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DEGENERATE STIRLING NUMBERS
AND A FAMILY OF BELL POLYNOMIALS
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RAHMANI

Abstract. In this paper, we employ generating functions’ techniques to obtain
some identities involving degenerate Bell polynomials, multivariate Bell poly-
nomials, and Carlitz degenerate Stirling numbers. Moreover, we obtain some
formulas related to an explicit representation and recurrence relations for Lah
polynomials.
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1. INTRODUCTION

We follow the notation and terminology used in [6]. For any λ ∈ R, the
degenerate exponential functions are defined by

(1) (1 + λz)
x
λ =

∞∑
n=0

(x)n,λ
zn

n!
,

where (x)n,λ denotes the generalized factorial of x of order n and increment
λ defined by (x)0,λ = 1, (x)n,λ = x(x − λ) · · · (x − (n − 1)λ), for n ≥ 1. It is

clear that lim
λ→0

(1 + λz)
x
λ = exz.

The (signed) Stirling numbers of the first kind s(n, k) appear as the coeffi-
cients in the expansion

(2) (x)n =
n∑

k=0

s(n, k)xk,

where (x)n := (x)n,1.
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As the inversion formula of (2), the Stirling numbers of the second kind
S(n, k) are defined as the coefficients in the expansion

(3) xn =

n∑
k=0

S(n, k)(x)k.

The exponential generating functions are respectively

(4)
1

k!
(ln (1 + z))k =

∞∑
n=k

s (n, k)
zn

n!

and

(5)
1

k!
(ez − 1)k =

∞∑
n=k

S (n, k)
zn

n!
.

The Stirling number of the second kind S(n, k) counts the number of ways of
partitioning a set of n elements into k non-empty subsets. The (total) number
of partitions of a set of n elements is the Bell number Bn, (n ≥ 0). Thus we
note that

(6) Bn =

n∑
k=0

S(n, k), (n ≥ 0).

Further, the Bell polynomials are given by

(7) ϕn(x) =

n∑
k=0

S(n, k)xk,

with the exponential generating function

(8) exp(x(ez − 1)) =

∞∑
n=0

ϕn(x)
zn

n!
.

See [3, 4, 8] for more details.
Carlitz in [5] introduced the degenerate Stirling numbers and proved nu-

merous properties. Recall that the degenerate Stirling numbers of first kind
are defined as the coefficients in the expansion

(9) (x)n =

n∑
k=0

sλ(n, k)(x)k,λ,

with the exponential generating function

(10)
1

k!

(
(1 + z)λ − 1

λ

)k

=

∞∑
n=k

sλ(n, k)
zn

n!
.
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As the inversion formula of (9), the degenerate Stirling numbers of the second
kind appear as the coefficients in the expansion

(11) (x)n,λ =
n∑

k=0

Sλ(n, k)(x)k,

with the exponential generating function

(12)
1

k!

(
(1 + λz)

1
λ − 1

)k
=

∞∑
n=k

Sλ(n, k)
zn

n!

and given explicitly by [9]

(13) Sλ(n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
(j)n,λ.

The degenerate Bell polynomials ϕn,λ(x) are defined in [9, p. 212, Equation
(4.3)] (see also [11]) by

(14) ϕn,λ(x) =

n∑
k=0

Sλ(n, k)x
k.

Clearly, we have

(15) exp
(
x
(
(1 + λz)

1
λ − 1

))
=

∞∑
n=0

ϕn,λ(x)
zn

n!
.

As pointed out by Carlitz [5], S−1(n, k) = s−1(n, k) = L(n, k), where L(n, k)
denote the Lah numbers [16] given explicitly by

L(n, k) =
n!

k!

(
n− 1

k − 1

)
.

Further, the (unsigned) Lah polynomials Ln(x) are given by Ln(x) := ϕn,−1(x).
The (exponential) partial Bell partition polynomials Bn,k (x1, x2, . . .) in an

infinite number of variables xj , (j ≥ 1), were introduced by Bell [1] as a math-
ematical tool for representing the n-th derivative of composite functions. They
are defined by their generating function

(16)

∞∑
n=k

Bn,k (x1, x2, . . .)
zn

n!
=

1

k!

( ∞∑
m=1

xm
zm

m!

)k

and are given explicitly by the formula

(17) Bn,k (x1, x2, . . . , xn) =
∑

π(n,k)

n!

k1! · · · kn!

(x1
1!

)k1 (x2
2!

)k2
· · ·
(xn
n!

)kn
,

where

π (n, k) =

{
(k1, . . . , kn) ∈ Nn :

n∑
i=1

ki = k,

n∑
i=1

iki = n

}
.
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It is easy to obtain the following expression:

(18) Bn,k(abx1, ab
2x2, . . . , ab

nxn) = akbnBn,k(x1, x2, . . . , xn).

It is well-known that for appropriate choices of the variables xj , the (expo-
nential) partial Bell partition polynomials can be reduced to some special
combinatorial sequences. We will mention the following special cases:

s(n, k) = Bn,k (0!,−1!, 2!,−3!, . . .) , (signed) Stirling numbers of the first kind,

S(n, k) = Bn,k (1, 1, 1, . . .) , Stirling numbers of the second kind,

L(n, k) = Bn,k (1!, 2!, 3!, . . .) , (unsigned) Lah numbers.

The (exponential) complete Bell partition polynomials are defined by

(19) exp

( ∞∑
m=1

xm
zm

m!

)
=

∞∑
n=0

Bn(x1, x2, . . . , xn)
zn

n!
,

from which, it follows that

(20) Bn(x1, x2, · · · , xn) =
n∑

k=0

Bn,k(x1, x2, . . . , xn−k+1).

For more details, we refer the reader to [6, 7, 12,13].
In the present paper, we study three families of sequences, the degenerate

Bell polynomials, the multivariate Bell polynomials and Carlitz degenerate
Stirling numbers. We employ generating functions’ techniques to obtain some
identities involving these sequences. Moreover, we obtain some formulas re-
lated to an explicit representation and recurrence relations for Lah polynomi-
als.

2. DEGENERATE BELL POLYNOMIALS AND MULTIVARIATE BELL POLYNOMIALS

First, we derive some basic identities for the degenerate Stirling numbers
and degenerate Bell polynomials.

Lemma 2.1. For n ≥ 0, we have

(21) Bn,k

(
(λ)1 , (λ)2 , . . . , (λ)n−k+1

)
= λnS 1

λ
(n, k) .

Proof. Using generating function (12), we obtain

∞∑
n=k

S 1
λ
(n, k)

zn

n!
=

1

k!

((
1 +

1

λ
z

)λ

− 1

)k

=
1

k!

( ∞∑
m=1

1

λm

(
λ

m

)
zm

)k

=
1

k!

( ∞∑
m=1

(λ)m
λm

zm

m!

)k

.
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By using (16), we obtain

∞∑
n=k

S 1
λ
(n, k)

zn

n!
=

∞∑
n=k

Bn,k

(
(λ)1
λ

,
(λ)2
λ2

, . . .

)
zn

n!
.

Equating the coefficients of zn

n! in both sides of the last expression and using
(18), we get

S 1
λ
(n, k) = Bn,k

(
(λ)1
λ

,
(λ)2
λ2

, . . .

)
=

1

λn
Bn,k ((λ)1 , (λ)2 , . . .) .

This completes the proof. □

Remark 2.2. Notice that the formula (21) simplifies the result obtained
more recently by Qi et al. in [14].

As consequence of Lemma 2.1, we have

(22) Sλ(n, k) = λnBn,k

((
1

λ

)
1

,

(
1

λ

)
2

, . . . ,

(
1

λ

)
n−k+1

)
and

L (n, k) = (−1)nBn,k

(
(−1)1 , (−1)2 , . . . , (−1)n−k+1

)
.

Lemma 2.3. For n ≥ 0, we have

(23) Bn

(x
λ
(λ)1 ,

x

λ
(λ)2 , . . . ,

x

λ
(λ)n

)
= λnϕn, 1

λ

(x
λ

)
.

Proof. From (20) and (18), we obtain

Bn

(x
λ
(λ)1 ,

x

λ
(λ)2 , . . . ,

x

λ
(λ)n

)
=

n∑
k=0

Bn,k

(x
λ
(λ)1 ,

x

λ
(λ)2 , . . . ,

x

λ
(λ)n

)
=

n∑
k=0

Bn,k ((λ)1 , (λ)2 , . . . , (λ)n)
(x
λ

)k
.

From Lemma 2.1, we get

Bn

(x
λ
(λ)1 ,

x

λ
(λ)2 , . . . ,

x

λ
(λ)n

)
= λn

n∑
k=0

S 1
λ
(n, k)

(x
λ

)k
.

Now, using (14), we get the desired result (23) asserted by Lemma 2.3. □

Theorem 2.4. The following holds:

(24) Bn (x (x)1 , x (x)2 , . . . , x (x)n) =

n∑
k=0

s(n, k)ϕk (x)x
k.
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Proof. By using (4) and (8), we obtain

∞∑
n=0

(
n∑

k=0

s (n, k)ϕk (x)x
k

)
zn

n!
=

∞∑
k=0

ϕk (x)x
k

∞∑
n=k

s (n, k)
zn

n!

=

∞∑
k=0

ϕk (x)
1

k!
(x ln (1 + z))k

= exp (x ((1 + z)x − 1)) .

Thus, by applying the assertion (19), we get

∞∑
n=0

(
n∑

k=0

s (n, k)ϕk (x)x
k

)
zn

n!
= exp

( ∞∑
m=1

x (x)m
zm

m!

)

=

∞∑
n=0

Bn (x (x)1 , x (x)2 , . . . , x (x)n)
zn

n!
.

Equating the coefficients of zn

n! in both sides of the above equation, we get the
desired result. □

Corollary 2.5. For x nonzero, we have

(25)

n∑
k=0

s(n, k)ϕk (x)x
k = xnϕn, 1

x
(x).

Proof. Setting λ := x in (21), multiplying both sides by xk, and summing
the resulting expression for k = 0, 1, . . . , n, we obtain

n∑
k=0

xkBn,k ((x)1 , (x)2 , . . .) = xn
n∑

k=0

S 1
x
(n, k)xk,

which, by virtue of (18) and (14) yields
n∑

k=0

Bn,k (x (x)1 , x (x)2 , . . .) = xnϕn, 1
x
(x).

Finally, by using (20) and (24), we obtain the desired formula (25). □

Theorem 2.6. For n ≥ 0, the following relations hold true:

(26) Sλ(n, k) = Bn,k

(
(1)1,λ , (1)2,λ , . . . , (1)n,λ

)
and

(27) ϕn,λ(x) = Bn

(
x (1)1,λ , x (1)2,λ , . . . , x (1)n,λ

)
.

Proof. Using the relation

(1)n,λ = λn

(
1

λ

)
n

,
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Bn

(
x (1)1,λ , x (1)2,λ , . . . , x (1)n,λ

)
may be written as

Bn

(
x (1)1,λ , x (1)2,λ , . . . , x (1)n,λ

)
=

n∑
k=0

Bn,k

(
xλ

(
1

λ

)
1

, xλ2

(
1

λ

)
2

, . . . , xλn−k+1

(
1

λ

)
n−k+1

)
.

Thus, according to (18) and Lemma 2.1, it follows that

Bn

(
x (1)1,λ , x (1)2,λ , . . . , x (1)n,λ

)
=

n∑
k=0

Sλ(n, k)x
k = ϕn,λ(x).

□

Thus, setting λ = −1 in (26) and (27), we get the following explicit repre-
sentations for Lah numbers and Lah polynomials involving multivariate Bell
polynomials.

Corollary 2.7. We have

L (n, k) = Bn,k (⟨1⟩1 , ⟨1⟩2 , . . .)
and

Ln (x) = Bn (x ⟨1⟩1 , x ⟨1⟩2 , . . .) ,
where ⟨x⟩n := (x)n,−1.

From the general theory of partition polynomials [6, p. 414, Theorem 11.2],
one can deduce the following recurrence relations.

Theorem 2.8. For n, k ≥ 0, the degenerate Stirling numbers satisfy the
recurrence relations

Sλ (n+ 1, k + 1) =

n−k∑
i=0

(
n

i

)
(1)i+1,λ Sλ (n− i, k)

and

Sλ (n+ 1, k + 1) =
1

k + 1

n−k∑
i=0

(
n+ 1

i+ 1

)
(1)i+1,λ Sλ (n− i, k) .

Substituting λ = −1 into Theorem 2.8, we get the following recurrence
relations for Lah numbers.

Corollary 2.9. We have

L (n+ 1, k + 1) =

(
n

i

)
(i+ 1)!L (n− i, k)

and

L (n+ 1, k + 1) =
1

k + 1

n−k∑
i=0

(
n+ 1

i+ 1

)
(i+ 1)!L (n− i, k) .
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Theorem 2.10. For n ≥ 0, the degenerate Bell polynomials ϕn,λ (x) satisfy
the recurrence relation

(28) ϕn+1,λ (x) = x
n∑

k=0

(
n

k

)
(1)k+1,λ ϕn−k,λ (x) .

By setting λ = −1 in (28), we obtain the following corollary.

Corollary 2.11. We have

Ln+1 (x) = x
n∑

k=0

(
n

k

)
(k + 1)!Ln−k (x) .

3. BELL POLYNOMIALS AND DEGENERATE BELL POLYNOMIALS

An explicit formula of Bell polynomials ϕn (x) involving degenerate Bell
polynomials ϕn,λ (x) is given in the following theorem.

Theorem 3.1. For n ≥ 0, we have

(29) ϕn (x) =
n∑

k=0

S (n, k)ϕk,λ (x)λ
n−k.

Proof. Generating function (8) may be expressed as

∞∑
n=0

ϕn (x)

λn

zn

n!
= exp

(
x
(
e

z
λ − 1

))
= exp

(
x

((
1 + λ

(
ez − 1

λ

)) 1
λ

− 1

))

=

∞∑
k=0

ϕk,λ (x)
1

k!

(
ez − 1

λ

)k

=
∞∑
k=0

ϕk,λ (x)

λk

1

k!
(ez − 1)k .

Using (5), we get

∞∑
n=0

ϕn (x)

λn

zn

n!
=

∞∑
k=0

ϕk,λ (x)

λk

∞∑
n=k

S (n, k)
zn

n!

=

∞∑
n=0

(
n∑

k=0

S (n, k)
ϕk,λ (x)

λk

)
zn

n!
.

Equating the coefficients of zn

n! in both sides of the above equation, we get the
desired result. □
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Corollary 3.2. We have

ϕn (x) =
n∑

k=0

(−1)n−kS (n, k)Lk (x) .

Remark 3.3. Note that, the above identity, can be found in [2] for the
(signed) Lah polynomials.

Now, by means of the Stirling transform [15], we obtain the following the-
orem.

Theorem 3.4. For n ≥ 0, we have

ϕn,λ (x) =
n∑

k=0

s (n, k)ϕk (x)λ
n−k.

Note that, Kargın and Corcino [10] obtained the recurrence relation for
the generalized exponential polynomials, in particular for the degenerate Bell
polynomials. However, we give here a different proof.

Corollary 3.5. For n ≥ 0, we have

ϕn+1,λ (x) = (x− nλ)ϕn,λ (x) + xϕ′
n,λ (x) .

Proof. From the recurrence relation for the (signed) Stirling numbers of the
first kind

s(n+ 1, k) = s(n, k − 1)− ns(n, k),

we have

ϕn+1,λ (x)

λn+1
=

n+1∑
k=1

s (n+ 1, k)
ϕk (x)

λk

=
n∑

k=0

s (n, k)
ϕk+1 (x)

λk+1
− n

n∑
k=0

s (n, k)
ϕk (x)

λk
.

Using the well-known relation

ϕn+1 (x) = x

(
1 +

d

dx

)
ϕn (x) ,

we obtain

ϕn+1,λ (x)

λn+1
= x

n∑
k=0

s (n, k)
1

λk+1

(
1 +

d

dx

)
ϕk (x)− n

n∑
k=0

s (n, k)
ϕk (x)

λk

=
x

λ

n∑
k=0

s (n, k)
ϕk (x)

λk
+

x

λ

d

dx

(
n∑

k=0

s (n, k)
ϕk (x)

λk

)

− n

n∑
k=0

s (n, k)
ϕk (x)

λk
.
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Thus

ϕn+1,λ (x)

λn+1
=

x

λ

ϕn,λ (x)

λn
+

x

λ

ϕ′
n,λ (x)

λn
− n

ϕn,λ (x)

λn
.

This completes the proof of Corollary 3.5 . □

Corollary 3.6. For n ≥ 0, we have

Ln+1 (x) = (x+ n)Ln (x) + xL′
n (x) .

4. DEGENERATE BELL POLYNOMIALS AND STIRLING NUMBERS

In order to obtain an explicit formula of the degenerate Bell polynomials
ϕn,λ (x) in terms of Stirling numbers of the second kind S(n, k), we consider
the following exponential generating function

(30) (1 + λ ln(1 + z))
1
λ =

∞∑
n=0

αn,λ
zn

n!
.

From the binomial theorem, we have

(1 + λ ln (1 + z))
1
λ =

∞∑
m=0

(
1

λ

)
m

λm

m!
(ln (1 + z))m

=
∞∑

m=0

(1)m,λ

∞∑
n=m

s (n,m)
zn

n!

=
∞∑
n=0

(
n∑

m=0

(1)m,λ s (n,m)

)
zn

n!
.

Then, we obtain

(31) αn,λ =
n∑

m=0

(1)m,λ s (n,m)

which can be computed by the following recurrence relation: if we construct
an infinite matrix (An,m (λ))n,m≥0 with the final sequence given by An,0(λ) =
(1)n,λ and each entry given by

An,m+1 (λ) = An+1,m (λ)−mAn,m (λ) ,

then the first line of the matrix is A0,m(λ) = αm,λ.

Theorem 4.1. For n ≥ 0, we have

(32) ϕn,λ (x) =

n∑
k=0

S (n, k)Bk (xα1,λ, xα2,λ, . . . , xαk,λ) .
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Proof. By using (4) and (15), we obtain

∞∑
n=0

(
n∑

k=0

s (n, k)ϕk,λ (x)

)
zn

n!
=

∞∑
k=0

ϕk,λ (x)

( ∞∑
n=k

s (n, k)

)
zn

n!

=
∞∑
k=0

ϕk,λ (x)
1

k!
(ln (1 + z))k

= exp
(
x
(
(1 + λ ln (1 + z))

1
λ − 1

))
.

We now apply (30) and (19). Henceforth, we get

∞∑
n=0

(
n∑

k=0

s (n, k)ϕk,λ (x)

)
zn

n!
= exp

(
x

∞∑
m=1

αm,λ
zm

m!

)

=

∞∑
n=0

Bn (xα1,λ, xα2,λ, . . . , xαn,λ)
zn

n!
.

Equating the coefficients of zn

n! in both sides of the above expression, we get

n∑
k=0

s (n, k)ϕk,λ (x) = Bn (xα1,λ, xα2,λ, . . . , xαn,λ) .

Now, by means of the Stirling transform [15], we obtain the desired result. □

5. BELL POLYNOMIALS AND DEGENERATE STIRLING NUMBERS

In this section, we derive several interesting identities between Bell polyno-
mials and degenerate Stirling numbers.

Theorem 5.1. For n ≥ 0, we have

(33) ϕn (x) =
n∑

k=0

sλ (n, k)Bk (xϕ1,λ, xϕ2,λ, . . . , xϕk,λ) ,

where ϕn,λ := ϕn,λ (1) denote the degenerate Bell numbers.

Proof. By using (12) and (8), we obtain

∞∑
n=0

(
n∑

k=0

Sλ (n, k)ϕk (x)

)
zn

n!
=

∞∑
k=0

ϕk (x)
∞∑
n=k

Sλ (n, k)
zn

n!

=

∞∑
k=0

ϕk (x)
1

k!

(
(1 + λz)

1
λ − 1

)k
= exp

(
x

(
e(1+λz)

1
λ−1 − 1

))
.
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Thus, by applying the assertion (19), we get

∞∑
n=0

(
n∑

k=0

Sλ (n, k)ϕk (x)

)
zn

n!
= exp

(
x

∞∑
m=1

ϕm,λ
zm

m!

)

=

∞∑
n=0

Bn (xϕ1,λ, xϕ2,λ, . . . , xϕn,λ)
zn

n!
.

Comparing the coefficients of zn

n! , we obtain

n∑
k=0

Sλ (n, k)ϕk (x) = Bn (xϕ1,λ, xϕ2,λ, . . . , xϕn,λ) .

The inversion of the last formula gives (33). □

Corollary 5.2. For n ≥ 0, the following hold:

ϕn (x) =

n∑
k=0

L (n, k)Bk (xL1 (1) , xL2 (1) , . . .) .

Theorem 5.3. For n ≥ 0, we have

ϕn (x) =

n∑
k=0

Sλ (n, k)λ
kBk

(
xϕ1, 1

λ

(
1

λ

)
, xϕ2, 1

λ

(
1

λ

)
, . . . , xϕk, 1

λ

(
1

λ

))
.

Proof. By using (10) and (8), we find

∞∑
n=0

(
n∑

k=0

sλ (n, k)ϕk (x)

)
zn

n!
=

∞∑
k=0

ϕk (x)
∞∑
n=k

sλ (n, k)
zn

n!

=
∞∑
k=0

ϕk (x)
1

k!

(
(1 + z)λ − 1

λ

)k

= exp
(
x
(
e

1
λ((1+z)λ−1) − 1

))
.

We make use of Lemma 2.3, to get

e
1
λ((1+z)λ−1) − 1 =

∞∑
n=1

λnϕn, 1
λ

(
1

λ

)
zn

n!
.
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Now, it easy to see that
∞∑
n=0

(
n∑

k=0

sλ (n, k)ϕk (x)

)
zn

n!
= exp

(
x

∞∑
m=1

λmϕm, 1
λ

(
1

λ

)
zm

m!

)

=
∞∑
n=0

Bn

(
xλϕ1, 1

λ

(
1

λ

)
, . . . , xλnϕn, 1

λ

(
1

λ

))
zn

n!

=
∞∑
n=0

λnBn

(
xϕ1, 1

λ

(
1

λ

)
, . . . , xϕn, 1

λ

(
1

λ

))
zn

n!
.

Comparing the coefficients of zn

n! , we obtain

n∑
k=0

sλ (n, k)ϕk (x) = λnBn

(
xϕ1, 1

λ

(
1

λ

)
, xϕ2, 1

λ

(
1

λ

)
, . . . , xϕn, 1

λ

(
1

λ

))
.

Finally, by means of the degenerate Stirling transform, we get the desired
result. □

Corollary 5.4. We have

ϕn (x) =

n∑
k=0

(−1)k L (n, k)Bk (xL1 (−1) , xL2 (−1) , . . .) .
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