ON *h*-LOCAL FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

AHU ACIKGOZ, TAKASHI NOIRI, and BUSRA GOLPINAR

Abstract. In this research we introduce *h*-local functions by using *h*-open sets in an ideal topological space (X, τ, I) . Some properties and characterizations of *h*-local functions are studied. Also, we introduce and research the notions of I_{s^*g} -*h*-closed and I_g -*h*-closed sets in an ideal topological space. Additionally, Cl^*_h is defined and its properties are examined.

MSC 2020. 54A05, 54A10.

Key words. Ideal topological space, *h*-local function, semi *h*-local function, operation Cl^*_h , I_{s^*g} -*h*-closed set, I_g -*h*-closed set.

1. INTRODUCTION

In 1966, the concept of local functions was first presented by Kuratowski [7] and Vaidyanathaswamy [11] gave the notion of ideal topological spaces in 1960. Later, Jankovic and Hamlett [4] developed their works on ideal topological spaces in 1990. They gave the notion of *I*-open sets and studied topologies by ideals. The notion of I_g -closed sets was given by Dontchev et al. [2] in 1999. The concept of I_{s^*q} -closed sets was introduced by Khan and Hamza [5].

In this paper, we define *h*-local functions by using *h*-open sets [1] and introduce the operation $\operatorname{Cl}_{h}^{*}$ and a topology τ_{h}^{*} . Moreover, $I_{s^{*}g}$ -*h*-closed sets and I_{g} -*h*-closed sets are introduced and investigated.

2. BASIC CONCEPTS

This section introduces the fundamental principles needed to make this paper self-contained.

DEFINITION 2.1 ([4]). An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following conditions:

(1) $A \in I$ and $B \subset A$ implies $B \in I$,

(2) $A \in I$ and $B \in I$ implies $(A \cup B) \in I$.

A topological space (X, τ) with an ideal I is called an ideal topological space and is denoted by (X, τ, I) . Throughout this article (X, τ) and (X, τ, I) denote a topological space and an ideal topological space, respectively.

Corresponding author: Ahu Acikgoz.

DOI: 10.24193/mathcluj.2023.1.01

DEFINITION 2.2 ([4], [10]). Let (X, τ, I) be an ideal topological space and P(X) be the power set on X. A set operator $(.)^* : P(X) \to P(X)$, called a local function of A with respect to τ and I, is defined as follows: for any $A \subseteq X$, $A^*(I, \tau) = \{x \in X \mid (U \cap A) \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau \mid x \in U\}$. We simply write A^* instead of $A^*(I, \tau)$ in case there is no chance for confusion.

DEFINITION 2.3. Let (X, τ) be a topological space. A subset A of X is said to be

(1) semi-open [8] if $A \subset cl(Int(A))$,

(2) regular-open [9] if A = Int(cl(A)).

The family of all semi-open (resp. regular open) sets in X is denoted by SO(X) (resp. RO(X)).

DEFINITION 2.4 ([8]). Let (X, τ) be a topological space and let $A \subseteq X$. Then the union of all semi-open sets contained in A, denoted by sint(A), is called the semi-interior of A.

DEFINITION 2.5 ([3], [6]). Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then $A^{*s}(I, \tau) = \{x \in X \mid (U \cap A) \notin I \text{ for every } U \in SO(X, x)\}$ is called the semi-local function of A with respect to I and τ , where $SO(X, x) = \{U \in SO(X) \mid x \in U\}$. When there is no ambiguity we write A^{*s} for $A^{*s}(I, \tau)$.

DEFINITION 2.6 ([1]). A subset A of the topological space (X, τ) is said to be *h*-open if $A \subset \text{Int}(A \cup U)$ for every non-empty open set U in X such that $U \neq X$. The complement of an *h*-open set is said to be *h*-closed. We denote the family of all *h*-open sets of a topological space (X, τ) by τ^h or hO(X).

REMARK 2.7 ([1]). Every open set in any topological space (X, τ) is h-open.

THEOREM 2.8. Let (X, τ) be a topological space. Then τ^h is a topology for X.

Proof. (1) It is obvious that $\emptyset, X \in \tau^h$.

(2) It is shown in Theorem 2.2 of [1] that if $A, B \in \tau^h$ then $A \cap B \in \tau^h$.

(3) We show that τ^h is closed under arbitrary union.Let $A_i \in \tau^h$ for each $i \in I$. Then for each $i \in I$, $A_i \subset \bigcup_{\{i \in I\}} A_i$. For each $i \in I$ and any $U \in \tau$, we have $A_i \subset \operatorname{Int}(A_i \cup U) \subset \operatorname{Int}[(\bigcup_{\{i \in I\}} A_i) \cup U]$. Therefore, we have $\bigcup_{\{i \in I\}} A_i \subset \operatorname{Int}[(\bigcup_{\{i \in I\}} A_i) \cup U]$. This shows that $\bigcup_{\{i \in I\}} A_i \in \tau^h$.

DEFINITION 2.9. A subset A of a topological space (X, τ) is said to be S_h -open if $A \subset s \operatorname{Int}(A \cup U)$ for every non-empty open set U in X such that $U \neq X$. The complement of the S_h -open set is said to be S_h -closed. We denote the family of all S_h -open sets of (X, τ) by $S_h O(X)$.

REMARK 2.10. Every *h*-open set is S_h -open. The converse may not always be true as shown by Example 2.11.

EXAMPLE 2.11. $X = \{a, b, c, d\}$ be with the topology $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}$. From Definition 2.3, we obtain the collection $SO(X) = \{\emptyset, X, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}\}$ and from Definition 2.6, we obtain the collection $\tau^h = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}$. By Definition 2.9, we find the collection $S_hO(X) = \{\emptyset, X, \{b\}, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}\}$. Then $\{b\}, \{b, d\}, \{a, b, c\} \in S_hO(X)$ but $\{b\}, \{b, d\}, \{a, b, c\} \notin \tau^h$.

REMARK 2.12. Every semi-open set is S_h -open. The converse may not always be true.

EXAMPLE 2.13. $X = \{a, b, c, d\}$ be with the topology $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{c\}\}$. From Definition 2.4, we obtain the collection $O(X) = \{\emptyset, X, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}\}$. By Definition 2.9, we find the collection $S_h O(X) = \{\emptyset, X, \{b\}, \{d\}, \{a, c\}, \{b, d\}, \{a, c\}, \{b, d\}, \{a, c, c\}\}$ and hence $\{b\} \in S_h O(X)$ but $\{b\} \notin SO(X)$.

DEFINITION 2.14 ([1]). Let (X, τ) be a topological space and let $A \subseteq X$. The *h*-closure of A is defined as the intersection of all *h*-closed sets in X containing A and is denoted by hCl(A). It is clear that hCl(A) is *h*-closed for any subset A of X.

3. h-LOCAL FUNCTIONS

In this section, we present definitions of the *h*-local and semi-*h*-local functions of a set. We examine the properties of the *h*-local function. In addition, we give the concept of Cl_h^* operator and obtain the τ_h^* topology in this way.

DEFINITION 3.1. Let (X, τ) be a topological space and $x \in X$ be given. Every *h*-open subset containing point x is called an *h*-open neighborhood of point x.

DEFINITION 3.2. Let (X, τ) be a topological space and x be a point in X. A subset V of X is called an *h*-neighborhood of a point x if there exists $U \in \tau^h$ such that $x \in U \subseteq V$.

REMARK 3.3. Every *h*-open neighborhood in a topological space (X, τ) is an *h*-neighborhood.

REMARK 3.4. The converse of Remark 3.3 may not always be true.

EXAMPLE 3.5. Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ then $\tau^h = hO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. For $a \in X$, the family of h-open neighborhoods of a is $\{X, \{a\}, \{a, b\}\}$. For $a \in X$, the family of h neighborhoods of a is $\{X, \{a\}, \{a, b\}, \{a, c\}\}$.

DEFINITION 3.6. Let (X, τ, I) be an ideal topological space and a subset A of X. Then $A^*_h(I, \tau) = \{x \in X \mid (A \cap U) \notin I \text{ for every } U \in hO(X, x)\}$ is called the *h*-local function of A with respect to I and τ , where $hO(X, x) = \{U \in hO(X) \mid x \in U\}$. $A^*_h(I, \tau)$ is simply denoted by A^*_h .

We give an example for the h-local function:

EXAMPLE 3.7. Let $X = \{k, l, m\}$ be with a topology $\tau = \{\emptyset, X, \{k\}, \{k, l\}\}$ and $I = \{\emptyset, \{m\}\}$. Take $A = \{k, l\}$. Then $\tau^h = \{\emptyset, X, \{k\}, \{k, l\}, \{l\}, \{l, m\}\}$, $A^*_h = \{k, l, m\} = X$ and $A^* = \{k, l, m\} = X$.

DEFINITION 3.8. Let (X, τ, I) be an ideal topological space and A be a subset of X. Then $A^{*s}{}_{h}(I, \tau) = \{x \in X \mid A \cap U \notin I \text{ for every } U \in S_{h}O(X, x)\}$ is called the semi-*h*-local function of A with respect to I and τ , where $S_{h}O(X, x) = \{U \in S_{h}O(X) \mid x \in U\}$. When there is no ambiguity we write $A^{*s}{}_{h}$ for $A^{*s}{}_{h}(I, \tau)$.

THEOREM 3.9. Let (X, τ, I) be an ideal topological space and $A, B \subseteq X$ any subsets. Then:

- (1) $A \subset B \Rightarrow A^*{}_h \subset B^*{}_h$,
- (2) $(A \cup B)^*_{\ h} = A^*_{\ h} \cup B^*_{\ h},$
- (3) $(A \cap B)^*_h \subset A^*_h \cap B^*_h$,
- (4) $(A^*{}_h)^*{}_h \subset A^*{}_h,$
- (5) $A^*_h = \operatorname{hCl}(A^*_h) \subset \operatorname{hCl}(A)$ and A^*_h is h-closed.

Proof. (1) Assume $x \notin B^*_h$. Then there exists $U \in hO(X, x)$ such that $(U \cap B) \in I$. Since $A \subset B$, $(U \cap A) \in I$ and hence $x \notin A^*_h$. Therefore, we have $A^*_h \subset B^*_h$.

(2) By 1), we have $A^*_h \cup B^*_h \subset (A \cup B)^*_h$. Next, suppose that $x \notin A^*_h \cup B^*_h$. Then $x \notin A^*_h$ and $x \notin B^*_h$. Therefore, there exist $U, V \in hO(X, x)$ such that $A \cap U \in I$ and $B \cap V \in I$. Hence, we obtain $(A \cup B) \cap (U \cap V) = (A \cap (U \cap V)) \cup (B \cap (U \cap V)) \subset (A \cap U) \cup (B \cap V) \in I$. Therefore, $(A \cup B) \cap (U \cap V) \in I$ and $U \cap V \in hO(X, x)$. This shows that $x \notin (A \cup B)^*_h$ and hence $(A \cup B)^*_h \subset A^*_h \cup B^*_h$.

(3) Since $A \cap B \subset A$ and from (1) $(A \cap B)^*_h \subset A^*_h$. Also $A \cap B \subset B$ hence $(A \cap B)^*_h \subset B^*_h$. Hence $(A \cap B)^*_h \subset A^*_h \cap B^*_h$.

(4) Suppose that $x \in (A^*_h)^*_h$. Then $A^*_h \cap U \notin I$ for any $U \in hO(X, x)$. Hence $A^*_h \cap U \neq \emptyset$ and there exists $y \in A^*_h \cap U$ and hence $y \in A^*_h$ and $y \in U$. Therefore, $U \cap A \notin I$. This shows that $x \in A^*_h$.

(5) From Definition 2.14, $A^*_h \subseteq \operatorname{hCl}(A^*_h)$. Let $x \in \operatorname{hCl}(A^*_h)$. Then $(A^*_h \cap U) \neq \emptyset$ for every $U \in hO(X, x)$. Let $y \in (A^*_h \cap U)$, then $y \in U$ and $y \in A^*_h$, and hence for every $U \in hO(X, x)$, $A \cap U \notin I$ and thus $x \in A^*_h$. This shows that $\operatorname{hCl}(A^*_h) \subset A^*_h$ and consequently $A^*_h = \operatorname{hCl}(A^*_h)$. Obviously, A^*_h is *h*-closed. Now suppose $x \notin \operatorname{hCl}(A)$. Then, there exists $U \in hO(X, x)$ such that $U \cap A = \emptyset$ and hence $x \notin A^*_h$. Therefore, we have $A^*_h \subset \operatorname{hCl}(A)$. \Box

EXAMPLE 3.10. Let $X = \{a, b, c, d\}$ be with the topology $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, b, d\}\}$ and we consider $I = \{\emptyset, \{d\}\}$. From Definition 2.9, we find the collection of *h*-open sets $\tau^h = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}$. If $A = \{a, b\} \subset X$ and $B = \{c\} \subset X$ then $(A \cap B) = \emptyset$ hence $(A \cap B)^*_h = (\emptyset)^*_h = \emptyset$. $A^*_h = \{a, b, c, d\} = X$ and $B^*_h = \{c\}$ therefore $A^*_h \cap B^*_h = \{c\}$. Here the results obvious.

EXAMPLE 3.11. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, b, d\}\}$ and we consider $I = \{\emptyset, \{a\}\}$. By Definition 2.6, we find the collection $\tau^h = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}$. If $A = \{a, b\}$ then $A^*_h = \{a, b, c, d\} = X$, and $(A^*_h)^*_h = \{b, c, d\}$ then $(A^*_h)^*_h \subset A^*_h$ but $A^*_h \not\subseteq (A^*_h)^*_h$.

REMARK 3.12. Let (X, τ, I) be an ideal topological space and $A \subset X$. Then the following properties hold:

- (1) When $I = \{\emptyset\}, A^*{}_h = \operatorname{hCl}(A),$
- $(2) \ \{\emptyset\}^*{}_h = \emptyset,$
- (3) It is not essential that $A \subset A^*_h$ or $A^*_h \subset A$,
- (4) $A^*{}_h(I, hO(X)) = A^{*s}(I, \tau)$ if SO(X) = hO(X),
- (5) $A^*{}_h(I, hO(X)) = A^*(I, \tau)$ if $hO(X) = \tau(X)$.

Next we give an example of Remark 3.12 (3).

EXAMPLE 3.13. Let $X = \{a, b, c, d\}$ be a set with a topology $\tau = \{\emptyset, X, \{a\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{c\}, \{a, c\}\}$. From Definition 2.6, we find the collection $\tau^h = \{\emptyset, X, \{a\}, \{b, d\}, \{b, c, d\}, \{a, b, d\}\}$. If $A = \{a, b\}, B = \{c\}$ then $A^*_h = X$ and $B^*_h = \emptyset$.

LEMMA 3.14. Let (X, τ, I) be an ideal topological space. Then the following properties hold:

- (1) $RO(X) \subset \tau \subset \tau^h = hO(X) \subset S_hO(X),$
- $(2) A^{*s}{}_h \subset A^*{}_h \subset A^*.$

Proof. (1) The proof is obvious.

(2) Let $x \in A^{*s}{}_h$. Then $A \cap U \notin I$ for every $U \in S_h(O, x)$. Then $A \cap U \notin I$ for every $U \in hO(X, x)$. Therefore, $x \in A^*{}_h$ and hence $A^{*s}{}_h \subset A^*{}_h$. Let $x \in A^*{}_h$. Then $A \cap U \notin I$ for every $U \in hO(X, x)$. Then $A \cap U \notin I$ for every $U \in \tau(x)$. Therefore, $x \in A^*$ and hence $A^*{}_h \subset A^*$.

DEFINITION 3.15. Let (X, τ, I) be an ideal topological space. We define $\operatorname{Cl}^*_h(A)$ as follows: $\operatorname{Cl}^*_h(A) = A \cup A^*_h$ for every $A \subset X$.

THEOREM 3.16. Let (X, τ, I) be an ideal topological space. For any subsets A, Bof X, the following properties hold:

(1) $A \subset \operatorname{Cl}^*_h(A)$.

(2) $\operatorname{Cl}_{h}^{*}(\emptyset) = \emptyset$ and $\operatorname{Cl}_{h}^{*}(X) = X$. (3) If $A \subset B$, then $\operatorname{Cl}_{h}^{*}(A) \subset \operatorname{Cl}_{h}^{*}(B)$. (4) $\operatorname{Cl}_{h}^{*}(A) \cup \operatorname{Cl}_{h}^{*}(B) = \operatorname{Cl}_{h}^{*}(A \cup B).$ (5) $(\operatorname{Cl}_{h}^{*}(A))_{h}^{*} \subset \operatorname{Cl}_{h}^{*}(A) = \operatorname{Cl}_{h}^{*}(\operatorname{Cl}_{h}^{*}(A)).$ *Proof.* (1) It is obvious from Definition 3.15. (2) $\operatorname{Cl}_{h}^{*}(\emptyset) = \emptyset \cup \{\emptyset\}_{h}^{*} = \emptyset$ and $\operatorname{Cl}_{h}^{*}(X) = X \cup X_{h}^{*} = X$. (3) Let $A \subset B$. Then, by Theorem 3.9, $A^*{}_h \subset B^*{}_h$ and $\operatorname{Cl}^*{}_h(A) = A \cup A^*{}_h \subset A^*{}_h \subset A^*{}_h$ $B \cup B^*{}_h = \operatorname{Cl}^*{}_h(B).$ (4) $\operatorname{Cl}_{h}^{*}(A \cup B) = (A \cup B) \cup (A \cup B)_{h}^{*} = (A \cup B) \cup A_{h}^{*} \cup B_{h}^{*} = (A \cup A_{h}^{*}) \cup (A \cup B)_{h}^{*} = (A \cup B) \cup (A \cup B)$ $(B \cup B^*{}_h) = \operatorname{Cl}^*{}_h(A) \cup \operatorname{Cl}^*{}_h(B).$ (5) By Theorem 3.9, we have $(\operatorname{Cl}^*_h(A))^*_h = (A \cup A^*_h)^*_h = A^*_h \cup (A^*_h)^*_h =$ $A^*{}_h \subset \operatorname{Cl}^*{}_h(A) \text{ and } \operatorname{Cl}^*{}_h(\operatorname{Cl}^*{}_h(A)) = \operatorname{Cl}^*{}_h(A) \cup \left(\operatorname{Cl}^*{}_h(A)\right)^{''}{}_h = \operatorname{Cl}^*{}_h(A).$

The converse of statement (5) from Theorem 3.16 may not always be true.

EXAMPLE 3.17. Let's consider the set B in Example 3.13, $B^*{}_h = \emptyset$ is found and so $(\operatorname{Cl}^*_h(B))^*_h = ((B \cup B^*_h)^*_h) = \emptyset$ and $\operatorname{Cl}^*_h(B) = B$. Therefore, $\operatorname{Cl}_{h}^{*}(\operatorname{Cl}_{h}^{*}(B)) = \operatorname{Cl}_{h}^{*}(B) = B$ and $\emptyset = (\operatorname{Cl}_{h}^{*}(B))_{h}^{*} \subset \operatorname{Cl}_{h}^{*}(B) =$ $\operatorname{Cl}_{h}^{*}(\operatorname{Cl}_{h}^{*}(B)) = B.$

THEOREM 3.18. Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then for h-local functions the following properties hold:

- (1) $A^*_h B^*_h = (A B)^*_h B^*_h \subset (A B)^*_h$.
- (2) If $U \in \tau^h$, then $U \cap A^*_h = U \cap (U \cap A)^*_h \subset (U \cap A)^*_h$. (3) If $U \in I$, then $(A U)^*_h \subset A^*_h = (A \cup U)^*_h$.

Proof. (1) Since $A - B \subset A$, by Theorem 3.9, $(A - B)^*_{\ h} \subset (A)^*_{\ h}$ and so $(A-B)^*_h - B^*_h \subset A^*_h - B^*_h$. On the other hand, since $A \subset (A-B) \cup B$, by Theorem 3.9, $A^*_h \subset (A-B)^*_h \cup B^*_h$, and hence $A^*_h - B^*_h \subset ((A-B)^*_h \cup B^*_h)$ $(B^*_h) - B^*_h$. Therefore $A^*_h - B^*_h \subset (A - B)^*_h - B^*_h$ and $A^*_h - B^*_h = B^*_h$. $(A-B)^*{}_h - B^*{}_h.$

(2) Let $U \in hO(X)$ and $x \in U \cap A^*_h$. Then $x \in U$ and $x \in A^*_h$. For any $V \in hO(X, x), U \cap V \in hO(X, x)$ by Theorem 2.8. Hence $V \cap (U \cap A) =$ $(U \cap V) \cap A \notin I$. Therefore $x \in (U \cap A)^*_h$. So $U \cap A^*_h \subset (U \cap A)^*_h$. Then $U \cap A^*_h \subset U \cap (U \cap A)^*_h$, since $(U \cap A) \subset A$. Moreover $U \cap A^*_h \subset (U \cap A)^*_h \subset U$ A^*_h and hence $U \cap A^*_h \subset U \cap (U \cap A)^*_h \subset U \cap A^*_h$. Therefore, we obtain $U \cap A^*{}_h = U \cap (U \cap A)^*{}_h.$

(3) By Theorem 3.9 and Definition 3.5, $(A \cup U)^*_{\ h} = U^*_{\ h} \cup A^*_{\ h} = \emptyset \cup A^*_{\ h} =$ A^*_h . Since $A - U \subset A$, by Theorem 3.9, $(A - U)^*_h \subset A^*_h$.

THEOREM 3.19. Let (X, τ) be a topological space, I_1 and I_2 be ideals on X and let A be a subset of X. Then the following properties hold:

- (1) If $I_1 \subset I_2$, then $A^*_h(I_2) \subset A^*_h(I_1)$.
- (2) $A^*{}_h(I_1 \cap I_2) = A^*{}_h(I_1) \cup A^*{}_h(I_2).$

Proof. (1) Suppose that $x \in A^*_h(I_2)$. Then for every $U \in hO(X, x)$, $U \cap A \notin I_2$. Hence $U \cap A \notin I_1$ and $x \in A^*_h(I_1)$. This shows that $A^*_h(I_2) \subset A^*_h(I_1)$.

(2) Since $(I_1 \cap I_2) \subset I_1$ and $(I_1 \cap I_2) \subset I_2$, by Theorem 3.19 (1), $A^*_h(I_1) \subset A^*_h(I_1 \cap I_2)$ and $A^*_h(I_2) \subset A^*_h(I_1 \cap I_2)$. Hence $A^*_h(I_1) \cup A^*_h(I_2) \subset A^*_h(I_1 \cap I_2)$. In the other hand, let $x \in A^*_h(I_1 \cap I_2)$. Then for each $U \in hO(X, x)$, $(U \cap A) \notin (I_1 \cap I_2)$. Hence $(U \cap A) \notin I_1$ or $(U \cap A) \notin I_2$. So, $x \in A^*_h(I_1)$ or $x \in A^*_h(I_2)$ and $x \in A^*_h(I_1) \cup A^*_h(I_2)$. Therefore, we obtain $A^*_h(I_1 \cap I_2) \subset A^*_h(I_1) \cup A^*_h(I_2)$ and hence $A^*_h(I_1 \cap I_2) = A^*_h(I_1) \cup A^*_h(I_2)$.

By Theorem 3.16., $\operatorname{Cl}_{h}^{*}(A) = A_{h}^{*} \cup A$ is a Kuratowski closure operator and we obtain the following theorem:

THEOREM 3.20. Let (X, τ, I) be an ideal topological space. Put $\tau^*_h = \{U \subset X : \operatorname{Cl}^*_h(X \setminus U) = (X \setminus U)\}$. Then τ^*_h is a topology for X such that $\tau^* \subset \tau^*_h$ and $hO(X) \subset \tau^*_h$.

Proof. $\tau^*{}_h$ is the topology for X generated by $\operatorname{Cl}^*{}_h(A)$. Now we show that $\tau^* \subset \tau^*{}_h$. By Lemma 3.14, $\operatorname{Cl}^*{}_h(A) = (A \cup A^*{}_h) \subset (A \cup A^*) = \operatorname{Cl}^*(A)$. Let A be a τ^* -closed set. Then $\operatorname{Cl}^*(A) = A$ and $\operatorname{Cl}^*{}_h(A) \subset A$. Hence $\operatorname{Cl}^*{}_h(A) = A$ and A is $\tau^*{}_h$ -closed. Next, we show that $hO(X) \subset \tau^*{}_h$. Suppose that A is h-closed. If $x \notin A$, then there exists $G \in \tau^h$ containing x such that $A \cap G = \emptyset \in I$. Hence $x \notin A^*{}_h$ and $A^*{}_h \subset A$. Therefore, we have $\operatorname{Cl}^*{}_h(A) = A \cup A^*{}_h = A$ and A is a $\tau^*{}_h$ -closed. Hence $hO(X) \subset \tau^*{}_h$.

THEOREM 3.21. Let (X, τ, I) be an ideal topological space and $\beta^*(\tau^h, I) = \{U - J : U \in \tau^h, J \in I\}$. Then $\beta^*(\tau^h, I)$ is a basis for τ^*_h .

 $\begin{array}{l} Proof. \text{ Let } U \in \tau^*_h \text{ and } x \in U. \text{ Then } \operatorname{Cl}^*_h(X-U) = (X-U)^*_h \cup (X-U) = \\ X-U \text{ and } (X-U)^*_h \subset X-U. \text{ Hence } U \subset X-(X-U)^*_h. \text{ Since } x \in U, \\ x \notin (X-U)^*_h \text{ and there exists } V \in hO(X,x) \text{ such that } V \cap (X-U) \in I. \text{ Let } \\ V \cap (X-U) = I_0, \text{ then } V-I_0 = V \cap U \text{ and } x \in V \cap U. \text{ Put } \beta^*_0 = V-I_0, \text{ then } \\ x \in \beta^*_0 \subset U \text{ and } \beta^*_0 \in \beta^*(\tau^h, I). \text{ Further, let } \beta^*_{1,}\beta^*_2 \in \beta^*, \text{ then we have } \\ \beta^*_1 = U_1 - J_1 \text{ and } \beta^*_2 = U_2 - J_2, \text{ where } U_1, U_2 \in \tau^h \text{ and } J_1, J_2 \in I. \text{ Then, we } \\ \text{have } \beta^*_1 \cap \beta^*_2 = (U_1 - J_1) \cap (U_2 - J_2) = (U_1 \cap (X - J_1)) \cap (U_2 \cap (X - J_2)) = \\ (U_1 \cap U_2) - (J_1 \cup J_2) \in \beta^*, \text{ where } (U_1 \cap U_2) \in \tau^h, (J_1 \cup J_2) \in I. \text{ Therefore, } \\ \beta^*_1, \beta^*_2 \in \beta^* \text{ and hence } \beta^*(\tau^h, I) \text{ is a basis for } \tau^*_h. \qquad \square \end{array}$

4. I_{s^*q} -h-closed sets

In this section, we introduce the definition of I_{s^*g} -h-closed set. We examine the properties of this set. Also, we compare it with the closed set.

DEFINITION 4.1. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be I_q -h-closed if $A^*_h \subset U$ whenever $A \subset U$ and U in hO(X).

THEOREM 4.2. Let (X, τ, I) be an ideal topological space. For a subset A of X, the following proporties are equivalent:

(1) A is I_g -h-closed,

- (2) $\operatorname{Cl}_{h}^{*}(A) \subset U$ whenever $A \subset U$ and U is h-open,
- (3) For each $x \in \operatorname{Cl}^*_h(A)$, $\operatorname{hCl}(\{x\}) \cap A \neq \emptyset$,
- (4) $\operatorname{Cl}^*_h(A) A$ contains no nonempty h-closed set,
- (5) $A^* A$ contains no nonempty h-closed set.

Proof. (1) \Rightarrow (2) Suppose that A is I_g -h-closed.By Definition 4.1., $A^*_h \subset U$ whenever $A \subset U$ and U in hO(X).Therefore, $A^*_h \cup A \subset U$.From here $\operatorname{Cl}^*_h(A) \subset U$ whenever $A \subset U$ and U is h-open.

 $(2) \Rightarrow (3)$ Suppose that $\operatorname{hCl}(\{x\}) \cap A = \emptyset$ for some $x \in \operatorname{Cl}_h^*(A)$. Then $A \subset X - \operatorname{hCl}(\{x\})$, where $X - \operatorname{hCl}(\{x\})$ is *h*-open and by 2) $\operatorname{Cl}_h^*(A) \subset X - \operatorname{hCl}(\{x\})$. Therefore, $\operatorname{Cl}_h^*(A) \cap \operatorname{hCl}(\{x\}) = \emptyset$. This is contrary to $x \in \operatorname{Cl}_h^*(A)$.

 $(3) \Rightarrow (4)$ Suppose that $K \subset \operatorname{Cl}_{h}^{*}(A) - A$, where K is a nonempty *h*-closed set and $x \in K$. Then $K \subset X - A$ and $K \cap A = \emptyset$. Therefore, we have $Clh(\{x\}) \cap A \subset K \cap A = \emptyset$. Since $x \in \operatorname{Cl}_{h}^{*}(A)$, this is contrary to our hypothesis. Therefore, $\operatorname{Cl}_{h}^{*}(A) - A$ contains no noempty *h*-closed set.

(4) \Rightarrow (5) The proof is clear from $A^*_h \subset \operatorname{Cl}^*_h(A)$.

 $(5) \Rightarrow (1)$ Let $A \subset U$ and U be any h-open set of X. By Theorem 3.9, A^*_h is h-closed and $A^*_h \cap (X - U) \subset A^*_h - A$, where $A^*_h \cap (X - U)$ is h-closed. By 5) $A^*_h \cap (X - U) = \emptyset$. Therefore $A^*_h \subset U$ and hence A is I_g -h-closed. \Box

DEFINITION 4.3. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be I_{s^*g} -h-closed (resp. I_{s^*g} -closed [6]) if $A^*_h \subset U$ (resp. $A^* \subset U$) whenever $A \subset U$ and U is semi-open. The complement of an I_{s^*g} -h-closed set is said to be I_{s^*g} -h-open. The family of I_{s^*g} -h-closed (resp. I_{s^*g} -closed) sets is denoted by I_{s^*g} -hC(X) (resp. I_{s^*g} -C(X)).

THEOREM 4.4. Let (X, τ, I) be an ideal topological space and A a subset of X. If A is I_{s^*g} -closed, then A is I_{s^*g} -h-closed. However, the converse may not always be true.

Proof. Let A be an I_{s^*g} -closed set. For each $U \in SO(X)$ containing A, $A^* \subset U$ and by Lemma 3.14 (2), $A^*_h \subset A^* \subset U$. Hence A is I_{s^*g} -h-closed. \Box

EXAMPLE 4.5. Let $X = \{k, l, m, n\}$ be a set with the topology $\tau = \{\emptyset, X, \{m\}, \{k, l, m\}\}$. Then by Definition 2.5, $hO(X) = \tau^h = \{\emptyset, X, \{m\}, \{k, l\}, \{k, l, m\}\}$. Considering $I = \{\emptyset, \{n\}\}$ and by Definition 4.3., we find the collection of $I_{s^*g}C(X) = \{\emptyset, X, \{m\}, \{n\}, \{m, n\}, \{k, l, n\}\}$ and $I_{s^*g}C(X) = \{\emptyset, X, \{m\}, \{n\}, \{m, n\}, \{k, l, n\}\}$ and $I_{s^*g}C(X) = \{\emptyset, X, \{n\}, \{k, l, n\}\}$. It can be verified at the subsets $\{m\}, \{m, n\}$ of X are I_{s^*g} -hC(X) but not I_{s^*g} -C(X).

EXAMPLE 4.6. The \emptyset , X, $\{k, l, n\}$, $\{n\}$ sets given in Example 4.5. are closed and I_{s^*g} -h-closed. But $\{m\}$, $\{m, n\}$ sets are not closed when I_{s^*g} -h-closed.

THEOREM 4.7. Let (X, τ, I) be an ideal topological space and $A, B \subseteq X$.

- (1) If A and B are I_{s^*q} -h-closed, then $(A \cup B)$ is I_{s^*q} -h-closed.
- (2) If A is closed in X, then A is I_{s^*g} -h-closed.
- (3) If U is open in X and A is I_{s^*g} -h-open, then $(U \cap A)$ is I_{s^*g} -h-open.

Proof. (1) Let $A \cup B \subset U$ and $U \in SO(X)$. Then, $A \subset U$ and $B \subset U$. Since A and B are I_{s^*g} -h-closed, hence $A^*_h \subset U$ and $B^*_h \subset U$. Hence $(A \cup B)^*_h = A^*_h \cup B^*_h \subset U$. Therefore we have $(A \cup B)$ is I_{s^*g} -h-closed.

(2) Put $A \subset U$ and $U \in SO(X)$. By Lemma 3.14., $A^*_h \subset A^* \subset Cl(A) = A \subset U$. Hence A is I_{s^*g} -h-closed.

(3) The proof follows from the complement of (1) and (2).

DEFINITION 4.8. Let (X, τ, I) be an ideal topological space and A be a subset of X. Then we define $(\tau^*)^h$ as follows: $(\tau^*)^h = \{A : A \subset \operatorname{Int}^*(A \cup U),$ for every $U \in \tau^*\}$.

QUESTION 4.9. Let (X, τ, I) be an ideal topological space. Find the relationship between families $(\tau^*)^h$ and τ^*_h and give the necessary counter example.

REFERENCES

- F. Abbas, On h-open sets and h-continuous functions, J. Comput. Appl. Math., 9 (2020), 1–5.
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon., 49 (1999), 395–401.
- [3] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, Some topological operators via ideals, Kyungpook Math. J., 32 (1992), 273–284.
- [4] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [5] M. Khan and M. Hamza, I_{s*g}-closed sets in ideal topological spaces, Glob. J. Pure Appl. Math., 7 (2011), 89–99.
- [6] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2 (2010), 36–42.
- [7] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [9] P. L. Powar and K. Rajak, Some new concepts of continuity in generalized topological space, International Journal of Computer Applications, 38 (2012), 12–17.
- [10] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci. Sect. A, 20 (1945), 51–61.
- [11] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.

Received October 21, 2021 Accepted March 26, 2022 Balikesir University Department of Mathematic 10145 Balikesir, Turkey E-mail: ahuacikgoz@gmail.com E-mail: bsraglpnr35@gmail.com

2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan E-mail: t.noiri@nifty.com

9