ON A GENERALIZATION OF GRADED 2-ABSORBING SUBMODULES

KHALDOUN AL-ZOUBI and SHATHA ALGHUEIRI

Abstract

Let G be a group with identity e. Let R be a G-graded commutative ring with nonzero identity and M a graded R-module. In this paper, we introduce the concept of graded $G 2$-absorbing submodule as a new generalization of a graded 2-absorbing submodule on the one hand and a generalization of a graded primary submodule on other hand. We give a number of results concerning these classes of graded submodules and their homogeneous components. In fact, our objective is to investigate graded $G 2$-absorbing submodules, and we examine in particular when graded submodules are graded $G 2$-absorbing submodules. For example, we give a characterization of graded $G 2$-absorbing submodules. We also study the behaviour of graded $G 2$-absorbing submodules under graded homomorphisms and under localization.

MSC 2020. 13A02, 16 W 50.
Key words. Graded G2-absorbing submodules, graded primary submodules, graded 2-absorbing submodules.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper all rings are commutative with identity and all modules are unitary.

First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to $[12-15]$ for these basic properties and more information on graded rings and modules.

Let G be a multiplicative group and e denote the identity element of G. A ring R is called a graded ring (or G-graded ring) if there exist additive subgroups R_{α} of R indexed by the elements $\alpha \in G$ such that $R=\bigoplus_{\alpha \in G} R_{\alpha}$ and $R_{\alpha} R_{\beta} \subseteq R_{\alpha \beta}$ for all $\alpha, \beta \in G$. The elements of R_{α} are called homogeneous of degree α and all the homogeneous elements are denoted by $h(R)$, i.e. $h(R)=$ $\cup_{\alpha \in G} R_{\alpha}$. If $r \in R$, then r can be written uniquely as $\sum_{\alpha \in G} r_{\alpha}$, where r_{α} is called a homogeneous component of r in R_{α}. Moreover, R_{e} is a subring of R and $1 \in R_{e}$. Let $R=\bigoplus_{\alpha \in G} R_{\alpha}$ be a G-graded ring. An ideal I of R is said to be a graded ideal if $I=\bigoplus_{\alpha \in G}\left(I \cap R_{\alpha}\right):=\bigoplus_{\alpha \in G} I_{\alpha}$. Let $R=$

[^0]$\bigoplus_{\alpha \in G} R_{\alpha}$ be a G-graded ring. A Left R-module M is said to be a graded R module (or G-graded R-module) if there exists a family of additive subgroups $\left\{M_{\alpha}\right\}_{\alpha \in G}$ of M such that $M=\bigoplus_{\alpha \in G} M_{\alpha}$ and $R_{\alpha} M_{\beta} \subseteq M_{\alpha \beta}$ for all $\alpha, \beta \in G$. Also if an element of M belongs to $\cup_{\alpha \in G} M_{\alpha}=h(M)$, then it is called a homogeneous. Note that M_{α} is an R_{e}-module for every $\alpha \in G$. So, if $I=$ $\bigoplus_{\alpha \in G} I_{\alpha}$ is a graded ideal of R, then I_{α} is an R_{e}-module for every $\alpha \in G$. Let $R=\bigoplus_{\alpha \in G} R_{\alpha}$ be a G-graded ring. A submodule N of M is said to be a graded submodule of M if $N=\bigoplus_{\alpha \in G}\left(N \cap M_{\alpha}\right):=\bigoplus_{\alpha \in G} N_{\alpha}$. In this case, N_{α} is called the α-component of N. Moreover, M / N becomes a G graded R-module with α-component $(M / N)_{\alpha}:=\left(M_{\alpha}+N\right) / N$ for $\alpha \in G$. Let R be a G-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1} R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1} R=\bigoplus_{\alpha \in G}\left(S^{-1} R\right)_{\alpha}$ where $\left(S^{-1} R\right)_{\alpha}=$ $\left\{r / s: r \in R, s \in S\right.$ and $\left.\alpha=(\operatorname{deg} s)^{-1}(\operatorname{deg} r)\right\}$. Let M be a graded module over a G-graded ring R and $S \subseteq h(R)$ be a multiplicatively closed subset of R. The module of fractions $S^{-1} M$ over a graded ring $S^{-1} R$ is a graded module which is called the module of fractions, if $S^{-1} M=\bigoplus_{\alpha \in G}\left(S^{-1} M\right)_{\alpha}$ where $\left(S^{-1} M\right)_{\alpha}=\left\{m / s: m \in M, s \in S\right.$ and $\left.\alpha=(\operatorname{deg} s)^{-1}(\operatorname{deg} m)\right\}$. We write $h\left(S^{-1} R\right)=\underset{\alpha \in G}{\cup}\left(S^{-1} R\right)_{\alpha}$ and $h\left(S^{-1} M\right)=\underset{\alpha \in G}{\cup}\left(S^{-1} M\right)_{\alpha}$. Consider the graded homomorphism $\eta: M \rightarrow S^{-1} M$ defined by $\eta(m)=m / 1$. For any graded submodule N of M, the submodule of $S^{-1} M$ generated by $\eta(N)$ is denoted by $S^{-1} N$. Also, $S^{-1} N=\left\{\beta \in S^{-1} M: \beta=m / s\right.$ for $m \in N$ and $\left.s \in S\right\}$ and $S^{-1} N \neq S^{-1} M$ if and only if $S \cap\left(N:_{R} M\right)=\phi$ (see [15].)

Let R be a G-graded ring, M a graded R-module and N a graded submodule of M. Then $\left(N:_{R} M\right)$ is defined as $\left(N:_{R} M\right)=\{r \in R \mid r M \subseteq N\}$. It is shown in [7, Lemma 2.1] that if N is a graded submodule of M, then $\left(N:_{R} M\right)=\{r \in R: r N \subseteq M\}$ is a graded ideal of R.

The graded radical of a graded ideal I of R, denoted by $\operatorname{Gr}(I)$, is the set of all $x=\sum_{g \in G} x_{g} \in R$ such that for each $g \in G$ there exists $n_{g}>0$ with $x^{n_{g}} \in I$. Note that, if r is a homogeneous element, then $r \in \operatorname{Gr}(I)$ if and only if $r^{n} \in I$ for some $n \in \mathbb{N}$ (see [18].) The graded radical of a graded submodule N of M, denoted by $G r_{M}(N)$, is defined to be the intersection of all graded prime submodules of M containing N. If N is not contained in any graded prime submodule of M, then $G r_{M}(N)=M$ (see [8].)

The concept of graded 2-absorbing ideals was introduced in $[3,16$ as a generalization of the notion of graded prime ideals. Recall from $3 \mid$ that a proper graded ideal I of R is said to be a graded 2-absorbing ideal of R if whenever $r_{g}, s_{h}, t_{\lambda} \in h(R)$ with $r_{g} s_{h} t_{\lambda} \in I$, then $r_{g} s_{h} \in I$ or $r_{g} t_{\lambda} \in I$ or $s_{h} t_{\lambda} \in I$. Also, a graded ideal $I=\bigoplus_{g \in G} I_{g}$ of a graded ring R is said to be a g-2-absorbing ideal of R if $I_{g} \neq R_{g}$ and whenever $r_{g}, s_{g}, t_{g} \in R_{g}$ with $r_{g} s_{g} t_{g} \in I$, then $r_{g} s_{g} \in I$ or $r_{g} t_{g} \in I$ or $s_{g} t_{g} \in I$.

Al-Zoubi and Abu-Dawwas in [2] extended graded 2-absorbing ideals to graded 2-absorbing submodules. Recall from [2] that a proper graded submodule N of a graded R-module M is said to be a graded 2-absorbing submodule of M if whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $r_{g} s_{h} m_{\lambda} \in N$, then $r_{g} s_{h} \in\left(N:_{R} M\right)$ or $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$.

The concept of graded primary ideals was introduced by Refai and Al-Zoubi in $\sqrt{18}$ as a generalization of the notion of graded prime ideals. Recall from (18) that a proper graded ideal P of a graded ring R is said to be a graded primary ideal if whenever $r_{g}, s_{h} \in h(R)$ with $r_{g} s_{h} \in P$, then either $r_{g} \in P$ or $s_{h} \in \operatorname{Gr}(P)$.

Atani and Farzalipour in [8] extended graded primary ideals to graded primary submodules and studied in $[1,5,9,17]$. Recall from [8] that a proper graded submodule N of a graded R-module M is said to be a graded primary submodule if whenever $r_{g} \in h(R)$ and $m_{h} \in h(M)$ with $r_{g} m_{h} \in N$, then either $m_{h} \in N$ or $r_{g} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.

Al-Zoubi and sharafat in [6] introduced the concept of graded 2-absorbing primary ideal of a graded commutative rings that is a generalization of the concept of graded primary ideal. Recall from [6] that a graded ideal $I=$ $\bigoplus_{g \in G} I_{g}$ of a graded ring R is said to be a graded 2-absorbing primary ideal of R if $I \neq R$ and whenever $r_{g}, s_{h}, t_{\lambda} \in h(R)$ with $r_{g} s_{h} t_{\lambda} \in I$, then $r_{g} s_{h} \in I$ or $r_{g} t_{\lambda} \in \operatorname{Gr}(I)$ or $s_{h} t_{\lambda} \in \operatorname{Gr}(I)$. Also, a graded ideal $I=\bigoplus_{g \in G} I_{g}$ of a graded ring R is said to be a g-2-absorbing primary ideal of R if $I_{g} \neq R_{g}$ and whenever $r_{g}, s_{g}, t_{g} \in R_{g}$ with $r_{g} s_{g} t_{g} \in I$, then $r_{g} s_{g} \in I$ or $r_{g} t_{g} \in \operatorname{Gr}(I)$ or $s_{g} t_{g} \in \operatorname{Gr}(I)$.

Celikel in [10] extended graded 2 -absorbing primary ideals to graded 2 absorbing primary submodules. Recall from 10 that a proper graded submodule N of a graded R-module M is said to be a graded 2-absorbing primary submodule of M if whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $r_{g} s_{h} m_{\lambda} \in N$, then $r_{g} s_{h} \in\left(N:_{R} M\right)$ or $r_{g} m_{\lambda} \in G r_{M}(N)$ or $s_{h} m_{\lambda} \in G r_{M}(N)$.

Al-Zoubi and Al-Azaizeh in [4] introduced the concept of graded weakly 2-absorbing primary submodule as a new generalization of graded 2-absorbing primary submodule. Recall from [4] that a proper graded submodule N of a graded R-module M is said to be a graded weakly 2-absorbing primary submodule of M if $N \neq M$; and whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $0 \neq r_{g} s_{h} m_{\lambda} \in N$, then either $r_{g} s_{h} \in\left(N:_{R} M\right)$ or $r_{g} m_{\lambda} \in G r_{M}(N)$ or $s_{h} m_{\lambda} \in G r_{M}(N)$.

Dubey and Aggarwal in [11] introduced the concept of 2-absorbing primary submodule over a commutative ring with nonzero identity as a new generalization of primary submodule. As it defined in [11], a proper submodule N of a R-module M is said to be a 2 -absorbing primary submodule of M if whenever $r, s \in R, m \in M$ and $r s m \in N$, then $r m \in N$ or $s m \in N$ or $r s \in \sqrt{(N: M)}$.

The scope of this paper is devoted to the theory of graded modules over graded commutative rings. One use of rings and modules with gradings is in describing certain topics in algebraic geometry. Here, we introduce the concept
of graded G2-absorbing submodule as a new generalization of a graded 2absorbing submodule on the one hand and a generalization of a graded primary submodule on other hand. A number of results concerning of these classes of graded submodules and their homogeneous components are given.

2. RESULTS

Definition 2.1. Let R be a G-graded ring, M a graded R-module, $N=$ $\oplus_{h \in G} N_{h}$ a graded submodule of M and $h \in G$.
(i) We say that N_{h} is a h-G2-absorbing submodule of the R_{e}-module M_{h} if $N_{h} \neq M_{h}$; and whenever $r_{e}, s_{e} \in R_{e}$ and $m_{h} \in M_{h}$ with $r_{e} s_{e} m_{h} \in N_{h}$, then either $r_{e} s_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$ or $r_{e} m_{h} \in N_{h}$ or $s_{e} m_{h} \in N_{h}$.
(ii) We say that N is a graded G2-absorbing submodule of M if $N \neq M$; and whenever $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ with $r_{g} s_{h} m_{\lambda} \in N$, then either $r_{g} s_{h} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ or $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$.

It is clear that every graded 2-absorbing submodule is a graded G2-absorbing submodule. The following example shows that the converse is not true in general.

EXAMPLE 2.2. Let $G=\mathbb{Z}_{2}$ and $R=\mathbb{Z}$ be a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=\{0\}$. Let $M=\mathbb{Z}_{16}$ be a graded R-module with $M_{0}=\mathbb{Z}_{16}$ and $M_{1}=\{0\}$. Now, consider a graded submodule $N=(8)$ of M. Then N is not a graded 2-absorbing submodule of M since $2 \cdot 2 \cdot 2 \in N$ and neither $2 \cdot 2 \in N$ nor $2 \cdot 2 \in\left(N:_{R} M\right)=8 \mathbb{Z}$. However an easy computation shows that N is a graded $G 2$-absorbing submodule of M.

It is easy to see that every graded primary submodule is a graded G2absorbing submodule. The following example shows that the converse is not true in general.

ExAmple 2.3. Let $G=\mathbb{Z}_{2}$, then $R=\mathbb{Z}$ is a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=\{0\}$. Let $M=\mathbb{Z}$ be a graded R-module with $M_{0}=\mathbb{Z}$ and $M_{1}=\{0\}$. Now, consider a graded submodule $N=6 \mathbb{Z}$ of M. Then N is not a graded primary submodule of M since $3 \cdot 2 \in N=6 \mathbb{Z}$ but neither $2 \in 6 \mathbb{Z}$ nor $3 \in \operatorname{Gr}\left(\left(6 \mathbb{Z}:_{R} \mathbb{Z}\right)\right)$. However an easy computation shows that N is a graded G2-absorbing submodule of M.

TheOrem 2.4. Let R be a G-graded ring, M a graded R-module, $N=$ $\bigoplus_{h \in G} N_{h}$ a graded submodule of M and $h \in G$. If N_{h} is a $h-G 2$-absorbing submodule of the R_{e}-module M_{h}, then $\left(N_{h}:_{R_{e}} M_{h}\right)$ is an e-2-absorbing primary ideal of R.

Proof. Let $r_{e}, s_{e}, t_{e} \in R_{e}$ such that $r_{e} s_{e} t_{e} \in\left(N_{h}:_{R_{e}} M_{h}\right)$. Assume that $r_{e} s_{e} \notin\left(N_{h}:_{R_{e}} M_{h}\right)$ and $s_{e} t_{e} \notin \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$. It follows that $r_{e} s_{e} \notin$ $\left(N_{h}:_{R_{e}} M_{h}\right)$ and $s_{e} t_{e} \notin\left(N_{h}:_{R_{e}} M_{h}\right)$. Then there exist $m_{h}, m_{h}^{\prime} \in M_{h}$ such that $r_{e} s_{e} m_{h} \notin N_{h}$ and $s_{e} t_{e} m_{h}^{\prime} \notin N_{h}$. Since $s_{e} m_{h}+s_{e} m_{h}^{\prime} \in M_{h}, r_{e} t_{e}\left(s_{e} m_{h}+s_{e} m_{h}^{\prime}\right) \in$
N_{h} and so we have either $r_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$ or $r_{e}\left(s_{e} m_{h}+s_{e} m_{h}^{\prime}\right) \in N_{h}$ or $t_{e}\left(s_{e} m_{h}+s_{e} m_{h}^{\prime}\right) \in N_{h}$ as N_{h} is a h - $G 2$-absorbing submodule of the $R_{e^{-}}$ module M_{h}. If $r_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$, then we are done. If $r_{e}\left(s_{e} m_{h}+\right.$ $\left.s_{e} m_{h}^{\prime}\right) \in N_{h}$, then $r_{e} s_{e} m_{h}^{\prime} \notin N_{h}$ since $r_{e} s_{e} m_{h} \notin N_{h}$. Since N_{h} is a $h-G 2-$ absorbing submodule of the R_{e}-module $M_{h}, r_{e} s_{e} t_{e} m_{h}^{\prime} \in N_{h}, r_{e} s_{e} m_{h}^{\prime} \notin N_{h}$ and $s_{e} t_{e} m_{h}^{\prime} \notin N_{h}$, we get $r_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$. Similarly, if $t_{e}\left(s_{e} m_{h}+s_{e} m_{h}^{\prime}\right) \in$ N_{h}, then we get $t_{e} s_{e} m_{h} \notin N_{h}$. Since N_{h} is a h - $G 2$-absorbing submodule of the R_{e}-module $M_{h}, r_{e} s_{e} t_{e} m_{h} \in N_{h}, r_{e} s_{e} m_{h} \notin N_{h}$ and $s_{e} t_{e} m_{h} \notin N_{h}$, we get $r_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$. Hence $\left(N_{h}:_{R_{e}} M_{h}\right)$ is an e-2-absorbing primary ideal of R.

The following example shows that the converse of Theorem 2.4 is not true in general.

Example 2.5. Let $G=\mathbb{Z}_{2}$ and $R=\mathbb{Z}$ be a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=\{0\}$. Let $M=\mathbb{Z} \times \mathbb{Z}$ be a graded R-module with $M_{0}=\mathbb{Z} \times \mathbb{Z}$ and $M_{1}=\{(0,0)\}$. Now, consider a graded submodule $N=(0) \times 6 \mathbb{Z}$ of M. Then $\left(N:_{R} M\right)=\{0\}$ is a 2-absorbing primary ideal of R since R is a graded integral domain. But N is not a graded $G 2$-absorbing submodule since $2 \cdot 3 \cdot(0,1) \in N$ but neither $2 \cdot(0,1) \in N$ nor $3 \cdot(0,1) \in N$ nor $2 \cdot 3 \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)=\{0\}$.

Theorem 2.6. Let R be a G-graded ring, M a graded R-module, $N=$ $\oplus_{h \in G} N_{h}$ a graded submodule of M and $h \in G$. If N_{h} is a h-G2-absorbing submodule of the R_{e}-module M_{h}, then $\operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$ is an e-2-absorbing ideal of R.

Proof. Let N_{h} be a h - $G 2$-absorbing submodule of the R_{e}-module M_{h}. Then by Theorem 2.4, $\left(N_{h}:_{R_{e}} M_{h}\right)$ is an $e-2$-absorbing primary ideal of R. So by [6. Theorem 2.3], we have $\operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$ is an $e-2$-absorbing ideal of R.

Theorem 2.7. Let R be a G-graded ring, M a graded R-module, $N=$ $\bigoplus_{h \in G} N_{h}$ a graded submodule of M and $h \in G$. If N_{h} is a h - $G 2$-absorbing submodule of the R_{e}-module M_{h}, then ($N_{h}:_{R_{e}} m_{h}$) is an e-2-absorbing primary ideal of R for each $m_{h} \in M_{h} \backslash N_{h}$.

Proof. Let $m_{h} \in M_{h} \backslash N_{h}$, then $\left(N_{h}:_{R_{e}} m_{h}\right)$ is a proper ideal of R_{e}. Now, let $r_{e}, s_{e}, t_{e} \in R_{e}$ such that $r_{e} s_{e} t_{e} \in\left(N_{h}: R_{e} m_{h}\right)$. Then $r_{e} s_{e} t_{e} m_{h} \in N_{h}$, and so we get either $r_{e} m_{h} \in N_{h}$ or $s_{e} t_{e} m \in N_{h}$ or $r_{e} s_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$ as N_{h} is a h - $G 2$-absorbing submodule of the R_{e}-module M_{h}. If $r_{e} m_{h} \in N_{h}$ or $s_{e} t_{e} m \in N_{h}$, then either $r_{e} s_{e} \in\left(N_{h}:_{R_{e}} m_{h}\right)$ or $s_{e} t_{e} \in\left(N_{h}:_{R_{e}} m_{h}\right)$. If $r_{e} s_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$, then either $r_{e} s_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right) \subseteq \operatorname{Gr}\left(\left(N_{h}:_{R_{e}}\right.\right.$ $\left.\left.m_{h}\right)\right)$ or $s_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right) \subseteq \operatorname{Gr}\left(\left(N_{h}: R_{e} m_{h}\right)\right)$ or $r_{e} t_{e} \in \operatorname{Gr}\left(\left(N_{h}: R_{e}\right.\right.$ $\left.\left.M_{h}\right)\right) \subseteq \operatorname{Gr}\left(\left(N_{h}:_{R_{e}} m_{h}\right)\right)$ as $\operatorname{Gr}\left(\left(N_{h}:_{R_{e}} M_{h}\right)\right)$ is an e-2-absorbing ideal of R_{e} by Theorem 2.6. Therefore, $\left(N_{h}:_{R_{e}} m_{h}\right)$ is an $e-2$-absorbing primary ideal of R.

Let R be a G-graded ring, M be a graded R-module and $t_{\alpha} \in h(R)$. The graded submodule $\left\{m \in M: t_{\alpha} m \in N\right\}$ will be denoted by ($N:{ }_{M} t_{\alpha}$).

Theorem 2.8. Let R be a G-graded ring and M a graded R-module. If N is a graded G2-absorbing submodule M, then $\left(N:_{M} t_{\alpha}\right)$ is a graded G2-absorbing submodule of M for all $t_{\alpha} \in h(R) \backslash\left(N:_{R} M\right)$.

Proof. Let $t_{\alpha} \in h(R) \backslash\left(N:_{R} M\right)$. Then $\left(N:_{M} t_{\alpha}\right)$ is a proper graded submodule of M. Now, let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $r_{g} s_{h} m_{\lambda} \in$ $\left(N:_{M} t_{\alpha}\right)$. So, $r_{g} s_{h} t_{\alpha} m_{\lambda} \in N$, then either $s_{h} t_{\alpha} m_{\lambda} \in N$ or $r_{g} t_{\alpha} m_{\lambda} \in N$ or $r_{g} s_{h} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ as N is a graded $G 2$-absorbing submodule of M. Either $s_{h} m_{\lambda} \in\left(N:_{M} t_{\alpha}\right)$ or $r_{g} m_{\lambda} \in\left(N:_{M} t_{\alpha}\right)$ or $\left(r_{g} s_{h}\right)^{n} M \subseteq N$. If $\left(r_{g} s_{h}\right)^{n} M \subseteq N$, then $\left(r_{g} s_{h}\right)^{n} M \subseteq\left(N:_{M} t_{\alpha}\right)$ and hence $r_{g} s_{h} \in \operatorname{Gr}\left(\left(\left(N:_{M} t_{\alpha}\right):_{R} M\right)\right)$. So, we get either $s_{h} m_{\lambda} \in\left(N:_{M} t_{\alpha}\right)$ or $r_{g} m_{\lambda} \in\left(N:_{M} t_{\alpha}\right)$ or $r_{g} s_{h} \in \operatorname{Gr}\left(\left(\left(N:_{M} t_{\alpha}\right):_{R}\right.\right.$ $M)$). So, $\left(N:_{M} t_{\alpha}\right)$ is a graded $G 2$-absorbing submodule of M.

Recall from [18] that a proper graded submodule N of a graded module M is said to be a graded irreducible if N cannot be expressed as the intersection of two strictly larger graded submodules of M.

Theorem 2.9. Let R be a G-graded ring, M a graded R-module and N a proper graded irreducible submodule of M. Then the following statements are equivalent:
(i) N is a graded G2-absorbing submodule of M.
(ii) $\left(N:_{M} r_{g}\right)=\left(N:_{M} r_{g}^{2}\right)$, for all $r_{g} \in h(R) \backslash \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.

Proof. (i) \Rightarrow (ii) Suppose that N is a graded $G 2$-absorbing submodule of M. Let $r_{g} \in h(R) \backslash \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, then it is clear that $\left(N:_{M} r_{g}\right) \subseteq\left(N:_{M} r_{g}^{2}\right)$. Now, let $m_{h} \in h(M) \cap\left(N:_{M} r_{g}^{2}\right)$, hence $r_{g}^{2} m_{h} \in N$. This yields that either $r_{g} m_{h} \in N$ or $r_{g}^{2} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ as N is a graded $G 2$-absorbing submodule of M. If $r_{g}^{2} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, then $r_{g}^{2 k} M \subseteq N$ for some $k \in \mathbb{Z}^{+}$and hence $r_{g} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ which is a contradiction. Thus $r_{g} m_{h} \in N$, and so $m_{h} \in$ $\left(N:_{M} r_{g}\right)$. Hence $\left(N:_{M} r_{g}^{2}\right) \subseteq\left(N:_{M} r_{g}\right)$. Therefore, $\left(N:_{M} r_{g}\right)=\left(N:_{M} r_{g}^{2}\right)$.
(ii) \Rightarrow (i) Let $r_{g_{1}}, r_{g_{2}} \in h(R)$ and $m_{h} \in h(M)$ such that $r_{g_{1}} r_{g_{2}} m_{h} \in N$ and $r_{g_{1}} r_{g_{2}} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $r_{g_{1}} r_{g_{2}} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, we have $r_{g_{1}} \notin \operatorname{Gr}\left(\left(N:_{R}\right.\right.$ $M))$ and $r_{g_{2}} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Hence by (ii) we get $\left(N:_{M} r_{g_{1}}\right)=\left(N:_{M} r_{g_{1}}^{2}\right)$ and $\left(N:_{M} r_{g_{2}}\right)=\left(N:_{M} r_{g_{2}}^{2}\right)$. It is clear that $N \subseteq\left(N+R r_{g_{1}} m_{h}\right) \cap(N+$ $\left.R r_{g_{2}} m_{h}\right)$. For the reverse inclusion, let $n \in\left(\left(N+R r_{g_{1}} m_{h}\right) \cap\left(N+R r_{g_{2}} m_{h}\right)\right) \cap$ $h(M)$. Then $n=n_{\lambda_{1}}+r_{g_{3}} r_{g_{1}} m_{h}=n_{\lambda_{2}}+r_{g_{4}} r_{g_{2}} m_{h}$ where $n_{\lambda_{1}}, n_{\lambda_{2}} \in N \cap h(M)$ and $r_{g_{3}}, r_{g_{4}} \in h(R)$. Now, $r_{g_{1}} n=r_{g_{1}} n_{\lambda_{1}}+r_{g_{3}} r_{g_{1}}^{2} m_{h}=r_{g_{1}} n_{\lambda_{2}}+r_{g_{4}} r_{g_{1}} r_{g_{2}} m_{h} \in$ N, which yields that $r_{g_{3}} r_{g_{1}}^{2} m_{h} \in N$ and hence $r_{g_{3}} m_{h} \in\left(N:_{M} r_{g_{1}}^{2}\right)=\left(N:_{M}\right.$ $r_{g_{1}}$). Hence $r_{g_{3}} r_{g_{1}} m_{h} \in N$ and so $n \in N$. Thus $\left(N+R r_{g_{1}} m_{h}\right) \cap(N+$ $\left.R r_{g_{2}} m_{h}\right) \subseteq N$. Therefore, $\left(N+R r_{g_{1}} m_{h}\right) \cap\left(N+R r_{g_{2}} m_{h}\right)=N$. Since N is a graded irreducible submodule of M, then we get either $\left(N+R r_{g_{1}} m_{h}\right)=N$ or $\left(N+R r_{g_{2}} m_{h}\right)=N$. Hence either $r_{g_{1}} m_{h} \in N$ or $r_{g_{2}} m_{h} \in N$. Therefore, N is a graded $G 2$-absorbing submodule of M.

Recall from [18] that a proper graded ideal P of R is said to be a graded prime ideal if whenever $r_{g} s_{h} \in P$, we have $r_{g} \in P$ or $s_{h} \in P$, where $r_{g}, s_{h} \in$ $h(R))$.

Theorem 2.10. Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M such that $\left(N:_{R} M\right)$ is a graded prime ideal of R. Then the following statements are equivalent:
(i) N is a graded G2-absorbing submodule of M.
(ii) For each $m_{g_{1}}, m_{g_{2}} \in h(M)$ with $\left(N:_{R} m_{g_{1}}\right) \backslash\left(\left(N:_{R} m_{g_{2}}\right) \cup \operatorname{Gr}\left(\left(N:_{R}\right.\right.\right.$ $M))) \neq \emptyset$, then $N=\left(N+R m_{g_{1}}\right) \cap\left(N+R m_{g_{2}}\right)$.
Proof. (i) \Rightarrow (ii) Suppose that N is a graded $G 2$-absorbing submodule of M. Let $m_{g_{1}}, m_{g_{2}} \in h(M)$ such that $\left(N:_{R} m_{g_{1}}\right) \backslash\left(\left(N:_{R} m_{g_{2}}\right) \cup \operatorname{Gr}\left(\left(N:_{R} M\right)\right)\right) \neq \emptyset$. Then there exists $s_{h} \in\left(\left(N:_{R} m_{g_{1}}\right) \cap h(R)\right) \backslash\left(\left(N:_{R} m_{g_{2}}\right) \cup \operatorname{Gr}\left(\left(N:_{R} M\right)\right)\right)$. This yields that $s_{h} m_{g_{1}} \in N, s_{h} m_{g_{2}} \notin N$ and $s_{h} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Now, it is clear that $N \subseteq\left(N+R m_{g_{1}}\right) \cap\left(N+R m_{g_{2}}\right)$. For the reverse inclusion, let $n \in\left(\left(N+R m_{g_{1}}\right) \cap\left(N+R m_{g_{2}}\right)\right) \cap h(M)$. Then $n=n_{\lambda_{1}}+r_{\alpha_{1}} m_{g_{1}}=$ $n_{\lambda_{2}}+r_{\alpha_{2}} m_{g_{2}}$, where $n_{\lambda_{1}}, n_{\lambda_{2}} \in N \cap h(M)$ and $r_{\alpha_{1}}, r_{\alpha_{2}} \in h(R)$. Now, $s_{h} n=$ $s_{h} n_{\lambda_{1}}+s_{h} r_{\alpha_{1}} m_{g_{1}}=s_{h} n_{\lambda_{2}}+s_{h} r_{\alpha_{2}} m_{g_{2}}$, it follows that $s_{h} r_{\alpha_{2}} m_{g_{2}} \in N$. Hence either $s_{h} r_{\alpha_{2}} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ or $r_{\alpha_{2}} m_{g_{2}} \in N$ as N is a graded $G 2$-absorbing submodule of M and $s_{h} m_{g_{2}} \notin N$. If $s_{h} r_{\alpha_{2}} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, then $\left(s_{h} r_{\alpha_{2}}\right)^{k}=$ $\left(s_{h}\right)^{k}\left(r_{\alpha_{2}}\right)^{k} \in\left(N:_{R} M\right)$ for some $k \in \mathbb{Z}^{+}$. Since $\left(N:_{R} M\right)$ is a graded prime ideal of R and $s_{h} \notin\left(N:_{R} M\right) \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, we get $r_{\alpha_{2}} \in\left(N:_{R} M\right)$ and so $r_{\alpha_{2}} m_{g_{2}} \in N$. In both the cases, we get $n=n_{\lambda_{2}}+r_{\alpha_{2}} m_{g_{2}} \in N$. Hence $\left(N+R m_{g_{1}}\right) \cap\left(N+R m_{g_{2}}\right) \subseteq N$. Therefore, $N=\left(N+R m_{g_{1}}\right) \cap\left(N+R m_{g_{2}}\right)$.
(ii) \Rightarrow (i) Let $m_{g} \in h(M)$ and $s_{h_{1}}, s_{h_{2}} \in h(R)$ such that $s_{h_{1}} s_{h_{2}} m_{g} \in N$, $s_{h_{1}} m_{g} \notin N$ and $s_{h_{1}} s_{h_{2}} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Hence, $s_{h_{1}} \in\left(N:_{R} s_{h_{2}} m_{g}\right) \backslash\left(\left(N:_{R}\right.\right.$ $\left.m_{g}\right) \cup \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. By (ii) we get $N=\left(N+R s_{h_{2}} m_{g}\right) \cap\left(N+R m_{g}\right)$ and so $s_{h_{2}} m_{g} \in N$. So, N is a graded $G 2$-absorbing submodule of M.

Theorem 2.11. Let R be a G-graded ring, M a graded R-module, N a graded G2-absorbing submodule of M and $L=\bigoplus_{\lambda \in G} L_{\lambda}$ a graded submodule of M. Then for every $r_{h}, s_{g} \in h(R)$ and $\lambda \in G$ with $r_{h} s_{g} L_{\lambda} \subseteq N$, either $r_{h} L_{\lambda} \subseteq N$ or $s_{g} L_{\lambda} \subseteq N$ or $r_{h} s_{g} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.

Proof. Let $r_{h}, s_{g} \in h(R)$ and $\lambda \in G$ with $r_{h} s_{g} L_{\lambda} \subseteq N$. Assume that $r_{h} s_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right), r_{h} L_{\lambda} \nsubseteq N$ and $s_{g} L_{\lambda} \nsubseteq N$. Then there exist $l_{\lambda}, l_{\lambda}^{\prime} \in L_{\lambda}$ such that $r_{h} l_{\lambda} \notin N$ and $s_{g} l_{\lambda}^{\prime} \notin N$. Since $r_{h} s_{g} l_{\lambda} \in N, r_{h} l_{\lambda} \notin N$ and $r_{h} s_{g} \notin$ $\operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, we get $s_{g} l_{\lambda} \in N$ as N is a graded $G 2$-absorbing submodule of M. Similarly, since $r_{h} s_{g} l_{\lambda}^{\prime} \in N, s_{g} l_{\lambda}^{\prime} \notin N$ and $r_{h} s_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, we get $r_{h} l_{\lambda}^{\prime} \in N$. Since $l_{\lambda}+l_{\lambda}^{\prime} \in L_{\lambda}, r_{h} s_{g}\left(l_{\lambda}+l_{\lambda}^{\prime}\right) \in N$. Then either $r_{h}\left(l_{\lambda}+l_{\lambda}^{\prime}\right) \in N$ or $s_{g}\left(l_{\lambda}+l_{\lambda}^{\prime}\right) \in N$ as N is a graded $G 2$-absorbing submodule of M and $r_{h} s_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. If $r_{h}\left(l_{\lambda}+l_{\lambda}^{\prime}\right) \in N$, then $r_{h} l_{\lambda} \in N$ since $r_{h} l_{\lambda}^{\prime} \in N$, a contradiction. Similarly, if $s_{g}\left(l_{\lambda}+l_{\lambda}^{\prime}\right) \in N$, then $s_{g} l_{\lambda}^{\prime} \in N$ since $s_{g} l_{\lambda} \in N$, a contradiction. Therefore, either $r_{h} s_{g} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ or $r_{h} L_{\lambda} \subseteq N$ or $s_{g} L_{\lambda} \subseteq N$.

Theorem 2.12. Let R be a G-graded ring, M a graded R-module and N a graded G2-absorbing submodule of M. Let $I=\bigoplus_{g \in G} I_{g}$ be a graded ideal of R and $L=\bigoplus_{h \in G} L_{h}$ be a graded submodule of M. Then for every $r_{\alpha} \in h(R)$ and $g, h \in G$ with $r_{\alpha} I_{g} L_{h} \subseteq N$, either $I_{g} L_{h} \subseteq N$ or $r_{\alpha} L_{h} \subseteq N$ or $r_{\alpha} I_{g} \subseteq$ $\operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.

Proof. Let $r_{\alpha} \in h(R)$ and $g, h \in G$ with $r_{\alpha} I_{g} L_{h} \subseteq N$ and $I_{g} L_{h} \nsubseteq N$. We show that either $r_{\alpha} L_{h} \subseteq N$ or $r_{\alpha} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. On contrary, we assume that $r_{\alpha} L_{h} \nsubseteq N$ and $r_{\alpha} I_{g} \nsubseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Then there exist $i_{g} \in I_{g}$ and $l_{h} \in L_{h}$ such that $r_{\alpha} i_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ and $r_{\alpha} l_{h} \notin N$. Since $r_{\alpha} i_{g} l_{h} \in N$, we get $i_{g} l_{h} \in N$ as N is a graded $G 2$-absorbing submodule of M. Now, since $I_{g} L_{h} \nsubseteq N$, there exist $i_{g}^{\prime} \in I_{g}$ and $l_{h}^{\prime} \in L_{h}$ such that $i_{g}^{\prime} l_{h}^{\prime} \notin N$ but $r_{\alpha} i_{g}^{\prime} l_{h}^{\prime} \in N$, then either $r_{\alpha} l_{h}^{\prime} \in N$ or $r_{\alpha} i_{g}^{\prime} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ as N is a graded $G 2$-absorbing submodule of M. Now, we have the following three cases:

Case 1. Suppose $r_{\alpha} l_{h}^{\prime} \notin N$ and $r_{\alpha} i_{g}^{\prime} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $r_{\alpha} i_{g} l_{h}^{\prime} \in N$, $r_{\alpha} i_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ and $r_{\alpha} l_{h}^{\prime} \notin N$, then $i_{g} l_{h}^{\prime} \in N$. Now, since $r_{\alpha} i_{g}^{\prime} \in$ $\operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ and $r_{\alpha} i_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, we have $r_{\alpha}\left(i_{g}+i_{g}^{\prime}\right) \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $i_{g}+i_{g}^{\prime} \in I_{g}$, we get $r_{\alpha}\left(i_{g}+i_{g}^{\prime}\right) l_{h}^{\prime} \in N$. Again, since $r_{\alpha}\left(i_{g}+i_{g}^{\prime}\right) l_{h}^{\prime} \in N$ and $r_{a} l_{h}^{\prime} \notin N$, we have $\left(i_{g}+i_{g}^{\prime}\right) l_{h}^{\prime}=i_{g} l_{h}^{\prime}+i_{g}^{\prime} l_{h}^{\prime} \in N$, it follows that $i_{g}^{\prime} l_{h}^{\prime} \in N$ since $i_{g} l_{h}^{\prime} \in N$, a contradiction.

Case 2. Suppose $r_{\alpha} l_{h}^{\prime} \in N$ and $r_{\alpha} i_{g}^{\prime} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $r_{\alpha} i_{g}^{\prime} l_{h} \in N$, we get $i_{g}^{\prime} l_{h} \in N$ as N is a graded $G 2$-absorbing submodule. Since $i_{g}^{\prime} l_{h} \in N$ and $i_{g}^{\prime} l_{h}^{\prime} \notin N$, then $i_{g}^{\prime}\left(l_{h}+l_{h}^{\prime}\right) \notin N$. By $l_{h}+l_{h}^{\prime} \in L_{h}$, we get $r_{\alpha} i_{g}^{\prime}\left(l_{h}+l_{h}^{\prime}\right) \in N$. This yields that $r_{\alpha}\left(l_{h}+l_{h}^{\prime}\right) \in N$. But $r_{\alpha} l_{h}^{\prime} \in N$, so $r_{\alpha} l_{h} \in N$, a contradiction.

Case 3. Suppose $r_{\alpha} l_{h}^{\prime} \in N$ and $r_{\alpha} i_{g}^{\prime} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $r_{\alpha} l_{h}^{\prime} \in N$ and $r_{\alpha} l_{h} \notin N$, we get $r_{\alpha}\left(l_{h}^{\prime}+l_{h}\right) \notin N$. Similarly, since $r_{\alpha} i_{g}^{\prime} \in \operatorname{Gr}((N: R M))$ and $r_{\alpha} i_{g} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, we get $r_{\alpha}\left(i_{g}^{\prime}+i_{g}\right) \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $l_{h}^{\prime}+l_{h} \in L_{h}$, $r_{\alpha} i_{g}\left(l_{h}^{\prime}+l_{h}\right) \in N$. This yields that $i_{g}\left(l_{h}^{\prime}+l_{h}\right) \in N$ and then $i_{g} l_{h}^{\prime} \in N$ since $i_{g} l_{h} \in N$. Similarly, consider $r_{\alpha}\left(i_{g}+i_{g}^{\prime}\right) l_{h} \in N$, this yields that $\left(i_{g}+i_{g}^{\prime}\right) l_{h} \in N$ and then $i_{g}^{\prime} l_{h} \in N$ since $i_{g} l_{h} \in N$. Now, consider $r_{\alpha}\left(i_{g}+i_{g}^{\prime}\right)\left(l_{h}+l_{h}^{\prime}\right) \in N$, then we get $\left(i_{g}+i_{g}^{\prime}\right)\left(l_{h}+l_{h}^{\prime}\right) \in N$, but $i_{g} l_{h} \in N, i_{g} l_{h}^{\prime} \in N$ and $i_{g}^{\prime} l_{h} \in N$, we get $i_{g}^{\prime} l_{h}^{\prime} \in$ N, which is a contradiction. So, either $r_{\alpha} L_{h} \subseteq N$ or $r_{\alpha} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.

The next theorem gives a characterization of graded $G 2$-absorbing submodules.

Theorem 2.13. Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M. Let $I=\bigoplus_{g \in G} I_{g}, J=\bigoplus_{h \in G} J_{h}$ be two graded ideals of R and $L=\bigoplus_{\lambda \in G} L_{\lambda}$ be a graded submodule of M. Then the following statements are equivalent:
(i) N is a graded $G 2$-absorbing submodule of M.
(ii) For every $h, g, \lambda \in G$ with $J_{h} I_{g} L_{\lambda} \subseteq N$, either $I_{g} L_{\lambda} \subseteq N$ or $J_{h} L_{\lambda} \subseteq N$ or $J_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.

Proof. (i) \Rightarrow (ii) Suppose that N is a graded $G 2$-absorbing submodule of M and let $g, h, \lambda \in G$ with $J_{h} I_{g} L_{\lambda} \subseteq N$ and $I_{g} L_{\lambda} \nsubseteq N$. We show that either $J_{h} L_{\lambda} \subseteq N$ or $J_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. By Theorem 2.12, for all $j_{h} \in J_{h}$, either $j_{h} L_{\lambda} \subseteq N$ or $j_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. If $j_{h} L_{\lambda} \subseteq N$ for all $j_{h} \in J_{h}$, then $J_{h} L_{\lambda} \subseteq N$. Similarly, if $j_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ for all $j_{h} \in J_{h}$, then $J_{h} I_{g} \subseteq$ $\operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Assume that there exist $j_{h}, j_{h}^{\prime} \in J_{h}$ such that $j_{h} L_{\lambda} \nsubseteq N$ and $j_{h}^{\prime} I_{g} \nsubseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Since $j_{h} I_{g} L_{\lambda} \subseteq N, I_{g} L_{\lambda} \nsubseteq N$ and $j_{h} L_{\lambda} \nsubseteq N$, by Theorem 2.12, we get $j_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Also, since $j_{h}^{\prime} I_{g} L_{\lambda} \subseteq N$, $I_{g} L_{\lambda} \nsubseteq N$ and $j_{h}^{\prime} I_{g} \nsubseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, by Theorem 2.12, we get $j_{h}^{\prime} L_{\lambda} \subseteq N$. Since $j_{h}+j_{h}^{\prime} \in J_{h},\left(j_{h_{1}}+j_{h}^{\prime}\right) I_{g} L_{\lambda} \subseteq N$. By Theorem 2.12, we get either $\left(j_{h}+j_{h}^{\prime}\right) I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$) or $\left(j_{h}+j_{h}^{\prime}\right) L_{\lambda} \subseteq N$. If $\left(j_{h}+j_{h}^{\prime}\right) I_{g} \subseteq$ $\operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, then $j_{h}^{\prime} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ since $j_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, which is a contradiction. Similarly, if $\left(j_{h}+j_{h}^{\prime}\right) L_{\lambda} \subseteq N$, then $j_{h} L_{\lambda} \subseteq N$ since $j_{h}^{\prime} L_{\lambda} \subseteq N$, which is a contradiction. Therefore, either $J_{h} L_{\lambda} \subseteq N$ or $J_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$.
(ii) \Rightarrow (i) Assume that (ii) holds. Let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $s_{h} r_{g} m_{\lambda} \in N$. Let $J=\left(s_{h}\right)$ and $I=\left(r_{g}\right)$ be a graded ideals of R generated by s_{h}, r_{g}, respectively. And let $L=\left(m_{\lambda}\right)$ be a graded submodule of M generated by m_{λ}. Hence $J_{h} I_{g} L_{\lambda} \subseteq N$, and by our assumption we get either $I_{g} L_{\lambda} \subseteq N$ or $J_{h} L_{\lambda} \subseteq N$ or $J_{h} I_{g} \subseteq \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. It follows that either $s_{h} m_{\lambda} \in N$ or $r_{g} m_{\lambda} \in N$ or $s_{h} r_{g} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Therefore, N is a graded $G 2$-absorbing submodule of M.

Recall from [2] that a graded zero-divisor on a graded R-module M is an element $r_{g} \in h(R)$ for which there exists $m_{h} \in h(M)$ such that $m_{h} \neq 0$ but $r_{g} m_{h}=0$. The set of all graded zero-divisors on M is denoted by $G-Z d v_{R}(M)$.

The following result studies the behavior of graded $G 2$-absorbing submodules under localization.

Theorem 2.14. Let R be a G-graded ring, M a graded R-module and $S \subseteq$ $h(R)$ be a multiplicatively closed subset of R.
(i) If N is a graded $G 2$-absorbing submodule of M with $\left(N:_{R} M\right) \cap S=\emptyset$, then $S^{-1} N$ is a graded $G 2$-absorbing submodule of $S^{-1} M$.
(ii) If $S^{-1} N$ is a graded G2-absorbing submodule of $S^{-1} M$ with $S \cap G$ $Z d v_{R}(M / N)=\emptyset$, then N is a graded $G 2$-absorbing submodule of M.

Proof. (i) Since ($N:_{R} M$) $\cap S=\emptyset, S^{-1} N$ is a proper graded submodule of $S^{-1} M$. Let $\frac{r_{g_{1}}}{s_{\lambda_{1}}}, \frac{r_{g_{2}}}{s_{\lambda_{2}}} \in h\left(S^{-1} R\right)$ and $\frac{m_{h}}{l_{\alpha}} \in h\left(S^{-1} M\right)$ such that $\frac{r_{g_{1}}}{s_{\lambda_{1}}} \frac{r_{g_{2}}}{s_{\lambda_{2}}} \frac{m_{h}}{l_{\alpha}} \in$ $S^{-1} N$. Then there exists $s_{\lambda_{3}} \in S$ such that $s_{\lambda_{3}} r_{g_{1}} r_{g_{2}} m_{h} \in N$. Then either $s_{\lambda_{3}} r_{g_{1}} m_{h} \in N$ or $s_{\lambda_{3}} r_{g_{2}} m_{h} \in N$ or $r_{g_{1}} r_{g_{2}} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ as N is a graded $G 2$-absorbing submodule of M. This yields that either $\frac{r_{g_{1}}}{s_{1}} \frac{m_{h}}{l_{\alpha}}=\frac{s_{\lambda_{3}} r_{g_{1}} m_{h}}{s_{\lambda_{3}} s_{\lambda_{1}} l_{\alpha}} \in$ $S^{-1} N \quad$ or $\frac{r_{g_{2}}}{s_{\lambda_{2}}} \frac{m_{h}}{l_{\alpha}}=\frac{s_{\lambda_{3}} r_{g_{2}} m_{h}}{s_{\lambda_{3}} \lambda_{\lambda_{2}} l_{\alpha}} \in S^{-1} N \quad$ or $\frac{r_{g_{1}}}{s_{\lambda_{1}}} \frac{r_{g_{2}}}{s_{\lambda_{2}}}=\frac{r_{g_{1}} r_{g_{2}}}{s_{\lambda_{1}} s_{\lambda_{2}}} \in S^{-1} \operatorname{Gr}\left(\left(N:_{R}\right.\right.$ $M))=\operatorname{Gr}\left(\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)\right)$. Therefore, $S^{-1} N$ is a graded $G 2$-absorbing submodule of $S^{-1} M$.
(ii) Let $r_{g_{1}}, r_{g_{2}} \in h(R)$ and $m_{h} \in h(M)$ such that $r_{g_{1}} r_{g_{2}} m_{h} \in N$. Then $\frac{r_{g_{1}}}{1_{e}} \frac{r_{g_{2}}}{1_{e}} \frac{m_{h}}{1_{e}} \in S^{-1} N$. Since $S^{-1} N$ is a graded $G 2$-absorbing submodule of $S^{-1} M$, either $\frac{r_{g_{1}}}{1_{e}} \frac{m_{h}}{1_{e}} \in S^{-1} N$ or $\frac{r_{g_{2}}}{1_{e}} \frac{m_{h}}{1_{e}} \in S^{-1} N$ or $\frac{r_{g_{1}}}{1_{e}} \frac{r_{g_{2}}}{1_{e}} \in \operatorname{Gr}\left(\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)\right)$.

If $\frac{r_{g_{1}}}{1_{e}} \frac{m_{h}}{1_{e}} \in S^{-1} N$, then there exists $s_{\lambda} \in S$ such that $s_{\lambda} r_{g_{1}} m_{h} \in N$. This yields that $r_{g_{1}} m_{h} \in N$ since $S \cap G-Z d v_{R}(M / N)=\emptyset$. Similarly, we can show that if $\frac{r_{g_{2}}}{1_{e}} \frac{m_{h}}{1_{e}} \in S^{-1} N$, then $r_{g_{2}} m_{h} \in N$.

Now, if $\frac{r_{g_{1}}}{1_{e}} \frac{r_{g_{2}}}{1_{e}} \in \operatorname{Gr}\left(\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)\right)=S^{-1} \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$, then there exists $t_{\lambda} \in S$ such that $\left(t_{\lambda} r_{g_{1}} r_{g_{2}}\right)^{n} M \subseteq N$ for some $n \in \mathbb{Z}^{+}$and hence $r_{g_{1}} r_{g_{2}} \in \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$ since $S \cap G-Z d v_{R}(M / N)=\emptyset$. So, N is a graded $G 2$-absorbing submodule of M.

Let M and M^{\prime} be two graded R-modules. A homomorphism of graded R modules $f: M \rightarrow M^{\prime}$ is a homomorphism of R-modules verifying $f\left(M_{g}\right) \subseteq$ M_{g}^{\prime} for every $g \in G$ (see (15].)

The following result studies the behavior of graded $G 2$-absorbing submodules under graded homomorphism.

Theorem 2.15. Let R be a G-graded ring, M and M^{\prime} be two graded R modules and $f: M \rightarrow M^{\prime}$ be a graded epimorphism. Then the following statements hold.
(i) If N is a graded G2-absorbing submodule of M with $\operatorname{ker}(f) \subseteq N$, then $f(N)$ is a graded $G 2$-absorbing submodule of M^{\prime}.
(ii) If N^{\prime} is a graded $G 2$-absorbing submodule of M^{\prime}, then $f^{-1}\left(N^{\prime}\right)$ is a graded G2-absorbing submodule of M.
Proof. (i) Suppose that N is a graded $G 2$-absorbing submodule of M. It is easy to see that $f(N)$ is a proper graded submodule of M^{\prime}.

Now, let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda}^{\prime} \in h\left(M^{\prime}\right)$ such that $r_{g} s_{h} m_{\lambda}^{\prime} \in f(N)$, then there exists $m_{\lambda} \in h(M)$ such that $m_{\lambda}^{\prime}=f\left(m_{\lambda}\right)$ as f is a graded epimorphism, so $r_{g} s_{h} m_{\lambda}^{\prime}=f\left(r_{g} s_{h} m_{\lambda}\right) \in f(N)$. Then there exists $n_{\alpha} \in N \cap h(M)$ such that $f\left(r_{g} s_{h} m_{\lambda}\right)=f\left(n_{\alpha}\right)$. This yields that $r_{g} s_{h} m_{\lambda}-n_{\alpha} \in \operatorname{ker}(f) \subseteq N$ and then $r_{g} s_{h} m_{\lambda} \in N$. Hence we get either $r_{g} m_{\lambda} \in N$ or $s_{h} m_{\lambda} \in N$ or $\left(r_{g} s_{h}\right)^{k} M \subseteq N$ for some $k \in \mathbb{Z}^{+}$as N is a graded $G 2$-absorbing submodule of M. Thus $r_{g} m_{\lambda}^{\prime} \in f(N)$ or $s_{h} m_{\lambda}^{\prime} \in f(N)$ or $\left(r_{g} s_{h}\right)^{k} M^{\prime} \subseteq f(N)$.

Therefore, $f(N)$ is a graded $G 2$-absorbing submodule of M^{\prime}.
(ii) Suppose that N^{\prime} is a graded $G 2$-absorbing submodule of M^{\prime}. It is easy to see that $f^{-1}\left(N^{\prime}\right)$ is a proper graded submodule of M.

Now, let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h(M)$ such that $r_{g} s_{h} m_{\lambda} \in f^{-1}\left(N^{\prime}\right)$, hence $r_{g} s_{h} f\left(m_{\lambda}\right) \in N^{\prime}$. Thus either $r_{g} f\left(m_{\lambda}\right)=f\left(r_{g} m_{\lambda}\right) \in N^{\prime}$ or $s_{h} f\left(m_{\lambda}\right)=$ $f\left(s_{h} m_{\lambda}\right) \in N^{\prime}$ or $\left(r_{g} s_{h}\right)^{k} M^{\prime}=f\left(\left(r_{g} s_{h}\right)^{k} M\right) \subseteq N^{\prime}$ for some $k \in \mathbb{Z}^{+}$. This yields that either $r_{g} m_{\lambda} \in f^{-1}\left(N^{\prime}\right)$ or $s_{h} m_{\lambda} \in f^{-1}\left(N^{\prime}\right)$ or $\left(r_{g} s_{h}\right)^{k} M \subseteq f^{-1}\left(N^{\prime}\right)$. Therefore, N^{\prime} is a graded $G 2$-absorbing submodule of M.

As an immediate consequence of Theorem 2.15 we have the following corollary.

Corollary 2.16. Let R be a G-graded ring, M a graded R-module and N, K be two graded submodules of M with $K \subseteq N$. Then N is a graded G2-absorbing submodule of M if and only if N / K is a graded G2-absorbing submodule of M / K.

Let R be a G-graded ring. A graded R-module M is said to be a graded cancellative module if whenever $r_{g} m_{h_{1}}=r_{g} m_{h_{2}}$ where $m_{h_{1}}, m_{h_{2}} \in h(M)$ and $r_{g} \in h(R)$, implies $m_{h_{1}}=m_{h_{2}}$ (see [15].) A graded submodule N of M is said to be a graded pure submodule if $r_{g} N=N \cap r_{g} M$ for every $r_{g} \in h(R)$ (see [8].)

TheOrem 2.17. Let R be a G-graded ring, M a graded cancellative R module and N a proper graded submodule of M. If N is a graded pure submodule of M, then N is a graded G2-absorbing submodule of M with $\operatorname{Gr}\left(\left(N:_{R} M\right)\right)=\{0\}$.

Proof. Suppose N is a graded pure submodule of M. Let $r_{g_{1}}, r_{g_{2}} \in h(R)$, $m_{h_{1}} \in h(M)$ be such that $r_{g_{1}} r_{g_{2}} m_{h_{1}} \in N$ and $r_{g_{1}} r_{g_{2}} \notin \operatorname{Gr}\left(\left(N:_{R} M\right)\right)$. Then we get $r_{g_{1}} r_{g_{2}} m_{h_{1}} \in r_{g_{1}} r_{g_{2}} M \cap N=r_{g_{1}} r_{g_{2}} N$, so $r_{g_{1}} r_{g_{2}} m_{h_{1}}=r_{g_{1}} r_{g_{2}} n_{\lambda}$ for some $n_{\lambda} \in N \cap h(M)$. Then $r_{g_{2}} m_{h_{1}}=r_{g_{2}} n_{\lambda} \in N$ as M is a graded cancellative module. Thus N is a graded $G 2$-absorbing submodule of M.

Now, assume that $\operatorname{Gr}\left(\left(N:_{R} M\right)\right) \neq\{0\}$, so there exists $0 \neq r_{g_{3}} \in h(R)$ such that $r_{g_{3}}^{k} M \subseteq N$ for some $k \in \mathbb{Z}^{+}$. Since $N \neq M$, there exists $m_{h_{2}} \in h(M) \backslash N$ such that $r_{g_{3}}^{k} m_{h_{2}} \in r_{g_{3}}^{k} M \cap N=r_{g_{3}}^{k} N$. So, there exists $m_{h_{3}} \in N \cap h(M)$ such that $r_{g_{3}}^{k} m_{h_{2}}=r_{g_{3}}^{k} m_{h_{3}}$, so $m_{h_{2}}=m_{h_{3}} \in N$, a contradiction. So, $\operatorname{Gr}\left(\left(N:_{R}\right.\right.$ $M)=\{0\}$.

Theorem 2.18. Let R be a G-graded ring, M_{1} and M_{2} be two graded R modules and N_{1} a graded submodule of M_{1}. Let $M=M_{1} \times M_{2}$. Then $K=$ $N_{1} \times M_{2}$ is a graded G2-absorbing submodule of M if and only if N_{1} is a graded G2-absorbing submodule of M_{1}.

Proof. Suppose that $K=N_{1} \times M_{2}$ is a graded $G 2$-absorbing submodule of M. Let $r_{g}, s_{h} \in h(R)$ and $m_{\lambda} \in h\left(M_{1}\right)$ such that $r_{g} s_{h} m_{\lambda} \in N_{1}, r_{g} m_{\lambda} \notin N_{1}$ and $s_{h} m_{\lambda} \notin N_{1}$. This yields that $r_{g} s_{h}\left(m_{\lambda}, 0\right)=\left(r_{g} s_{h} m_{\lambda}, 0\right) \in K, r_{g}\left(m_{\lambda}, 0\right)=$ $\left(r_{g} m_{\lambda}, 0\right) \notin K$ and $s_{h}\left(m_{\lambda}, 0\right)=\left(s_{h} m_{\lambda}, 0\right) \notin K$. Then $r_{g} s_{h} \in \operatorname{Gr}\left(\left(K:_{R} M\right)\right)$ as K is a graded $G 2$-absorbing submodule of M, It follows that $\left(r_{g} s_{h}\right)^{n} M \subseteq K$ for some $n \in \mathbb{Z}^{+}$. So $\left(r_{g} s_{h}\right)^{n} M_{1} \subseteq N_{1}$. Therefore, N_{1} is a graded $G 2$-absorbing submodule of M_{1}.

Conversely, suppose that N_{1} is a graded $G 2$-absorbing submodule of M_{1}. Let $r_{g}, s_{h} \in h(R)$ and $\left(m_{\lambda}, x_{\alpha}\right) \in h(M)$ such that $r_{g} s_{h}\left(m_{\lambda}, x_{\alpha}\right)=\left(r_{g} s_{h} m_{\lambda}\right.$, $\left.r_{g} s_{h} x_{\alpha}\right) \in K, r_{g}\left(m_{\lambda}, x_{\alpha}\right)=\left(r_{g} m_{\lambda}, r_{g} x_{\alpha}\right) \notin K$ and $s_{h}\left(m_{\lambda}, x_{\alpha}\right)=\left(s_{h} m_{\lambda}, s_{h} x_{\alpha}\right)$ $\notin K$. Hence, $r_{g} m_{\lambda} \notin N_{1}$ and $s_{h} m_{\lambda} \notin N_{1}$. Then $\left(r_{g} s_{h}\right)^{n} M_{1} \subseteq N_{1}$ as N_{1} is a graded $G 2$-absorbing submodule of M_{1}. So, $\left(r_{g} s_{h}\right)^{n} M \subseteq K$ and K is a graded $G 2$-absorbing submodule of M.

REFERENCES

[1] K. Al-Zoubi, The graded primary radical of a graded submodules, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 1 (2016), 395-402.
[2] K. Al-Zoubi and R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sci. Adv. Appl., 28 (2014), 45-60.
[3] K. Al-Zoubi, R. Abu-Dawwas and S. Çeken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48 (2019), 724-731.
[4] K. Al-Zoubi and M. Al-Azaizeh, On graded weakly 2-absorbing primary submodules, Vietnam J. Math., 47 (2019), 297-307.
[5] K. Al-Zoubi and M. Al-Dolat, On graded classical primary submodules, Adv. Pure Appl. Math., 7 (2016), 93-96.
[6] K. Al-Zoubi and N. Sharafat, On graded 2-absorbing primary and graded weakly 2absorbing primary ideals, J. Korean Math. Soc., 54 (2017), 675-684.
[7] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3-7.
[8] S. E. Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math., 31 (2007), 371-378.
[9] S. E. Atani and U. Tekir, On the graded primary avoidance theorem, Chiang Mai J. Sci., 34 (2007), 161-164.
[10] E. Y. Celikel, On graded 2-absorbing primary submodules, Int. J. Pure Appl. Math., 109 (4) (2016), 869-879.
[11] M. K. Dubey and P. Aggarwal, On 2-absorbing primary sub-modules of modules over commutative ring with unity, Asian-Eur. J. Math., 8 (2015), 1-12.
[12] R. Hazrat, Graded Rings and Graded Grothendieck Groups, Cambridge University Press, Cambridge, 2016.
[13] C. Năstăsescu and F. Van Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics, Vol. 758, Springer-Verlag, Berlin, 1982.
[14] C. Năstăsescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library, Vol. 28, North Holand, Amsterdam, 1982.
[15] C. Năstăsescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, Vol. 1836, Springer-Verlag, Berlin, 2004.
[16] S. R. Naghani and H. F. Moghimi, On graded 2-absorbing and graded weakly 2-absorbing ideals of a commutative ring, Cankaya University Journal of Science and Engineering, 13 (2016), 11-17.
[17] K. H. Oral, U. Tekir and A. G. Agargun, On graded prime and primary submodules, Turkish J. Math., 35 (2011), 159-167.
[18] M. Refai and K. Al-Zoubi, On graded primary ideals, Turkish J. Math., 28 (2004), 217-229.

Received July 3, 2021
Accepted October 27, 2021

Jordan University of Science and Technology
Department of Mathematics and Statistics
P.O.Box 3030, Irbid 22110, Jordan
E-mail: kfzoubi@just.edu.jo
E-mail: ghweiri64@gmail.com

[^0]: The authors wish to thank sincerely the referees for their valuable comments and suggestions.

 Corresponding author: Khaldoun Al-Zoubi.

