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ON h-LOCAL FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

AHU ACIKGOZ, TAKASHI NOIRI, and BUSRA GOLPINAR

Abstract. In this research we introduce h-local functions by using h-open sets
in an ideal topological space (X, τ, I). Some properties and characterizations of
h-local functions are studied. Also, we introduce and research the notions of
Is∗g-h-closed and Ig-h-closed sets in an ideal topological space. Additionally,
Cl∗h is defined and its properties are examined.
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1. INTRODUCTION

In 1966, the concept of local functions was first presented by Kuratowski [7]
and Vaidyanathaswamy [11] gave the notion of ideal topological spaces in 1960.
Later, Jankovic and Hamlett [4] developed their works on ideal topological
spaces in 1990.They gave the notion of I-open sets and studied topologies by
ideals.The notion of Ig-closed sets was given by Dontchev et al. [2] in 1999.
The concept of Is∗g-closed sets was introduced by Khan and Hamza [5].

In this paper, we define h-local functions by using h-open sets [1] and in-
troduce the operation Cl∗h and a topology τ∗h. Moreover, Is∗g-h-closed sets
and Ig-h-closed sets are introduced and investigated.

2. BASIC CONCEPTS

This section introduces the fundamental principles needed to make this
paper self-contained.

Definition 2.1 ([4]). An ideal I on a topological space (X, τ) is a nonempty
collection of subsets of X which satisfies the following conditions:

(1) A ∈ I and B ⊂ A implies B ∈ I,
(2) A ∈ I and B ∈ I implies (A ∪B) ∈ I.

A topological space (X, τ) with an ideal I is called an ideal topological space
and is denoted by (X, τ, I). Throughout this article (X, τ) and (X, τ, I) denote
a topological space and an ideal topological space, respectively.
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Definition 2.2 ([4], [10]). Let (X, τ, I) be an ideal topological space and
P (X) be the power set on X. A set operator (.)∗ : P (X) → P (X), called
a local function of A with respect to τ and I, is defined as follows: for any
A ⊆ X, A∗(I, τ) = {x ∈ X | (U ∩ A) /∈ I for every U ∈ τ(x)}, where
τ(x) = {U ∈ τ | x ∈ U}.We simply write A∗ instead of A∗(I, τ) in case there
is no chance for confusion.

Definition 2.3. Let (X, τ) be a topological space. A subset A of X is said
to be

(1) semi-open [8] if A ⊂ cl(Int(A)),
(2) regular-open [9] if A = Int(cl(A)).

The family of all semi-open (resp. regular open) sets in X is denoted by SO(X)
(resp. RO(X)).

Definition 2.4 ([8]). Let (X, τ) be a topological space and let A ⊆ X.
Then the union of all semi-open sets contained in A, denoted by sint(A), is
called the semi-interior of A.

Definition 2.5 ([3], [6]). Let (X, τ, I) be an ideal topological space and
A ⊆ X. Then A∗s(I, τ) = {x ∈ X | (U ∩ A) /∈ I for every U ∈ SO(X,x)} is
called the semi-local function of A with respect to I and τ , where SO(X,x) =
{U ∈ SO(X) | x ∈ U}.When there is no ambiguity we write A∗s for A∗s(I, τ).

Definition 2.6 ([1]). A subset A of the topological space (X, τ) is said to
be h-open if A ⊂ Int(A ∪ U) for every non-empty open set U in X such that
U ̸= X.The complement of an h-open set is said to be h-closed. We denote
the family of all h-open sets of a topological space (X, τ) by τh or hO(X).

Remark 2.7 ([1]). Every open set in any topological space (X, τ) is h-open.

Theorem 2.8. Let (X, τ) be a topological space.Then τh is a topology for
X.

Proof. (1) It is obvious that ∅, X ∈ τh.
(2) It is shown in Theorem 2.2 of [1] that if A,B ∈ τh then A ∩B ∈ τh.
(3) We show that τh is closed under arbitrary union.Let Ai ∈ τh for each

i ∈ I.Then for each i ∈ I, Ai ⊂
⋃

{i∈I}Ai.For each i ∈ I and any U ∈ τ , we

have Ai ⊂ Int(Ai ∪ U) ⊂ Int[(
⋃

{i∈I}Ai) ∪ U ].Therefore, we have
⋃

{i∈I}Ai ⊂
Int[(

⋃
{i∈I}Ai) ∪ U ].This shows that

⋃
{i∈I}Ai ∈ τh. □

Definition 2.9. A subset A of a topological space (X, τ) is said to be
Sh-open if A ⊂ sInt(A ∪ U) for every non-empty open set U in X such that
U ̸= X.The complement of the Sh-open set is said to be Sh-closed.We denote
the family of all Sh-open sets of (X, τ) by ShO(X).

Remark 2.10. Every h-open set is Sh-open. The converse may not always
be true as shown by Example 2.11.
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Example 2.11. X = {a, b, c, d} be with the topology τ = {∅, X, {d}, {a, c},
{a, c, d}}. From Definition 2.3, we obtain the collection SO(X) = {∅, X, {d},
{a, c}, {b, d}, {a, b, c}, {a, c, d}} and from Definition 2.6, we obtain the collec-
tion τh = {∅, X, {d}, {a, c}, {a, c, d}}. By Definition 2.9, we find the collection
ShO(X) = {∅, X, {b}, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d}}. Then {b}, {b, d},
{a, b, c} ∈ ShO(X) but {b}, {b, d}, {a, b, c} /∈ τh.

Remark 2.12. Every semi-open set is Sh-open. The converse may not
always be true.

Example 2.13. X = {a, b, c, d} be with the topology τ = {∅, X, {d}, {a, c},
{a, c, d}} and I = {∅, {c}}. From Definition 2.4, we obtain the collection
O(X) = {∅, X, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d}}. By Definition 2.9, we find
the collection ShO(X) = {∅, X, {b}, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d}} and
hence {b} ∈ ShO(X) but {b} /∈ SO(X).

open set → h-open set → semi h-open set
↘ ↗

semi open set

Definition 2.14 ([1]). Let (X, τ) be a topological space and let A ⊆ X.
The h-closure of A is defined as the intersection of all h-closed sets in X
containing A and is denoted by hCl(A). It is clear that hCl(A) is h-closed for
any subset A of X.

3. hhh-LOCAL FUNCTIONS

In this section, we present definitions of the h-local and semi-h-local func-
tions of a set. We examine the properties of the h-local function. In addition,
we give the concept of Cl∗h operator and obtain the τ∗h topology in this way.

Definition 3.1. Let (X, τ) be a topological space and x ∈ X be given.
Every h-open subset containing point x is called an h-open neighborhood of
point x.

Definition 3.2. Let (X, τ) be a topological space and x be a point in X. A
subset V of X is called an h-neighborhood of a point x if there exists U ∈ τh

such that x ∈ U ⊆ V .

Remark 3.3. Every h-open neighborhood in a topological space (X, τ) is
an h-neighborhood.

Remark 3.4. The converse of Remark 3.3 may not always be true.

Example 3.5. Let X = {a, b, c} with a topology τ = {∅, X, {a}, {a, b}}
then τh = hO(X) = {∅, X, {a}, {b}, {a, b}, {b, c}}. For a ∈ X, the family of
h-open neighborhoods of a is {X, {a}, {a, b}}. For a ∈ X, the family of h
neighborhoods of a is {X, {a}, {a, b}, {a, c}}.
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Definition 3.6. Let (X, τ, I) be an ideal topological space and a subset A
of X. Then A∗

h(I, τ) = {x ∈ X | (A ∩ U) /∈ I for every U ∈ hO(X,x)} is
called the h-local function of A with respect to I and τ , where hO(X,x) =
{U ∈ hO(X) | x ∈ U}. A∗

h(I, τ) is simply denoted by A∗
h.

We give an example for the h-local function:

Example 3.7. Let X = {k, l,m} be with a topology τ = {∅, X, {k}, {k, l}}
and I = {∅, {m}}. Take A = {k, l}. Then τh = {∅, X, {k}, {k, l}, {l}, {l,m}},
A∗

h = {k, l,m} = X and A∗ = {k, l,m} = X.

Definition 3.8. Let (X, τ, I) be an ideal topological space and A be a
subset of X. Then A∗s

h(I, τ) = {x ∈ X | A ∩ U /∈ I for every U ∈
ShO(X,x)} is called the semi-h-local function of A with respect to I and
τ , where ShO(X,x) = {U ∈ ShO(X) | x ∈ U}. When there is no ambiguity
we write A∗s

h for A∗s
h(I, τ).

Theorem 3.9. Let (X, τ, I) be an ideal topological space and A,B ⊆ X any
subsets. Then:

(1) A ⊂ B ⇒ A∗
h ⊂ B∗

h,
(2) (A ∪B)∗h = A∗

h ∪B∗
h,

(3) (A ∩B)∗h ⊂ A∗
h ∩B∗

h,
(4) (A∗

h)
∗
h ⊂ A∗

h,
(5) A∗

h = hCl(A∗
h) ⊂ hCl(A) and A∗

h is h-closed.

Proof. (1) Assume x /∈ B∗
h. Then there exists U ∈ hO(X,x) such that

(U ∩ B) ∈ I. Since A ⊂ B, (U ∩ A) ∈ I and hence x /∈ A∗
h. Therefore, we

have A∗
h ⊂ B∗

h.
(2) By 1), we have A∗

h ∪ B∗
h ⊂ (A ∪B)∗h. Next, suppose that x /∈ A∗

h ∪
B∗

h. Then x /∈ A∗
h and x /∈ B∗

h. Therefore, there exist U, V ∈ hO(X,x)
such that A ∩ U ∈ I and B ∩ V ∈ I. Hence, we obtain (A ∪ B) ∩ (U ∩
V )=(A ∩ (U ∩ V )) ∪ (B ∩ (U ∩ V )) ⊂ (A ∩ U) ∪ (B ∩ V ) ∈ I. Therefore,
(A∪B)∩ (U ∩ V ) ∈ I and U ∩ V ∈ hO(X,x). This shows that x /∈ (A ∪B)∗h
and hence (A ∪B)∗h ⊂ A∗

h ∪B∗
h.

(3) Since A∩B ⊂ A and from (1) (A ∩B)∗h ⊂ A∗
h. Also A∩B ⊂ B hence

(A ∩B)∗h ⊂ B∗
h. Hence (A ∩B)∗h ⊂ A∗

h ∩B∗
h.

(4) Suppose that x ∈ (A∗
h)

∗
h. Then A∗

h ∩ U /∈ I for any U ∈ hO(X,x).
Hence A∗

h∩U ̸= ∅ and there exists y ∈ A∗
h∩U and hence y ∈ A∗

h and y ∈ U .
Therefore, U ∩A /∈ I. This shows that x ∈ A∗

h.
(5) From Definition 2.14, A∗

h ⊆ hCl(A∗
h). Let x ∈ hCl(A∗

h). Then (A∗
h ∩

U) ̸= ∅ for every U ∈ hO(X,x). Let y ∈ (A∗
h ∩ U), then y ∈ U and y ∈ A∗

h,
and hence for every U ∈ hO(X,x), A ∩ U /∈ I and thus x ∈ A∗

h. This shows
that hCl(A∗

h) ⊂ A∗
h and consequently A∗

h = hCl(A∗
h). Obviously, A∗

h is
h-closed. Now suppose x /∈ hCl(A). Then, there exists U ∈ hO(X,x) such
that U ∩A = ∅ and hence x /∈ A∗

h. Therefore, we have A∗
h ⊂ hCl(A). □
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The converses of statements (3) and (4) from Theorem 3.9 may not always
be true.

Example 3.10. Let X = {a, b, c, d} be with the topology τ = {∅, X, {a}, {a,
b}, {a, b, d}} and we consider I = {∅, {d}}. From Definition 2.9, we find the
collection of h-open sets τh = {∅, X, {a}, {b}, {a, b}, {b, d}, {b, c, d}, {a, b, d}}.
If A = {a, b} ⊂ X and B = {c} ⊂ X then (A ∩ B) = ∅ hence (A ∩B)∗h =
(∅)∗h = ∅. A∗

h = {a, b, c, d} = X and B∗
h = {c} therefore A∗

h ∩ B∗
h = {c}.

Here the results obvious.

Example 3.11. LetX = {a, b, c, d} with the topology τ = {∅, X, {a}, {a, b},
{a, b, d}} and we consider I = {∅, {a}}. By Definition 2.6, we find the collec-
tion τh = {∅, X, {a}, {b}, {a, b}, {b, d}, {b, c, d}, {a, b, d}}. If A = {a, b} then
A∗

h = {a, b, c, d} = X, and (A∗
h)

∗
h = {b, c, d} then (A∗

h)
∗
h ⊂ A∗

h but
A∗

h ⊈ (A∗
h)

∗
h.

Remark 3.12. Let (X, τ, I) be an ideal topological space and A ⊂ X. Then
the following properties hold:

(1) When I = {∅}, A∗
h = hCl(A),

(2) {∅}∗h = ∅,
(3) It is not essential that A ⊂ A∗

h or A∗
h ⊂ A,

(4) A∗
h(I, hO(X)) = A∗s(I, τ) if SO(X) = hO(X),

(5) A∗
h(I, hO(X)) = A∗(I, τ) if hO(X) = τ(X).

Next we give an example of Remark 3.12 (3).

Example 3.13. Let X = {a, b, c, d} be a set with a topology τ = {∅, X, {a},
{a, b, d}} and I = {∅, {c}, {a, c}}. From Definition 2.6, we find the collection
τh = {∅, X, {a}, {b, d}, {b, c, d}, {a, b, d}}. If A = {a, b}, B = {c} then A∗

h =
X and B∗

h = ∅.

Lemma 3.14. Let (X, τ, I) be an ideal topological space. Then the following
properties hold:

(1) RO(X) ⊂ τ ⊂ τh = hO(X) ⊂ ShO(X),
(2) A∗s

h ⊂ A∗
h ⊂ A∗.

Proof. (1) The proof is obvious.
(2) Let x ∈ A∗s

h. Then A∩U /∈ I for every U ∈ Sh(O, x). Then A∩U /∈ I
for every U ∈ hO(X,x). Therefore, x ∈ A∗

h and hence A∗s
h ⊂ A∗

h. Let
x ∈ A∗

h. Then A ∩ U /∈ I for every U ∈ hO(X,x). Then A ∩ U /∈ I for every
U ∈ τ(x). Therefore, x ∈ A∗ and hence A∗

h ⊂ A∗. □

Definition 3.15. Let (X, τ, I) be an ideal topological space. We define
Cl∗h(A) as follows: Cl∗h(A) = A ∪A∗

h for every A ⊂ X.

Theorem 3.16. Let (X, τ, I) be an ideal topological space. For any subsets
A,BofX, the following properties hold:

(1) A ⊂ Cl∗h(A).
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(2) Cl∗h(∅) = ∅ and Cl∗h(X) = X.
(3) If A ⊂ B, then Cl∗h(A) ⊂ Cl∗h(B).
(4) Cl∗h(A) ∪ Cl∗h(B) = Cl∗h(A ∪B).
(5) (Cl∗h(A))

∗
h ⊂ Cl∗h(A) = Cl∗h(Cl

∗
h(A)).

Proof. (1) It is obvious from Definition 3.15.
(2) Cl∗h(∅) = ∅ ∪ {∅}∗h = ∅ and Cl∗h(X) = X ∪X∗

h = X.
(3) Let A ⊂ B. Then, by Theorem 3.9, A∗

h ⊂ B∗
h and Cl∗h(A) = A∪A∗

h ⊂
B ∪B∗

h = Cl∗h(B).
(4) Cl∗h(A∪B) = (A∪B)∪ (A ∪B)∗h = (A∪B)∪A∗

h∪B∗
h = (A∪A∗

h)∪
(B ∪B∗

h) = Cl∗h(A) ∪ Cl∗h(B).
(5) By Theorem 3.9, we have (Cl∗h(A))∗h = (A∪A∗

h)
∗
h = A∗

h∪ (A∗
h)

∗
h =

A∗
h ⊂ Cl∗h(A) and Cl∗h(Cl

∗
h(A)) = Cl∗h(A) ∪ (Cl∗h(A))∗h = Cl∗h(A). □

The converse of statement (5) from Theorem 3.16 may not always be true.

Example 3.17. Let’s consider the set B in Example 3.13, B∗
h = ∅ is

found and so (Cl∗h(B))∗h = ((B ∪B∗
h)

∗
h) = ∅ and Cl∗h(B) = B. There-

fore, Cl∗h(Cl
∗
h(B)) = Cl∗h(B) = B and ∅ = (Cl∗h(B))∗h ⊂ Cl∗h(B) =

Cl∗h(Cl
∗
h(B)) = B.

Theorem 3.18. Let (X, τ, I) be an ideal topological space and A, B subsets
of X. Then for h-local functions the following properties hold:

(1) A∗
h −B∗

h = (A−B)∗h −B∗
h ⊂ (A−B)∗h.

(2) If U ∈ τh, then U ∩A∗
h = U ∩ (U ∩A)∗h ⊂ (U ∩A)∗h.

(3) If U ∈ I, then (A− U)∗h ⊂ A∗
h = (A ∪ U)∗h.

Proof. (1) Since A − B ⊂ A, by Theorem 3.9, (A−B)∗h ⊂ (A)∗h and so
(A−B)∗h−B∗

h ⊂ A∗
h−B∗

h. On the other hand, since A ⊂ (A−B)∪B, by
Theorem 3.9, A∗

h ⊂ (A−B)∗h ∪ B∗
h, and hence A∗

h − B∗
h ⊂ ((A−B)∗h ∪

B∗
h) − B∗

h. Therefore A∗
h − B∗

h ⊂ (A−B)∗h − B∗
h and A∗

h − B∗
h =

(A−B)∗h −B∗
h.

(2) Let U ∈ hO(X) and x ∈ U ∩ A∗
h. Then x ∈ U and x ∈ A∗

h. For any
V ∈ hO(X,x), U ∩ V ∈ hO(X,x) by Theorem 2.8. Hence V ∩ (U ∩ A) =
(U ∩ V ) ∩ A /∈ I. Therefore x ∈ (U ∩A)∗h. So U ∩ A∗

h ⊂ (U ∩A)∗h. Then
U∩A∗

h ⊂ U∩(U ∩A)∗h, since (U∩A) ⊂ A. Moreover U∩A∗
h ⊂ (U ∩A)∗h ⊂

A∗
h and hence U ∩ A∗

h ⊂ U ∩ (U ∩A)∗h ⊂ U ∩ A∗
h. Therefore, we obtain

U ∩A∗
h = U ∩ (U ∩A)∗h.

(3) By Theorem 3.9 and Definition 3.5, (A ∪ U)∗h = U∗
h∪A∗

h = ∅∪A∗
h =

A∗
h. Since A− U ⊂ A, by Theorem 3.9, (A− U)∗h ⊂ A∗

h. □

Theorem 3.19. Let (X, τ) be a topological space, I1 and I2 be ideals on X
and let A be a subset of X. Then the following properties hold:

(1) If I1 ⊂ I2, then A∗
h(I2) ⊂ A∗

h(I1).
(2) A∗

h(I1 ∩ I2) = A∗
h(I1) ∪A∗

h(I2).
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Proof. (1) Suppose that x ∈ A∗
h(I2). Then for every U ∈ hO(X,x), U∩A /∈

I2. Hence U ∩A /∈ I1 and x ∈ A∗
h(I1). This shows that A

∗
h(I2) ⊂ A∗

h(I1).
(2) Since (I1 ∩ I2) ⊂ I1 and (I1 ∩ I2) ⊂ I2, by Theorem 3.19 (1), A∗

h(I1) ⊂
A∗

h(I1 ∩ I2) and A∗
h(I2) ⊂ A∗

h(I1 ∩ I2). Hence A∗
h(I1)∪A∗

h(I2) ⊂ A∗
h(I1 ∩

I2). On the other hand, let x ∈ A∗
h(I1 ∩ I2).Then for each U ∈ hO(X,x),

(U ∩ A) /∈ (I1 ∩ I2). Hence (U ∩ A) /∈ I1 or (U ∩ A) /∈ I2. So, x ∈ A∗
h(I1) or

x ∈ A∗
h(I2) and x ∈ A∗

h(I1) ∪ A∗
h(I2). Therefore, we obtain A∗

h(I1 ∩ I2) ⊂
A∗

h(I1) ∪A∗
h(I2) and hence A∗

h(I1 ∩ I2)=A∗
h(I1) ∪A∗

h(I2). □

By Theorem 3.16., Cl∗h(A) = A∗
h∪A is a Kuratowski closure operator and

we obtain the following theorem:

Theorem 3.20. Let (X, τ, I) be an ideal topological space.Put τ∗h = {U ⊂
X : Cl∗h(X \U) = (X \U)}. Then τ∗h is a topology for X such that τ∗ ⊂ τ∗h
and hO(X) ⊂ τ∗h.

Proof. τ∗h is the topology for X generated by Cl∗h(A). Now we show that
τ∗ ⊂ τ∗h. By Lemma 3.14, Cl∗h(A) = (A ∪A∗

h) ⊂ (A ∪A∗) = Cl∗(A). Let A
be a τ∗-closed set. Then Cl∗(A) = A and Cl∗h(A) ⊂ A. Hence Cl∗h(A) = A
and A is τ∗h-closed. Next, we show that hO(X) ⊂ τ∗h. Suppose that A is h-
closed. If x /∈ A, then there exists G ∈ τh containing x such that A∩G = ∅ ∈ I.
Hence x /∈ A∗

h and A∗
h ⊂ A. Therefore, we have Cl∗h(A) = A∪A∗

h = A and
A is a τ∗h-closed. Hence hO(X) ⊂ τ∗h. □

Theorem 3.21. Let (X, τ, I) be an ideal topological space and β∗(τh, I) =
{U − J : U ∈ τh, J ∈ I}. Then β∗(τh, I) is a basis for τ∗h.

Proof. Let U ∈ τ∗h and x ∈ U .Then Cl∗h(X−U) = (X − U)∗h∪(X−U) =
X − U and (X − U)∗h ⊂ X − U . Hence U ⊂ X − (X − U)∗h. Since x ∈ U ,
x /∈ (X − U)∗h and there exists V ∈ hO(X,x) such that V ∩ (X−U) ∈ I. Let
V ∩(X−U) = I0, then V −I0 = V ∩U and x ∈ V ∩U . Put β∗

0 = V −I0, then
x ∈ β∗

0 ⊂ U and β∗
0 ∈ β∗(τh, I). Further, let β∗

1, β
∗
2 ∈ β∗, then we have

β∗
1 = U1−J1 and β∗

2 = U2−J2, where U1, U2 ∈ τh and J1, J2 ∈ I. Then, we
have β∗

1 ∩ β∗
2 = (U1 − J1)∩ (U2 − J2) = (U1 ∩ (X − J1))∩ (U2 ∩ (X − J2)) =

(U1 ∩ U2) − (J1 ∪ J2) ∈ β∗, where (U1 ∩ U2) ∈ τh, (J1 ∪ J2) ∈ I. Therefore,
β∗

1, β
∗
2 ∈ β∗ and hence β∗(τh, I) is a basis for τ∗h. □

4. Is∗g-h-CLOSED SETS

In this section, we introduce the definition of Is∗g-h-closed set. We examine
the properties of this set. Also, we compare it with the closed set.

Definition 4.1. Let (X, τ, I) be an ideal topological space. A subset A of
X is said to be Ig-h-closed if A∗

h ⊂ U whenever A ⊂ U and U in hO(X).

Theorem 4.2. Let (X, τ, I) be an ideal topological space. For a subset A of
X, the following proporties are equivalent:

(1) A is Ig-h-closed,
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(2) Cl∗h(A) ⊂ U whenever A ⊂ U and U is h-open,
(3) For each x ∈ Cl∗h(A), hCl({x}) ∩A ̸= ∅,
(4) Cl∗h(A)−A contains no nonempty h-closed set,
(5) A∗ −A contains no nonempty h-closed set.

Proof. (1) ⇒ (2) Suppose that A is Ig-h-closed.By Definition 4.1., A∗
h ⊂

U whenever A ⊂ U and U in hO(X).Therefore, A∗
h ∪ A ⊂ U .From here

Cl∗h(A) ⊂ U whenever A ⊂ U and U is h-open.
(2) ⇒ (3) Suppose that hCl({x}) ∩ A = ∅ for some x ∈ Cl∗h(A). Then

A ⊂ X − hCl({x}), where X − hCl({x}) is h-open and by 2) Cl∗h(A) ⊂ X −
hCl({x}).Therefore, Cl∗h(A) ∩ hCl({x}) = ∅.This is contrary to x ∈ Cl∗h(A).

(3) ⇒ (4) Suppose that K ⊂ Cl∗h(A)−A, where K is a nonempty h-closed
set and x ∈ K. Then K ⊂ X − A and K ∩ A = ∅. Therefore, we have
Clh({x}) ∩ A ⊂ K ∩ A = ∅. Since x ∈ Cl∗h(A), this is contrary to our
hypothesis.Therefore, Cl∗h(A)−A contains no noempty h-closed set.

(4) ⇒ (5) The proof is clear from A∗
h ⊂ Cl∗h(A).

(5) ⇒ (1) Let A ⊂ U and U be any h-open set of X. By Theorem 3.9, A∗
h

is h-closed and A∗
h ∩ (X − U) ⊂ A∗

h − A, where A∗
h ∩ (X − U) is h-closed.

By 5) A∗
h ∩ (X −U) = ∅. Therefore A∗

h ⊂ U and hence A is Ig-h-closed. □

Definition 4.3. Let (X, τ, I) be an ideal topological space.A subset A of
X is said to be Is∗g-h-closed (resp. Is∗g-closed [6]) if A∗

h ⊂ U (resp. A∗ ⊂ U)
whenever A ⊂ U and U is semi-open.The complement of an Is∗g-h-closed set
is said to be Is∗g-h-open.The family of Is∗g-h-closed (resp. Is∗g-closed) sets is
denoted by Is∗g-hC(X) (resp. Is∗g-C(X)).

Theorem 4.4. Let (X, τ, I) be an ideal topological space and A a subset of
X. If A is Is∗g-closed, then A is Is∗g-h-closed. However, the converse may
not always be true.

Proof. Let A be an Is∗g-closed set. For each U ∈ SO(X) containing A,
A∗ ⊂ U and by Lemma 3.14 (2), A∗

h ⊂ A∗ ⊂ U . Hence A is Is∗g-h-closed. □

Example 4.5. Let X = {k, l,m, n} be a set with the topology τ = {∅, X,
{m}, {k, l,m}}. Then by Definition 2.5, hO(X) = τh = {∅, X, {m}, {k, l}, {k,
l,m}, {k, l, n}}.Considering I = {∅, {n}} and by Definition 4.3., we find the
collection of Is∗gC(X) = {∅, X, {m}, {n}, {m,n}, {k, l, n}} and Is∗gC(X) =
{∅, X, {n}, {k, l, n}}. It can be verified at the subsets {m}, {m,n} of X are
Is∗g-hC(X) but not Is∗g-C(X).

Example 4.6. The ∅, X, {k, l, n}, {n} sets given in Example 4.5. are closed
and Is∗g-h-closed. But {m}, {m,n} sets are not closed when Is∗g-h-closed.

Theorem 4.7. Let (X, τ, I) be an ideal topological space and A,B ⊆ X.

(1) If A and B are Is∗g-h-closed, then (A ∪B) is Is∗g-h-closed.
(2) If A is closed in X, then A is Is∗g-h-closed.
(3) If U is open in X and A is Is∗g-h-open, then (U ∩A) is Is∗g-h-open.
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Proof. (1) Let A∪B ⊂ U and U ∈ SO(X).Then, A ⊂ U and B ⊂ U . Since
A and B are Is∗g-h-closed, hence A∗

h ⊂ U and B∗
h ⊂ U .Hence (A ∪B)∗h =

A∗
h ∪B∗

h ⊂ U . Therefore we have (A ∪B) is Is∗g-h-closed.
(2) Put A ⊂ U and U ∈ SO(X). By Lemma 3.14., A∗

h ⊂ A∗ ⊂ Cl(A) =
A ⊂ U . Hence A is Is∗g-h-closed.

(3) The proof follows from the complement of (1) and (2). □

Definition 4.8. Let (X, τ, I) be an ideal topological space and A be a
subset of X. Then we define (τ∗)h as follows: (τ∗)h = {A : A ⊂ Int∗(A ∪ U),
for every U ∈ τ∗}.

Question 4.9. Let (X, τ, I) be an ideal topological space. Find the relation-
ship between families (τ∗)h and τ∗h and give the necessary counter example.
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