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A NEW APPROACH TO MULTIPLICATION MODULES
VIA (δ-)SMALL SUBMODULES

MOTAHAREH IRANI, YAHYA TALEBI, and ALI REZA MINIRI HAMZEKOLAEE

Abstract. Let R be a commutative ring and M an R-module. In this work
we introduce two new generalizations of multiplication modules via δ-small sub-
modules and small submodules of a fixed module. A module M is said to be
(δ-)small multiplication provided for every (δ-)small submodule N of M , there
is an ideal I of R such that N = IM . We study some general properties of
both δ-small multiplication modules and also small multiplication modules. A
counterexample is presented to state the fact that the class of all δ-small mul-
tiplication modules lies exactly between the class of multiplication modules and
small multiplication modules. We show that any direct summand of a (δ-)small
multiplication module inherits the property.
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1. INTRODUCTION

Throughout this paper R denotes an arbitrary commutative ring with iden-
tity and all modules are unitary R-modules. Let M be an R-module and N
a submodule of M . Then N is said to be small in M denoted by N ≪ M
in case M = N +K implies M = K. A module M is called hollow provided
every proper submodule of M is small in M . Examples of hollow modules
contains linearly ordered modules such as the Z-modules Zp∞ and Zpn .

Let M be a module over a ring R. Then M is called multiplication in case
for every submodule N of M , there exists an ideal I of R such that N =
MI. General properties and some of nice characterizations of multiplication
modules were studied and investigated in [2]. It is proved that a module M is
multiplication if and only if for each cyclic submodule mR of M , there is an I
ideal of R with mR = MI. It is also shown that a finitely generated module
M is multiplication if and only if M/JM is multiplication. An important fact
in [2] states that a direct sum of modules Mi for i ∈ I is multiplication if and
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only if each Mi is multiplication and for each i ∈ I there exists an ideal λi of
R such that Mi = Miλi and (⊕j ̸=iMj)λi = 0.

Multiplication modules ant their generalizations also studied by several au-
thors. For more information about these modules we may refer the readers to
[3, 5].

Motivated by mentioned works on multiplication modules, in this work we
are interested in studying these modules via small submodules and also δ-
small submodules. As a generalization of small submodules, a submodule K
of M is called (δ-)small in M in case M = K + L with M/L singular implies
that M = L. In fact, instead of any submodule of a module, we may choose
just (δ-)small submodules of that module. By the way, we call a module M ,
(δ-)small multiplication in case for every (δ-)small submodule N of a module
M , there is an ideal of R such that N = MI. We show that the class of all
small multiplication modules contains properly the class of all multiplication
modules. Note that a δ-small multiplication module is a small multiplication
module. So, by presenting a counterexample we show that the converse may
not true. In section 2, we study some general properties of small multiplication
modules. We prove that under an assumption, a homomorphic image of a
small multiplication module inherits the property. We also show that a direct
summand of a small multiplication module is small multiplication. It is also
proved that a direct summand of a small multiplication module inherits the
property.

In section 3, we introduce a new class of modules via the concept of singular
modules which lies between the class of multiplication modules and small
multiplication modules. We say that a module M is δ-small multiplication in
case for every δ-small submodule K of M , there is an ideal I of R such that
K = MI. Some examples of such modules are provided. We prove that a
direct summand of a δ-small multiplication module is δ-small multiplication.
We also prove that if M is δ-small multiplication and N ≪δ M , then M/N is
δ-small multiplication.

2. MULTIPLICATION MODULES VIA SMALL SUBMODULES

In last decades multiplication modules and their various generalizations have
been studied extensively and their properties have been fully investigated.
As the concept of small submodules plays a key role in module theory and
also multiplication modules are valuable for studying, in this work we are
interested in introducing a new generalization of multiplication modules via
small submodules.

Definition 2.1. Let M be a module. Then we call M , small multiplication
in case for every small submodule N of M , there is an ideal I of R such that
N = MI.

We denote Rad(M) as radical of module M .
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Example 2.2. (1) Every module M with Rad(M) = 0, is obviously small
multiplication. Therefore, any semisimple module is small multiplication. In
particular, every module over a V -ring is small multiplication.

(2) Let M = Q as an Z-module and N a finitely generated submodule of
M . It is known that N is a small submodule of M . If there is an ideal nZ of
Z such that N = nQ, then N = M which is a contradiction. It follows that
M can not be small multiplication. Generally, over a principal ideal domain
R an injective R-module M with Rad(M) ̸= 0 can not be small multiplication
since for every x ∈ R, xM = M .

(3) Consider the Z-module M = Zn where n is not a square-free natural
number. Then for every submodule N of M , there is an integer x ∈ N such
that N = xZM . It follows that M is small multiplication.

(4) Recall that a module M is hollow in case, every proper submodule of
M is small in M . By the way, for a hollow module M the two concepts
small multiplication and multiplication, coincide. In particular, any injective
Z-module neither multiplication nor small multiplication by (2).

The following example introduces a large class of small multiplication mod-
ules while they are not multiplication.

Example 2.3. Any semisimple module M over a local ring R is small
multiplication while M is not a multiplication module. As M is semisim-
ple, then M ∼= ⊕i∈IR/J(R) for an indexed set I. Suppose that N is a
nonzero submodule of M . If M is multiplication, then there is an ideal I
of R such that K = I(⊕i∈IR/J(R)) ∼= N . Then K = ⊕i∈II(R/J(R)) =
⊕i∈I(IR+J(R))/J(R) = ⊕i∈IJ(R)/J(R) = 0. which is a contradiction (note
that R is local and I must be contained in J(R)). This should be noticed that
M is small multiplication by Example 2.2.

Lemma 2.4. Let M be a Noetherian module such that for every cyclic sub-
module xR there is an ideal I of R such that xR = IM . Then M is small
multiplication. In particular, every finitely generated Z-module is small mul-
tiplication.

Proof. Let M be Noetherian and N a small submodule of M . Then N =
x1R+ . . .+xtR. By assumption, for each xi there is an ideal Ji of R such that
xiR = JiM . Now, N = J1M + . . .+ JtM = (J1 + . . .+ Jt)M . This completes
the proof. □

For a subset X of a module M over a ring R, the ideal {r ∈ R|X.r = 0} is
called the annihilator of X in R; it is denoted by AnnR(X).

For two subsets X and Y of a module M over a ring R, the subset {r ∈
R|X.r ⊆ Y } of R is denoted by (Y : X). If Y is a submodule of M , then it is
directly verified that for any subset X of M , the set (Y : X) is a ideal of R.

Proposition 2.5. For a module M , the following conditions are equivalent:
(1) M is small multiplication;
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(2) For every small submodule N of M , we have N ⊆ M(N : M);
(3) For each small submodule N of M , we have N = M(N : M) =

MAnnR(M/N).

Proof. (1) ⇒ (2) Since M is small multiplication then for every small sub-
module N of M there exist an ideal I of R such that N = IM . It follows that
I ⊆ (N : M). Therefore, N = IM ⊆ (N : M)M .

(2) ⇒ (3) Let N be a small submodule of M and x =
∑n

i=1 xiri ∈ M(N :
M) such that xi ∈ M and ri ∈ (N : M). As ri ∈ (N : M), we conclude that
xiri ∈ N . It follows that x belongs to N . Hence N = M(N : M). Note also
that (N : M) = AnnR(M/N).

(3) ⇒ (1) Take (N : M) as the ideal related to N . □

Proposition 2.6. For a right module M over a ring R, the following con-
ditions are equivalent:

(1) M is small multiplication;
(2) For every ideal I of R such that I ⊆ AnnR(M), the R/I-module M is

small multiplication;
(3) There exist an ideal I of R such that I ⊆ AnnR(M) and M is a small

multiplication R/I-module.

Let R be a ring and M be an R-module. Recall that a submodule L of M
is called fully invariant provided φ(L) ⊆ L for every endomorphism φ of M .
Clearly 0 and M are fully invariant submodules of M . Note that since R is a
commutative ring, each submodule of the R-module R is fully invariant.

Proposition 2.7. Let M be a small multiplication module and N a small
submodule of M . Then M/N is small multiplication.

Proof. Let M be a small multiplication module and N a small submodule of
M . Suppose that K/N be a small submodule of M/N where K is a submodule
of M containing N . As N ≪ M , it follows that K ≪ M . Being M a
small multiplication module implies that there is an ideal I of R such that
K = MI. It is not hard to check that K/N = (M/N)I. Hence M/N is small
multiplication. □

Proposition 2.8. Let M be a small multiplication module. Then:
(1) Every small submodule of M is a fully invariant submodule of M .
(2) Let N be a submodule of M such that N ∩MI = NI for every ideal I

of R. Then N is a small multiplication module.

Proof. (1) Suppose that N is a small submodule of M and φ is an endo-
morphism of M . Being M small multiplication implies existing an ideal I of
R such that N = MI. It follows that φ(N) = φ(IM) = φ(M)I ⊆ MI = N .
This shows that N is fully invariant.

(2) Let N be a submodule of M with stated property and K ≪ N . Note
that K will be a small submodule of M , as well. As M is small multiplication,
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there exists an ideal I of R such that K = MI. Therefore, K = MI =
K

⋂
MI ⊆ N

⋂
MI = NI ⊆ MI = K. In fact, K = NI, as required. □

Let M be a small multiplication module that does not contain a nontriv-
ial fully invariant submodule. Then the only small submodule of M is zero
submodule by Proposition 2.8. In fact, Rad(M) = 0.

Corollary 2.9. Every direct summand of a small multiplication module,
inherits the property.

Proof. Suppose that M is a small multiplication module and N a direct
summand ofM . SetM = N⊕N ′. Then for each ideal I of R, MI = NI⊕N ′I.
It follows that N ∩MI = N ∩ (NI ⊕N ′I), which implies N ∩MI = NI. The
rest follows from Proposition 2.8.

□

Proposition 2.10. Let M be a small multiplication R-module and P is
an ideal of R such that M ̸= MP . If for each cyclic submodule Y of M ,
we have Rad(Y ) ̸= 0, then there exists a cyclic submodule X of M such that
P ⊈ AnnR(M/X).

Proof. Suppose that M be an R-module with stated properties. As M ̸=
MP , there exist a cyclic submoduleX ofM that is not contained in the module
MP . Since M is small multiplication, there exists an ideal I of R such that
X = MI. As MP does not include X, we conclude that I ⊈ P . Note also
that X = IM implies I ⊆ AnnR(M/X). If in the contrary, P ⊇ AnnR(M/X),
then MP ⊇ X causing a contradiction. □

Proposition 2.11. For an R-module M the following conditions are equiv-
alent;

(1) M is small multiplication;
(2) For every cyclic small submodule Y of M , there exists an ideal B of R

such that X = MB;
(3) For every small submodule X of M , there exists a set {Xi}i∈I of sub-

modules of X and a set {Bi}i∈I of ideals of R such that X =
∑

i∈I Xi and
Xi = MBi for each i ∈ I.

Proof. The implication (1) ⇒ (2) is obvious.
(2) ⇒ (3) Let X be a small submodule of M . Then each cyclic submodule

of X is a small submodule of M . Note that X =
∑

y∈X yR. By (2), for each
y ∈ X, there exists an ideal By of R such that yR = MBy. This completes
the proof.

(3) ⇒ (1) Consider an arbitrary small submodule X of M and a set {Bi}i∈I
of ideals of R such that X =

∑
i∈I Xi and Xi = MBi for each i ∈ I. We

denote by B the sum of all ideals Bi of R. Then X =
∑

i∈I Xi =
∑

i∈I MBi =
M(

∑
i∈I Bi) = MB. Hence M is small multiplication. □

The following presents an easy characterization of small multiplication mod-
ules.
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Lemma 2.12. Let M be an R-module. Then M is small multiplication if
and only if for every small submodule N of M and each m ∈ M , there is an
ideal I of R such that N ∩mR = MI.

Proof. Suppose that M is small multiplication, N ≪ M and m ∈ M . Then
N ∩mR is a small submodule of M , as well as N . So that will be an ideal I
of R such that N ∩mR = MI. For the converse, let N be a small submodule
of M . Then for each x ∈ N , there is an ideal Ix of R such that xR = MIx.
This can be easily verified that N =

∑
x∈N xR = MI where I is an ideal of R

which is the sum of all ideas Ix. □

Remark 2.13. Let R be a ring with just one non-trivial ideal I. Let M
be a small multiplication R-module and let N be a small submodule of M .
Consider an arbitrary 0 ̸= x ∈ N . Then xR is small in M as well as N . Since
R has just one nontrivial ideal I combining with M is small multiplication, we
conclude that xR = MI = N . This shows that N is a simple submodule of
M . In particular, for any small multiplication module over the ring R = Zp2 ,
every small submodule is simple.

Proposition 2.14. Let M be an Artinian small multiplication module and
J is jacobson radical of R. Then the following assertions hold.

(1) If JM ≪ M , then the module M/JM is a semisimple small multiplica-
tion module.

(2) If JM is small submodule of M and M/JM is cyclic, then M is a cyclic
module.

(3) If M is a finitely generated module, then M is a cyclic module.

Proof. (1) The module M/JM is a small multiplication module by Proposi-
tion 2.7. Since M/JM is a semiprimitive Artinian module, M/JM is a finitely
generated semisimple module.

(2) Since M/JM is a cyclic R-module, there exists a cyclic submodule X
of M such that M = X + JM . By assumption JM is a small submodule of
M . Therefor, M = X.

(3) Being M a finitely generated module implies JM ≪ M . Now by (2),
M is a cyclic module. □

3. MULTIPLICATION MODULES AND δδδ-SMALL SUBMODULES

In last section we try to make a connection between the definition of a
multiplication module and the concept of small submodules. It can be of
interest that we consider the δ-small submodules instead of small submodules.
By the way, it should be noted that any small submodule of a module is δ-small
in that module. Zhou in [7] introduced the concept of δ-small submodules.
A submodule N of M is said to be δ-small in M (denoted by N ≪δ M)
provided M ̸= N +K for any proper submodule K of M with M/K singular.
General properties and some useful characterizations of δ-small submodules of
a module have been provided in [7]. The sum of all δ-small submodules of M
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is denoted by δ(M). Also δ(M) is the reject of the class of all simple singular
modules in M .

By the way, we are interested in introducing a new generalization of multi-
plication modules via δ-small submodule. We say that a module M is δ-small
multiplication provided for every δ-small submodule K of M , there is an ideal
I of R such that K = MI.

It is obvious that every δ-small multiplication module is small multiplica-
tion. So we have the following hierarchies:

multiplication module ⇒ δ-small multiplication module ⇒ small multipli-
cation module

Example 3.1. (1) Let M be a module with δ(M) = 0. Then the only
δ-small submodule of M is zero submodule and we have 0 = M0. Hence M is
δ-small multiplication.

(2) LetM be a δ-hollow module, i.e. every proper submodule ofM is δ-small
in M . Then M is δ-small multiplication if and only if M is multiplication.
In particular, for a hollow module the three concepts δ-small multiplication,
small multiplication and multiplication coincide.

(3) For a singular module M , we have M is δ-small multiplication if and
only if M is small multiplication, since for a singular module M , a submodule
N is δ-small in M if and only if N is small in M .

(4) Generally, over a principal ideal domain R, an injective (divisible) R-
module M with δ(M) ̸= 0 can not be δ-small multiplication since for every
x ∈ R, xM = M .

We present an example of a small multiplication module which is not δ-
small multiplication showing that the class of all small multiplication modules
contains properly the class of all δ-small multiplication modules.

Example 3.2. Let F be a field. Set M = ⊕∞
i=1F . Then M is a semisimple

projective F -module and Rad(M) = 0. Hence M is a small multiplication
F -module. Consider the submodule N = F ⊕F of M . It is not hard to check
that N is a δ-small submodule of M . If there is an ideal I of F such that
N = MI, then N = 0 or N = M that both of them contradict choosing N .
It follows that M is not δ-small multiplication.

Lemma 3.3. Let M be an R-module. Then M is δ-small multiplication if
and only if for every δ-small submodule N of M and each m ∈ M , there is an
ideal I of R such that N ∩mR = MI.

Proof. The proof is the same as the proof of Lemma 2.12. □

An easy characterization of δ-small multiplication modules via the annihi-
lator of modules is presented below.

Proposition 3.4. For a module M , the following conditions are equivalent:
(1) M is δ-small multiplication;
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(2) For every δ-small submodule N of M , we have N ⊆ M(N : M);
(3) For each δ-small submodule N of M , we have N = M(N : M) =

MAnnR(M/N).

Proof. (1) ⇒ (2) Since M is δ-small multiplication then for every δ-small
submodule N of M there exist an ideal I of R such that N = IM . It follows
that I ⊆ (N : M). Therefore, N = IM ⊆ (N : M)M .

(2) ⇒ (3) Let N be a δ-small submodule of M and x =
∑n

i=1 xiri ∈ M(N :
M) such that xi ∈ M and ri ∈ (N : M). As ri ∈ (N : M), we conclude that
xiri ∈ N . It follows that x belongs to N . Hence N = M(N : M). Note also
that (N : M) = AnnR(M/N).

(3) ⇒ (1) Take (N : M) as the ideal related to N . □

Let M be a module N ≤ K ≤ M . If K/N is a δ-small submodule of M/N
and N ≤δ M , then it can be easily shown that K ≤δ M .

Proposition 3.5. Let M be a δ-small multiplication module and a N a
δ-small submodule of M . Then M/N is δ-small multiplication.

Proof. Let M be a δ-small multiplication module and N a δ-small submod-
ule of M . Suppose that K/N is a δ-small submodule of M/N where K is a
submodule of M containing N . As N ≪δ M , it follows that K ≪δ M . Being
M a δ-small multiplication module implies that there is an ideal I of R such
that K = MI. It is not hard to check that K/N = (M/N)I. Hence M/N is
δ-small multiplication. □

Proposition 3.6. Suppose that M is a δ-small multiplication module. Then
the following hold.

(1) Every δ-small submodule of M is a fully invariant submodule of M .
(2) Let N be a submodule of M such that N ∩ MI = NI for every ideal

I of R. Then N is a small multiplication module. For instance, every direct
summand of a δ-small multiplication module, inherits the property.

Proof. (1) Let N ≤δ M and φ be an endomorphism of M . Being M δ-
small multiplication implies existing an ideal I of R such that N = MI. It
follows that φ(N) = φ(IM) = φ(M)I ⊆ MI = N . This shows that N is fully
invariant.

(2) Let N be a submodule of M such that N ∩ MI = NI for every ideal
I of R. Suppose that K is a δ-small submodule of N . Note that K will be
a δ-small submodule of M , as well. As M is δ-small multiplication, there
exists an ideal I of R such that K = MI. Therefore, K = MI = K

⋂
MI ⊆

N
⋂

MI = NI ⊆ MI = K. In fact, K = NI, as required. For the latter, set
M = N ⊕N ′ where N ′ ≤ M . Then for each ideal I of R, MI = NI ⊕N ′I. It
follows that N ∩MI = N ∩ (NI ⊕N ′I), which implies N ∩MI = NI. Hence
N is δ-small multiplication. □

Let M be a module with no nontrivial fully invariant submodule. If M is
δ-small multiplication, then either δ(M) = 0 or M is a semisimple projective
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module. For, if N is a δ-small submodule of M , then N = 0 or N = M . Note
that M ≪δ M implies M is semisimple projective. Especially, the Z-module Q
can not be δ-small multiplication (note that Q is neither semisimple projective
nor δ(Q) = 0.

Proposition 3.7. For an R-module M the following conditions are equiv-
alent;

(1) M is δ-small multiplication;
(2) For every cyclic δ-small submodule Y of M , there exists an ideal B of

R such that X = MB;
(3) For every δ-small submodule X of M , there exists a set {Xi}i∈I of

submodules of X and a set {Bi}i∈I of ideals of R such that X =
∑

i∈I Xi and
Xi = MBi for each i ∈ I.

Proof. Similar to the proof of Proposition 2.11. □
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