRESENTATIONS

Let k be an arbitrary field, Q a quiver and consider its path algebra kQ. The
category mod kQ of finite dimensional right modules over kQ can be identified
with the category rep kQ of the finite dimensional k-representations of the
quiver Q.

Recall that a k-representation of Q is the set of finite dimensional k-vector
spaces {Mi | i ∈ Q0} associated to the vertices, together with k-linear maps
Mα : Ms(α) → Mt(α) associated to the arrows (here Q0 denotes the set of
vertices and Q1 is the set of arrows). Given two representationsM = (Mi,Mα)
and N = (Ni, Nα), a morphism f : M → N is a family of k-linear maps
fi : Mi → Ni, such that Nαfs(α) = ft(α)Mα for all α ∈ Q1.
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The dimension vector of a representation M = (Mi,Mα) is the vector

dimM = (di)i∈Q0 ∈ Zn, where di = dimk Mi.

In this case the length of M is d =
∑

i∈Q0
di.

The Euler form of Q is the bilinear form defined on ZQ0
∼= Zn as

⟨x, y⟩ =
∑
i∈Q0

xiyi −
∑
α∈Q1

xs(α)yt(α).

Its quadratic Tits form qQ is independent of the orientation of Q and in the
Euclidean case it is positive semidefinite with radical Zδ, where δ is called
the minimal radical vector. The defect of x ∈ ZQ0 is then ∂x = ⟨δ, x⟩. An
indecomposable module with dimension vector x is preprojective, preinjective
or regular if ∂x < 0, ∂x > 0, ∂x = 0 respectively.

If an indecomposable module M has no self-extensions, that is, if Ext1

(M,M) = 0, then it is called exceptional. In the Euclidean case the exceptional
modules are exactly the indecomposable preprojective and preinjective ones
and the indecomposable regulars, which lie on the non-homogeneous tubes
with their dimension vector bounded by δ. Also for these modules we have
that dimk End(M) = 1. The dimension vector of these modules (which is a
positive real root of the Tits form) will be called an exceptional root. For
more details we refer to [1] and [15].

Below we recall the definition of a coefficient quiver.
Let M = (Mi,Mα) be a representation of a quiver Q and B = ∪i∈Q0B(i)

a collection of bases B(i) of Mi. This set B is a basis of the vector space
⊕i∈Q0Mi and we will call it a basis of M . The coefficient quiver Γ(M,B) of
M with respect to the basis B is a quiver, whose set of vertices is the set B
and the arrows are defined in the following way. For every arrow α : i → j of
Q and every b ∈ B(i) we expand

Mα(b) =
∑
b′∈Bj

cb′b
′

in the basis B(j) of Mj and we put an arrow, denoted by α from b to b′ ∈ B(j)
in Γ(B,M) if the coefficient cb′ is non-zero.

We will call an indecomposable representation M of Q over k a tree rep-
resentation, provided there exists a basis B of M such that the coefficient
quiver Γ(M,B) is a tree. This definition is equivalent to M having exactly
d − 1 non-zero equal to 1 in its matrices, while the remaining entries are 0,
where d is the length of M .

Even though the proof presented in [13] by Ringel doesn’t give an explicit
method for constructing tree representations in general, in some particular
cases they are known.

We mention here the influential paper [3] by Gabriel, where he gave a full list
of indecomposable representations for the Dynkin quivers using 0−1 matrices.
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Excluding 4 of them, all the representations were tree representations. This
list was later completed by Crawley-Boevey in [2].

Regarding the Euclidean case, Mróz gave a full list of the indecomposable

tree representations for the quiver D̃4 in [11]. In [10] Kussin and Meltzer
described a method to explicitly determine the indecomposable preprojective

and preinjective representations of D̃m and Ẽ6 over an arbitrary field, but these
representations are not tree representations in general. Later, in [9] Kȩdzierski
and Meltzer generalized these results and gave a method for calculating inde-

composable preprojective and preinjective representations of Ẽ8 over any field
and all indecomposable representations for algebraically closed fields. However
these methods don’t result in tree representations in general.

Using a computer generated proof, together with Sz. Lénárt and I. Szöllősi
we managed to describe explicitly, in a field independent manner, all the ex-

ceptional tree representations in the case of the canonically oriented Ẽ6 quiver
in [4]. We also conjectured in that article that every tree representation of a
Euclidean quiver is field independent.

We later gave a complete and general list corresponding to the exceptional

modules over the path algebra of the canonically oriented Euclidean quiver D̃6

and a method to obtain tree representations for exceptionals in the canonically

oriented general case D̃m from that list, see [5].

3. COMPUTATIONAL FINDINGS AND CONJECTURES

Let k be an arbitrary field, Q a Euclidean quiver, and x an exceptional root
over Q. We introduce the following notation for the set of all tree representa-
tions having dimension vector x over k:

Tk(x) = { M ∈ rep kQ | dimM = x and M is a tree representation }.

Remark 3.1. Recall that the notion of tree representation includes inde-
composability.

Proposition 3.2. Let Q denote a canonically oriented Euclidean quiver of

type D̃4, D̃5 or Ẽ6. Let x be an exceptional root over Q, smaller than the
minimal radical δ. If we regard the matrices of the representations as formal
2-dimensional arrays of the symbols 0 and 1, then the set Tk(x) has the same
elements over any field, that is Tk(x) = Tk′(x) for any two fields k and k′.

Proof. We have checked this proposition using a specially developed soft-
ware, implemented using the GAP computer algebra system (see [17]). The
algorithm takes as input the quiver Q (represented through its set of arrows)
and an exceptional root x ∈ Zn where n is the number of vertices of Q. Then
it performs the following steps:
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(1) Using the backtracking method, it generates all the possible set of ma-
trices {Mα | α ∈ Q1} where each matrix Mα consists only of the ele-
ments 1 and 0 and has maximal rank (if regarded over any field), more-
over the total number of ones present in the matrices is (

∑
i∈Q0

xi)−1.

(2) For every such set of matrices it builds the corresponding representa-
tion M = (Mi,Mα) and checks for indecomposability using the fact
that if x is a root of Q such that x < δ and dimM = x, then M is
indecomposable if and only if dimEnd(M) = 1. This may be done by
writing the matrix A of the homogeneous system of linear equations
defining End(M) and showing that the co-rank of A is one (i.e. the
solution space is one dimensional) – again, if regarded over any field.

(3) The “field independent” tree representations found are added to the
set T (x) along the way and this set is returned as the result at the
end.

Note that both in steps (1) and (2) one has to check the ranks of a matrices
in a “field independent way”. In order to compute the rank of a matrix, it
must be echelonized (brought to row or column echelon form) using elementary
operations on rows and/or columns. This means that every single elementary
operation used in the process of echelonizing the matrix must be such that
the elements in the resulting matrix are either 0, 1 or −1 and the result is
exactly the same if performed in any field k. For example (taken from [13]) if

in the case of the matrix

1 0 1
1 1 0
0 1 1

 we perform the following elementary row

operations, then we get1 0 1
1 1 0
0 1 1

 r2←r2−r1−−−−−−→

1 0 1
0 1 −1
0 1 1

 r3←r3−r2−−−−−−→

1 0 1
0 1 −1
0 0 2


if performed in R, or1 0 1

1 1 0
0 1 1

 r2←r2−r1−−−−−−→

1 0 1
0 1 1
0 1 1

 r3←r3−r2−−−−−−→

1 0 1
0 1 1
0 0 0


if performed in Z2. Hence it has different ranks if considered over different
fields. A crucial element of the algorithm is to ensure something like this
never happens, but the result of every single elementary operation performed
is formally the same matrix, independently of the field it is considered in.

Also note that in step (3) we do not filter out tree representations in any way:
it just simply happens that all representations found are field independent.
An error would be signalled upon finding the first representation containing
a matrix with field dependent rank or with a field dependent co-rank of the
linear system defining End(M). □

As a result of the previous proposition we formulate the following conjecture:
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Conjecture 3.3. Let x be an exceptional root over an arbitrary Euclidean
quiver Q smaller than the minimal radical vector δ. If we regard the matrices
of the representations as formal 2-dimensional arrays of the symbols 0 and 1,
then the set Tk(x) has the same elements over any field, that is Tk(x) = Tk′(x)
for any two fields k and k′.

In the case of the (computationally verified) quivers we could omit the index
k and denote the set only as T (x).

We provide the result of our computations (the contents of the sets T (x))
as an appendix to this article (see [7]), making it possible to verify the results
of our computations using an independent implementation.

Remark 3.4. Note that this set is non-empty, since the existence of tree
representations for every exceptional root is guaranteed by the theorem of
Ringel. In addition, because every tree representation contains only 0 − 1
matrices, this set is finite.

Let z be an exceptional root of the quiver Q and Z ∈ T (z) a tree repre-
sentation. We define the set S(z), which will contain the pairs of dimension
vectors of every (non-special) Schofield pair belonging to Z. More precisely:

S(z) = { (x, y) | x, y are exceptional roots of Q and (Y,X) is a Schofield

pair belonging to Z, where Z ∈ T (z), Y ∈ T (y) and

X ∈ T (x) with dimX = x, dimY = y, dimZ = z }

Note that while the representations X,Y, Z ∈ mod kQ exist within the context
of a base field k, the conditions stated in Proposition 7 from [16] depend only
on the value of the roots (dimension vectors), hence the set S(z) may be used
in a field independent context.

If the root z is smaller than the minimal radical vector δ, then we have only
so-called non-special Schofield sequences of the form 0 → X → Z → Y → 0
(see Propositions 7 and 9 from [16]) and the set S(z) may be given in the
following way:

S(z) = { (x, y) | x, y are exceptional roots of Q, x+ y = z, ⟨x, y⟩ = 0 }

In what follows we define a set of representations constructed using Schofield
pairs. Let x and y be exceptional roots of the quiver Q and consider arbitrary
tree representations X ∈ T (x) and Y ∈ T (y). We construct a new represen-

tation Rαij
XY , as follows (α ∈ Q1 and i, j being row respectively column indices

in the upper right block of the matrix Mα):

Rαij
XY = (Mv,Ma)v∈Q0

a∈Q1

=

(
(Xv ⊕ Yv)v∈Q0 ,

([
Xa Eij

a

0 Ya

])
a∈Q1

)
where for the upper right block Eij

a is true that Eij
a = 0 for a ̸= α and Eij

α

contains exactly one non-zero entry 1 in the ith row and jth column and
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it is zero elsewhere. Using this notaion we introduce the following the set
Ek(x, y) ⊆ mod kQ:

Ek(x, y) = { Rαij
XY | α ∈ Q1, i, j are row resp. column indices,

X ∈ Tk(x), Y ∈ Tk(y), Rαij
XY ∈ Tk(x+ y) }

For given tree representations X and Y , the representation Rαij
XY is the con-

struction given by Ringel in Section 6 of [13]. As mentioned there, the position
of the single nonzero entry specified by α, i and j involves a choice of basis
and could very well depend on the base field k. To our surprise, however, this
seems not to be the case:

Proposition 3.5. Let Q denote a canonically oriented Euclidean quiver of

type D̃4, D̃5 or Ẽ6. Let x and y be exceptional roots over Q, smaller than the
minimal radical δ. If we regard the matrices of the representations as formal
2-dimensional arrays of the symbols 0 and 1, then the set Ek(x, y) has the
same elements over any field, that is Ek(x, y) = Ek′(x, y) for any two fields k
and k′.

Proof. This statement was checked computationally using the following
“brute-force” method: for any given representations X ∈ T (x), Y ∈ T (y) con-

struct all the possible representations Rαij
XY and check whether Rαij

XY ∈ T (x+y)
with the field independent rank computation described after Proposition
3.2. □

Based on our findings we conjecture that Proposition 3.5 holds for arbi-
trary tame quivers and exceptional roots. In the case of the (computationally
verified) quivers we could omit the index k and denote the set only as E(x, y).

Further advancing with our “computational inquiry” into the problem of
field independence we may ask for a method to construct the set of tree repre-
sentations, other than the “exhaustive search” we have performed. Ringel in
his proof used Schofield induction to construct tree representations (see Sec-
tion 6. of [13]), and we may ask the question whether there are other methods
for obtaining them, or does his construction result in every possible tree rep-
resentation. Permuting the basis vectors is a field independent operation, so
we introduce the following:

Definition 3.6. Let M = (Mi,Mα) and N = (Ni, Nα) be representations
of a quiver Q. Then we call them permutation-similar, provided there exists a
family of permutation matrices {Ai | i ∈ Q0} such that the following diagram
is commutative for every arrow α ∈ Q1:

Mi Mj

Ni Nj

Mα

Ai Aj

Nα
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Remark 3.7. Note that M and N are isomorphic representations over any
field, and permutation-similarity defines an equivalence relation. Moreover,
if we have a tree representation M , then every representation permutation-
similar to M is also tree.

Let Z ∈ T (z) be a tree representation, we denote by π(Z) the set of all
representations that are permutation-similar to Z. From Remark 3.7 it follows
that every element of the set π(Z) is a tree representation.

Using the notations introduced above, we state the following proposition,
giving a method to inductively construct the sets of tree representations:

Proposition 3.8. Let z be an exceptional root of a canonically oriented

Euclidean quiver of type D̃4, D̃5 or Ẽ6, such that z < δ. Then we have

T (z) =
⋃

(x,y)∈S(z)
Z∈E(x,y)

π(Z).

Proof. Using the sets T (x) already computed, this can be done by direct
verification. One can also use the list given in the Appendix of [16] for obtain-
ing the sets S(z). Also note that we have dimZ = z in the statement of the
proposition above. □

We conjecture that Proposition 3.8 also holds true for every exceptional
root of any Euclidean quiver.

Remark 3.9. There is nothing “special” about the minimal radical vector δ
of the quiver Q. We have chosen δ as an upper limit for our computations for
practical reasons: running time and because in this way we have tackled all the
non-homogeneous regulars. Given more time and computer resources we could

run our algorithms for bigger dimension vectors and quivers of type Ẽ7 and

Ẽ8. However, the cases verified gave us enough confidence in the conjectures
stated in this section, and we believe further efforts should be directed towards
a “theoretical” proof of the propositions (in general).
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