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COUNTING FORMULAS FOR
CERTAIN p-SUBGROUPS OF GLn(Fp)

NOUREDDINE SNANOU

Abstract. Let p be a prime number and Fp a finite field of order p. Let GLn(Fp)
denote the general linear group and let Un denote the unitriangular group of n×n
upper triangular matrices with ones on the diagonal, over the finite field Fp. This

is a finite group of order p
n(n−1)

2 and a Sylow p-subgroup of GLn(Fp). In this
work, we characterize some p-subgroups of GLn(Fp) with respect to a given
property. By the Sylow theorems, every p-subgroup of GLn(Fp) is contained in
some Sylow p-subgroup of GLn(Fp) and then it is conjugate to a p-subgroup
of Un, which is why we characterize the p-subgroups of Un. More precisely, we
compute the number of T -invariant p-subgroups of Un, where T is the diagonal
subgroup of GLn(Fp). Furthermore, for n ≤ p, we obtain an interesting formula
which computes the number of abelian p-subgroups of order pt in Un where

t ≤
[
n2

4

]
.
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1. INTRODUCTION

Let p be a prime number, and let Fp be a finite field of order p. Let GLn(Fp)
denote the general linear group and let Un denote the unitriangular group of
n × n upper triangular matrices with ones on the diagonal, over the finite
field Fp. In the study of the general linear group GLn(Fp), many problems
reduce to a characterization of subgroups of its Sylow subgroup Un. This is
a fairly old problem in the theory of finite groups. Notably, Goozeff proves

that the maximal order of an abelian p-subgroup of Un is p

[
n2

4

]
where

[
n2

4

]
is

the integer part of n2

4 [9]. After two years, Thwaites shows that Un contains

precisely one maximal abelian subgroup of order p
n2

4 , if n is even, and contains
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precisely two maximal abelian subgroups of order p
n2−1

4 , if n is odd and n ≥ 5
[17].

Let k(Un) denote the number of conjugacy classes of Un. Bounding k(Un) is
a fundamental problem in group and representation theory. Recently, there are
many works about the character theory of Un and related topics (see e.g. [2, 7,
8, 13]), which are partly motivated by Higman’s conjecture that for every n, the
number of conjugacy classes of Un is a polynomial in p with integer coefficients
[11]. The primary interest of Higman was not in this conjecture, but rather
determining the function that enumerates the number of isomorphism classes
of groups of order pn. Higman originally checked that the conjecture holds
for n ≤ 5 [11]. Gudivok et al. proved later that this conjecture was valid
for n ≤ 8 [10]. Vera-López and Arregi explain a general method to find
the conjugacy classes of Un in [18, 19] and verified Higman’s conjecture for
n ≤ 13 in [20]. Pak and Soffer used an indirect enumeration technique to verify
Higman’s Conjecture for n ≤ 16 [14, Theorem 1.2]. There are people that
believe Higman’s conjecture is false based on certain evidence. So, Pak and
Soffer conjectured that Higman’s conjecture fails for n ≥ 59 [14, Conjecture
1.6]. But in general, this problem is still open despite of different efforts to
solve it.

In this work, we characterize some p-subgroups of Un with respect to a
given property. More precisely, we describe a recursive counting formula for
T -invariant p-subgroups of Un based on the factorization of subgroups of Un as
a semidirect product (see Theorem 2.3). Furthermore, we investigate the num-
ber of commuting m-tuples cm(G) for a finite group G and prove that cm(G)

is divisible by |G| (see Proposition 3.1). The quotient cm(G)
|G| is then described

recursively in terms of numbers of conjugacy classes in iterated centralizers of
G (see Corollary 3.3). Finally, we are interested in Higman’s Conjecture, and
as an application we give a recursive counting formula for abelian subgroups
of order pt in Un based on the number of commuting t-tuples ct(Un) where

n ≤ p and t ≤
[
n2

4

]
(see Theorem 4.2).

2. T -INVARIANT p-SUBGROUPS OF Un

In the matrix ring Mn×n(Fp), the element Ei,j will denote the element
which is one in cell (i, j) and zero everywhere else. For each 1 ≤ i < j ≤ n,
we will let E(ai,j) = ai,jEi,j , where ai,j ∈ F×

p . Let D = (dii)1≤i≤n ∈ T .
Recall that a diagonal automorphism φD of Un is an automorphism defined
by φD(M) = DMD−1. Thus, if M = In +

∑
i<j E(ai,j) ∈ Un, then φD(M) =

In +
∑

i<j E(bi,j) where bi,j = di,iai,jd
−1
j,j

.

Definition 2.1. A p-subgroup of Un is called T -invariant if it is invariant
under the diagonal automorphisms of Un.
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Let Vn−1 be the subgroup

{(
In−1 b
0 1

)∣∣∣∣ b ∈ Fn−1
p

}
. The group Vn−1 is

elementary abelian of order pn−1 and is normal in Un. Furthermore, we have
the following interesting lemma:

Lemma 2.2. The Sylow p-subgroup Un is the semidirect product of Vn−1 by
Un−1.

Proof. Indeed, let π the map described in block matrices as

π :

(
A b
0 1

)
7→

(
A 0
0 1

)
where A ∈ Un−1 and b ∈ Fn−1

p . Obviously, π is an idempotent endomorphism
of Un and then Un = Ker(π)⋊ Im(π). Since

Ker(π) =

{(
In−1 b
0 1

)∣∣∣∣ b ∈ Fn−1
p

}
and

Im(π) =

{(
A 0
0 1

)∣∣∣∣A ∈ Un−1

}
∼= Un−1,

it follows that Un
∼= Vn−1 ⋊ Un−1. □

Suppose U is a T -invariant p-subgroup of Un, the subgroups U ∩ Vn−1 and
U ∩ Un−1 are T -invariants p-subgroups of Un. Recall that the number of
subgroups of order pm in an elementary p-group of order pn is given by the

Gaussian coefficients [nm]p =
∏m−1

k=0
pn−k−1
pm−k−1

. Hence, we have the following

interesting result:

Theorem 2.3. Suppose that p is an odd prime number and let n and m be
two positive integers, where m < n. The number of T -invariant p-subgroups
of order pm in Un is equal to:

Tm (Un) =

m∑
k=0

[n−1
k ]pTm−k (Un−1) .

Proof. Let U be a T -invariant p-subgroup of Un. The p-subgroup U ∩ Vn−1

is normal in U and U ∩ Vn−1 ∩ U ∩ Un−1 = In−1, by Lemma 2.2. Obviously,
we have (U ∩ Vn−1) ⋊ (U ∩ Un−1) ≤ U . The only inclusion to prove is U ≤

(U ∩ Vn−1) ⋊ (U ∩ Un−1). Thus, pick any M =

(
A b
0 1

)
∈ U where A ∈

Un−1 and b ∈ Fn−1
p . The matrix M is written in the form M = XY where

X =

(
In−1 b
0 1

)
and Y =

(
A 0
0 1

)
. Let D = (dii)1≤i≤n ∈ T , where dii = 1

if i = n and dii = 2 else. Since U is a T -invariant p-subgroup, it follows that
φD(M) = XM ∈ U , so X ∈ U ∩ Vn−1 and Y ∈ U ∩ Un−1 which deduces the
reverse inclusion. Thus, we get U = V0⋊U0 for some T -invariant p-subgroups
V0 ≤ Vn−1 and U0 ≤ Un−1 which concludes the result. □
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3. ON THE NUMBER OF COMMUTING m-TUPLES

LetG be a finite group. By [6, Theorem 2.1], the number of commuting pairs
of elements in G is equal to the product k(G)|G| where k(G) is the number
of conjugacy classes of G. For a positive integer m, let cm(G) denote the
number of commuting m-tuples of elements of G. For m = 2, we have c2(G) =
|G|k(G) =

∑
x∈G |CG(x)|. For m = 3, if we fix the first component x of the

triple (x, y, z), the only such pairs fixed by x are the commuting pairs with
components which lie in CG(x). Hence x fixes k(CG(x))|CG(x)| commuting
pairs and it follows that c3(G) =

∑
x∈G k(CG(x))|CG(x)| =

∑
x∈G c2(CG(x)).

In general, we have

cm+1(G)

=
∣∣∣{(x1, . . . , xm+1) ∈ Gm+1 | ∀(i, j) ∈ {1, . . . ,m+ 1}2 , xixj = xjxi

}∣∣∣
=

∑
x∈G

∣∣∣{(x1, . . . , xm) ∈ CG(x)
m | ∀(i, j) ∈ {1, . . . ,m}2 , xixj = xjxi

}∣∣∣
=

∑
x∈G

cm(CG(x)).

(1)

Proposition 3.1. Let G be a finite group and m a positive integer. Then
cm(G) is divisible by |G|.

Proof. If the group G is abelian, then cm(G) = |G|m, so it is divisible by a
very high power of |G|. Otherwise, we use induction on m. Assume that the
proposition has been proved for cm−1(G). There is nothing to do if m = 1.
For m = 2, we have c2(G) = |G|k(G). By induction, there exists an integer tx
such that cm−1(CG(x)) = tx|CG(x)|. Let {xi : 1 ≤ i ≤ k(G)} be a system of
representatives for the conjugacy classes of G, then by using formula (1), we
obtain

cm(G) =
∑
x∈G

cm−1(CG(x))

=

k(G)∑
i=1

|G : CG(xi)|cm−1(CG(xi))

=

k(G)∑
i=1

txi |G : CG(xi)||CG(xi)| =
k(G)∑
i=1

txi |G|

from which, it follows that cm(G) = |G|
∑k(G)

i=1 txi , which is divisible by |G|. □

In view of the preceding proposition, the quotient cm+1(G)
|G| is an integer which

we denote by hm(G). The group Hom(Zm, G) can be identified with the set of
ordered m-tuples of commuting elements in G [1]. By using Burnside’s lemma,
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we get that the number of conjugacy classes of homomorphisms Zm → G is
equal to hm(G). Furthermore, we have the following proposition.

Proposition 3.2. Let {xi : 1 ≤ i ≤ k(G)} be a system of representatives
for the conjugacy classes of G. Then

hm(G) =

k(G)∑
i=1

hm−1(CG(xi))

Proof. Indeed, by using formula (1), we get

cm+1(G) =
∑
x∈G

cm(CG(x))

=

k(G)∑
i=1

|G : CG(xi)|cm(CG(xi))

= |G|
k(G)∑
i=1

cm(CG(xi))

|CG(xi)|
.

Hence, the proposition follows. □

Corollary 3.3. Let G be a finite group and m a positive integer. Set
G1 = G and Gs+1 = CGs(xs,is) for all 1 ≤ s ≤ m − 1, such that the set
{xs,is : 1 ≤ is ≤ k (Gs)} is a system of representatives for the conjugacy classes
of Gs. Then, we have

hm(G) =

k(G1)∑
i1=1

k(G2)∑
i2=1

k(G3)∑
i3=1

. . .

k(Gm−1)∑
im−1=1

k(Gm)

Proof. We proceed by induction on m. If m = 1, then h1(G) = c2(G)
|G| =

k(G1). Now let m > 1 and assume that the corollary has been proved for
hm−1(G). By Proposition 3.2, we have

hm(G) =

k(G1)∑
i1=1

hm−1(CG1(x1,i1))

and then, by induction, we get

hm(G) =

k(G1)∑
i1=1

hm−1(G2)

=

k(G1)∑
i1=1

k((G2)1)∑
i2=1

k((G2)2)∑
i3=1

. . .

k((G2)m−2)∑
im−1=1

k((G2)m−1).

Therefore, the required formula follows since (G2)s = Gs+1 for all 1 ≤ s ≤
m− 1. □
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4. COUNTING THE NUMBER OF ABELIAN p-SUBGROUPS OF Un FOR n ≤ p

It can be easily seen that the exponent of Un is the least power of p greater
than or equal to n. However, if n ≤ p, by [12, Satz 16.5], all non-trivial

elements of Un have order p. In this case, Un contains Np(Un) =
|Un|−1
p−1 groups

of order p. Furthermore, each abelian subgroup of Un is elementary abelian.
But this is not the case for n > p, since Up+1 has a cyclic subgroup of order
p2. Let Ept denote the elementary abelian group of rank t.

As |Z(Un)| = p, Z(Un) is the only minimal normal subgroup of Un. Fur-
thermore, we have the following interesting result.

Proposition 4.1. Suppose that n ≤ p, and let M be a maximal p-subgroup
of Un. Then Z(M) = Ept where t ≤ p− 1.

Proof. If |Z(M)| = p, the result holds. Now, assume that |Z(M)| > p. Let
X ∈ Un − M and U = ⟨X,Z(M)⟩. Then Z(U) = Z(Un) and |Z(U)| = p.
Since |U : Z(M)| = p, by [4, Lemma 135.4], U is of maximal class. As in the
proof of the second part of [5, Proposition 3.2], we get |U | ≤ pp and the result
follows, since |U | = p |Z(M)|. □

Define the subgroup Um by the formula: Um =

(
Im A
0 In−m

)
where Im

and In−m are the identity matrices of size m and n −m, respectively, and A
ranges over all m× (n−m) matrices. The subgroup Um is a maximal abelian
normal subgroup of Un [16, Exercise 3, p. 94]. In fact, the subgroup Um is an
elementary abelian subgroup of Un of rank m× (n−m). Let Ai,j = In +Ei,j .
If there exist i1, . . . , im, j1, . . . , jm such that the Aik,jk pairwise commute, then
we have Epm

∼= ⟨Ai1,j1 , . . . , Aim,jm⟩ ⊂ Un. The largest value of m for which

such subgroups exist is m =
[
n2

4

]
[9]. Let Npt(Un) denote the number of

abelian p-subgroups of order pt in Un where t ≤
[
n2

4

]
.

Theorem 4.2. Let p be a prime number and n an integer such that n ≤ p.
Then

Npt(Un) =

ct(Un)− 1−
t−1∑
k=1

Npk(Un)
k−1∏
s=0

(pt − ps)

t−1∏
k=0

(pt − pk)

where ct(Un) is the number of commuting t-tuples in Un.

Proof. Indeed, such t-tuples of Un must generate a p-subgroup of order pk,
where 0 ≤ k ≤ t. As n ≤ p, every element of Un has order p and each abelian

p-subgroup of order pk is of rank k and has
k−1∏
s=0

(pt − ps) generating t-tuples.

So the number of commuting t-tuples generating abelian p-groups of order pk



7 Counting formulas for certain p-subgroups 297

in Un is Npk(Un)
k−1∏
s=0

(pt − ps). Thus, we get

ct(Un) = 1 +
t∑

k=1

Npk(Un)
k−1∏
s=0

(pt − ps)

and it follows that the number of commuting t-tuples generating abelian p-
groups of order pt in Un is equal to

Npt(Un)
t−1∏
k=0

(pt − pk) = ct(Un)− 1−
t−1∑
k=1

Npk(Un)
k−1∏
s=0

(pt − ps)

and then we get the required result. □

Corollary 4.3. Keep the assumptions of the previous theorem. The num-
ber of abelian p-subgroups of order p2 in Un is equal to:

Np2(Un) =
p+ |Un| (k(Un)− p− 1)

(p2 − 1)(p2 − p)

Proof. By [6, Theorem 2.1], the number of commuting pairs of elements in
Un is equal to the product k(Un)|Un|. Therefore, we conclude the corollary
directly from Theorem 4.2, by taking t = 2. □

Example 4.4. For n ≤ 5, the number of conjugacy classes of Un has been
calculated in [18]. Therefore, by Corollary 4.3, we obtain

Np2(U3) = p+ 1,

Np2(U4) = 2p5 + 3p4 + 2p3 + 2p2 + p+ 1,

Np2(U5) = 5p10 + 5p9 + 5p8 + 4p7 + 4p6 + 3p5 + 3p4 + 2p3 + 2p2 + p+ 1.

By a similar calculation, we get Np2(Un) for n ≥ 6 whenever k(Un) is calcu-

lated. For n > 3, we find that Np2(Un) is congruent to 1 + p+ 2p2 modulo p3

and this is in agreement with the main result given in [3].

In view of the above, it is natural to ask: How many elementary abelian
p-subgroups of rank m are there in GLn(Fp)? In fact, this question led to
the characterization of conjugacy-classes in GLn(Fp) of elementary abelian p-
subgroups of rank m. However, this is another open problem even for n ≤ p.
In the following proposition we consider the case when m = 2 and n = 3.

Proposition 4.5. Suppose that p is an odd prime number. The group
GL3(Fp) contains (p2 + p + 1)(p2 + 1) elementary abelian p-subgroup of rank
2.

Proof. Indeed, an elementary abelian p-subgroup of rank 2 in GL3(Fp) is
conjugate to exactly one of the p-groupsH1 = ⟨I+aE12+aE23, I+bE13⟩, H2 =
⟨I + aE12, I + bE13⟩, and H3 = ⟨I + aE23, I + bE13⟩. By a simple calculation,
we get

∣∣NGL3(Fp)(H1)
∣∣ = p3(p−1)2 and then, by the Orbit-Stabilizer Theorem,
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it follows that there are (p3− 1)(p+1) elementary abelian p-subgroup of rank
2 conjugate to H1. Similarly, the p-groups H2 and H3 are both conjugate
to (p2 + p + 1) elementary abelian p-subgroup of rank 2. In total, we get
(p2 + p + 1)(p2 + 1) elementary abelian p-subgroup of rank 2 in GL3(Fp), as
required. □

Remark 4.6. For n > 3, it is useful to consider the Quillen complex of
elementary abelian subgroups, that is, the complex associated to the poset of
elementary abelian subgroups of GLn(Fp) ordered by inclusion. The poset of
elementary abelian groups of rank at least 2 is homotopy equivalent to the
standard Grassmanian complex [15]. However, this way uses hard mathemat-
ics to answer easier questions than the one we asked above. So what we can
certainly propose now is to use the following GAP function:

NumberOfElementaryAbelianpSubgroupsOfRank2InGLnp:=function(n,p)

local G, S, cclS, cclG;

G := Image(IsomorphismPermGroup(GL(n,p)));

S := SylowSubgroup(G,p);

cclS := Filtered(ConjugacyClassesSubgroups(S),

cl->Size(Representative(cl))=p^2

and not IsCyclic(Representative(cl)));

cclG := List(EquivalenceClasses(cclS,

function(cl1,cl2)

return IsConjugate(G,Representative(cl1),

Representative(cl2));

end), Representative);

cclG := List(cclG,cl->Representative(cl)^G);

return Sum(List(cclG,Size));

end;
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