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AN EXAMPLE
OF NON-COFORMAL CLASSIFYING SPACE
WITH RATIONAL H(2)-STRUCTURE

HIROKAZU NISHINOBU and TOSHIHIRO YAMAGUCHI

Abstract. Let Baut; X and Bautip be the Dold-Lashof classifying spaces of
a space X and a fibration p : X — Y, respectively. In this paper, we give an
example that there exists a fibration £ : §7 x S x 8% x $1% - X & §% such
that Baut: X and Bauti1p are not coformal and are rational H (2)-spaces.
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1. INTRODUCTION

Let X be a connected and simply connected finite CW complex having
dim 7, (X)g < 00 (Gg = GRQ) and let Baut; X be the Dold-Lashof classifying
space of orientable fibrations [2].

Here aut; X = map(X, X;idy) is the identity component of the space aut X
of self-equivalences of X. Then any orientable fibration £ with fibre X over
a base space B is the pull-back of a universal fibration by a map from B to
Baut; X [2].

The Sullivan minimal model M (X)) ([18]) determines the rational homotopy
type of X, the homotopy type of the rationalization X [9] of X. The differen-
tial graded Lie algebra (DGL) DerM (X), the negative derivations of M (X)
(see Section [2), gives rise to the DGL model for Baut; X due to Sullivan [18]
(cf. [7,]19]), i.e., the spatial realization ||DerM (X)|| is (Baut1X)o. Further-
more, for a fibration £ : F — X 5 Y with fiber F and base Y finite, let
autip = {f € aut1 X | po f = p} be the monoid of fibrewise self-equivalences
homotopic to the identity. Then the DGL model of the Dold-Lashof classifying
space Bautip is given by [1, Theorem 1]. See Theorem in Section

A simply connected CW complex Z of finite type is said to be formal if
there is a DGA-quasi-isomorphism M(Z) — (H*(Z;Q),0). Let L(Z) be the
Quillen DGL-model of Z [4].
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DEFINITION 1.1 (cf. [19, I1.7.(6)]). A space Z is said to be coformal if there
is a DGL-quasi-isomorphism L(Z) — (7.(2Z)q,0).
This is equivalent to the fact that the differential d of a Sullivan minimal

model M (Z) = (AV,d) is quadratic.

For example, rational H-spaces and one-point unions of spheres are coformal
[19]. Notice that Baut; X is not formal even when X = S3 x S°. In this case,
we obtain that M (Baut1X) = (A(z,y,2),d) with |z| = 3, |y| = 4, |z] = 6,
d(x) = d(y) = 0 and d(z) = zy from Theorem [2.1] of Section 2| Then the non-
formality is induced by the element [z2] € H?(Baut; X; Q). (H*(Baut; X;Q)
is infinitely generated as a Q-algebra.) But it is coformal since the differential
d is quadratic. See |14, Theorem 4.1] for some non-coformal examples of the
classifying space Bauti X.

A space X is said to be pure if dM (X)®*" = 0 and dM (X)°% c M(X)even,
A pure space is said to be an Fy-space (or positively elliptic) if dim Teyen (X) ®
Q = dim myqq(X) ® Q and H°¥(X; Q) = 0.

In 1976, S. Halperin [8] conjectured that the Serre spectral sequences of all
fibrations X — E — B of simply connected CW complexes collapse at the
Es-terms for any Fy-space X [4]. For compact connected Lie groups G and
H where H is a subgroup of GG, when rank G = rank H, the homogeneous
space G/H satisfies the Halperin conjecture [16]. Also, the conjecture is true
when n < 3 [10]. Due to |12], the Halperin conjecture is relaxed to the form:
is Baut1X a rational H-space if X is an Fy-space?. Of course, even if X is
not an Fy-space, Baut; X can be a rational H-space. For example, X = 3,
(Baut1 X )o ~ K(Q,4) |13]. When is Baut; X or Baut;p a rational H-space?
(11, 3.2]) Also how near is it to a rational H-space?

DEFINITION 1.2 ([6]). A simply connected CW complex Z of finite type is
an H(n)-space if there exists a map p, : Gn(Z x Z) — Z such that pu, oil, =
fn 00y =ppn: Go(Z) — Z. Here p, : Go(Z) — Z is the n-th Ganea fibration
and i, i : Go(Z) — Gn(Z x Z) are the canonical maps induced by the
standard injections of Z in Z x Z.

Notice that Z is a rational H(n)-space (Zy is an H (n)-space) if and only if
the word of length k of the differential d = di + dj41 +--- of M(Z) = (AV,d)
is bigger than n [6, Proposition 8]. Here dj, : V. — AFV =V . ...V (k-
times). Thus all spaces are rational H(1)-spaces and H-spaces are rational
H (oo)-spaces. Remark that a rational H(m)-space is a rational H (n)-space
when m > n and that coformal spaces are not rational H(2)-spaces. Recall
the following problem stated in the Oberwolfach Workshop in 2009:

PrOBLEM 1.3 ([3, Problem 23]). Is Baut; X a rational H-space if it is a
rational H (2)-space ?

However, in this paper, we show that there exists a counter example, given
by the following theorem.
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THEOREM 1.4. There exists a space X such that Baut1X is not coformal
and is a rational H(2)-space. Furthermore, it is the total space of a fibration

E:87T x SM x 815 x 8§19 4 X 285 such that Bautip is not coformal and is
a rational H(2)-space, too.

The Sullivan minimal models are given by
M(Baut1 X) = (A(va, v3,v9,v13,v20), d)
M (Baut1p) = (A(v2,v3,vs,v9, v13, v20), d)
where |v,| = n, d(v13) = vovsvg and d(v;) = 0 for the other i. Remark that
M(CP?) = (A(v2,v5),d) where d(vy) = 0 and d(vs) = v3. So CP? is not

coformal and is a rational H(2)-space, too. But it can not be realized as
(Baut1 X)g |11, Theorem 2].

REMARK 1.5. In this case, Baut1 X and Bautip are not formal and the
rational cohomologies are finitely generated as Q-algebras:
H*(Baut1 X;Q) = A(v3,v9) ® Q[va, va0, w16, waz]/ I and
H*(Baut1p; Q) = A(vs,vs,v9) ® Q[vz2, v20, w16, waz]/ I

where wig = [v3v13], wee = [vov13] and I is the ideal generated by

2 2
{UQUS'UQa U3W16, V3W22 + VW16, V9W22, Wi, W16W22, w22}~

2. MODELS

Let M (Z) = (AV,d) be the Sullivan minimal model of simply connected CW
complex Z of finite type [18]. It is a free Q-commutative differential graded
algebra (DGA) with a Q-graded vector space V = @,~; V' where dim V* < oo
and a decomposable differential, i.e., d(V?) C (ATV - ATV)i*!l and dod = 0.
Here ATV is the ideal of AV generated by elements of positive degree. The
degree of a homogeneous element = of a graded algebra is denoted as |z|.
Then zy = (—1)Wyz and d(zy) = d(z)y + (—1)1*lzd(y). Note that M(X)
determines the rational homotopy type of X, namely the spatial realization is
given as ||[M(Z)|| ~ Zy. In particular,

V" = Hom(m,(Z),Q) and H*(AV,d) = H*(Z;Q).

Here the second is an isomorphism of graded algebras. Refer to [4] for details.

Let Der;M(X) be the set of Q-derivations of M (X) decreasing the degree
by i with o(zy) = o(x)y + (—1)"lze(y) for z,y € M(X). The boundary
operator 0 : Der; M (X) — Der;_1M(X) is defined by

do)=doo —(—1)ocod

for o € Der;M(X). We denote @;~oDer;M(X) by DerM(X) in which
Deri M (X) is 0-cycles. Then DerM(X) is a DGL by the Lie bracket

[o,7]:=00T — (—1)|UHT|T oo.



258 H. Nishinobu and T. Yamaguchi 4

Furthermore, recall the definition of D. Tanré |19, p.25]: Let (L, ) be a DGL
of finite type with positive degree. Then C*(L,9) := (As™'L, D = di + d>)
with

(dis™'z;sz) = —(z;0z) and (dos™'z; swy, s2o) = (= 1)1 (z; [, 29]),
where (s~'z;sz) = (—1)*/(2;z) and #L is the dual space of L.
THEOREM 2.1 ([18, §11],|7,[19]). For a Sullivan model M(X) = (AV,d)

of X, Der(AV) is a DGL-model of Baut1X. Thus C*(Der(AV)) is a free
DGA-model of Baut1X.

Consider the simply connected fibration € : F — X Y of finite type given
by the relative model (Koszul-Sullivan extension)

(1) M(Y) = (AV,d) <5 (AV @ AW, D) — (AW, D) = M(F)

for a certain differential D with D |[py= d. There is a quasi-isomorphism
M(X) ~ (AV @ AW, D) [4]. Let Derpy(AV @ AW) be the sub-DGL in
Der(AV @ AW) of elements o with o(v) =0 for v € V.

THEOREM 2.2 (|1, Theorem 1], [5]). For a fibration & : F — X Y given by
model (1) with F' and Y finite, Derpyy (AV @ AW) is a DGL-model of Bautip.
Thus C*(Derpy (AV @ AW)) is a free DGA-model of Bautip.

For a fibration &£, there is a map Bautip — Baut1 X induced by the monoid
inclusion autip—aut1 X. The DGL-map between DGL-models is given by the
natural inclusion Derpy (AV @ AW)— Der(AV @ AW).

3. THE PROOF
CONVENTION 3.1 ([18]). For a free DGA-model (AV,d), the symbol (v, f)

means the elementary derivation that takes a generator v of V' to an element
f of AV and the other generators to 0. Note that |(v, f)| = |v| — | f].

The proof of Theorem [[.4. Let the relative model of a fibration S x St x
S15 % 819 5 X 25 65 be given by
(A(z),0) = M(X) = (A(x, 87,511, 815, 519), D) — (A(87, 511, 815, 519),0)
where |z| = 5, |sy| = n, Dx = 0, Ds; = 0, Ds;y = wxsy, Dsi5 = xs11,
Dslg — IS15.
Let us calculate the DGA-model of Baut;p by using Theorem The
basis of Der ()M (X) is given by the following 18-elements
(s7,1), (s7,2), (511,1), (811, %), (811, 87), (815, 1), (515, 7), (515, 57)
(815, 511), (815, ¥57), (519, 1), (519, ), (819, 57), (519, 511)

(519, 515), (519, T57), (519, 511), (519, S7511)
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and the differential 9 is given by
d(s19,1) =0, I(s19,z) =0, I(s19,57) =0
d(s19,511) = (819, 757), O(s19,515) = (519, T511)
Jd(s19,xs7) =0, d(s19,2511) =0, I(s19,57511) =0
d(s15,1) = —(s19, ), 9(s15,2) =0, A(s15,57) = —(s19,x57)
(
(

o))

515, 511) = (815, ¥87) — (819, 7511), O(815,757) =0
d(s11,1) = —(s15,2), 9(s11,2) =0, O(s11,57) = —(s15, x57)
d(s7,1) = —(s11,2), O(s7,z) = 0.

Note that there are six non-exact 9-cycles:

(s19,1), (519, 57), (519, S7511), (87, )

o = (s19,511) + (515, 57)

T = (819, 515) + (515, 511) + (511, 57).

Let vs, s be the dual element of the derivation (sq, f) for some s, € W and
f € AV ® AW with degree +1. Then d; of Section [2]is given by

dy (7)519,1) =0, dy (v819,x) = Usy5,15 dy <U819,S7) =0, dl(vswﬁu) =0

d1(Vsig,515) = 0, d1(Vsig,es7) = —Vsig,s11 T Vsys,sr

d1(Vsig,es11) = —Vsig,s15 T Usis,s11> @1(Vsig,srs11) = 0

d1(Vs15,1) = 0, di(Vs15,2) = —Vsi1,1, d1(Vsis,67) = 0, d1(Vsy5,61,) =0
d1(Vsys,2s7) = —Vsys,s11 + Vsyy,sr d1(Vsyp,1) =0

d1(Vsyy,2) = Vs 1, d1(Vsyy,s7) =0, di(vs,1) =0, di(vs; ) = 0.

The Lie bracket of Dery )M (X) is given by
[(s15,1), (519, 515)] = (519, 1), [(511,1), (519, 511)] = (519,1),

511, 57), (815, 511)] = (815, 87), [(s7,1), (511, 87)] = (511, 1),

5771:)7 511387)] = (811733)'

[(s7,1), (519, 87)] = (519, 1), (515, %), (519, 515)] = (519, 2),

[(s11,2), (519, 511)] = (819, %), [(57, %), (819, 57)] = (519, ),

[(s11,1), (s19, z811)] = —(819, @), [(57,1), (519, 287)] = —(s19,2),
[(s15, 57), (819, 815)] = (819, 87), (811, 87), (819, 511)] = (519, 57),
[(s11,1), (519, 87511)] = —(519,57), [(515,511), (519,515)] = (519, 511),
[(s7,1), (519, s7511)] = (819, 811), [(511,87), (s19, T811)] = (819, TS7),
[(s11, %), (519, 57511)] = — (819, 257), [(815, 57), (819, 515)] = (S19,T57),
[(s7,2), (519, 57511)] = (s19,%511), [(511,1), (S15,511)] = (515, 1)
[(s7,1), (515, 57)] = (515, 1), [(511,%), (515, 511)] = (515, T),

[(s7,)

[(

[(

(

(
(815, 87)] = (815, @), [(87,1), (515, 287)] = — (515, 2),
)

(
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Then dy of Section [2is given by

d2(v819,1) =Us7,1VUs19,57 T Us11,1VUs19,511 T Usi5,1VUs19,515

d2 (US19,:E) = 7 Usq,2Us19,57 — Us11,2Us19,511 — Usis,2VUs19,515
+ 'US7,1U819,:ES7 + '0511,11)819,1‘811

d2(v819757 — Usyi1,s7Us19,511 — Usis,s7Us19,515 T Us11,1Usig,s7511

da (US19,811 — Usis,511Us19,515 — Us7,1VUs19,57511

0

do (US19,515
d2(”81971‘87 Usis,257Us19,515 — Usi1,s7Us19,@s11 T Usi1,2Vs10,s7511

do (v819,$511 — Usy,2Usy9,s7511

d2 1)819,87811 =0
d2(’U8157 =UVsy,1Us15,57 T Us11,1VUs15,511
do (US15,96 = — Usy,aUsis,sr — Usi1,aUsis,s11 T Vsy,1Vsis,as7
dQ(U815, s7) = 7 Usi1,s7Us1s,511

do (US15,S11

d2(”815@57

d2(’”$1171 Vs7,1Vs11,87

da (USn,x = Us7,2Usi1,s7

do (0811, s7

0
da(vs,1) =0
0

)=
)=
)
)=
)=
)
)
)
)
)
)
)
)
)
)
)

do (Vs

Let
Vw; ‘= —Usig,s15 T Usiz,s11>
Vwy 1= —Usyg,s11 T Usyy,s7s
Vo = —Usyg,s11 T Usis,sr-

Then the differential D = d; + da of C*(Dery )M (X)) is given by

D(,U51971) =+ Vs7,1Vs19,57 T Vs11,1Us1g,511 T Us15,1Vs1g,515

D(s19,0) = = VUsy5,1 = Vsy,aUsig,sr — Usiy,aUsio,sin — UsisaUsiomsis

T Usz,1Us1g,287 T Usyq,1Vsig,2511
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D(s19,57) = = (Vwy + Vuy Jsyg,511 — VaUsig,s15 T Usiy 1Usig,s7511

D(v819,311) = = VwyUsig,s15 — Vs7,1Us19,s7511

ﬁ(vsw,sw) =0

A~

D(USIQaIS'?) =Va + 0315133571}5197315 - (Uw2 —"_ 'le —"_ ’U5197515)U'319’z'511

+ vsu,xU819757511

D(vsm,lsn) =Uw; — Usr,aVUsig,s7511

D(U819757311) =0

ﬁ(vas,l) :7)87,1(”04 + U8197811) + sy,1 (Vg + 0319,515)

~

D(US15,JL‘) = = Us;1,1 — U57,-T(UCY + U8197511) - USll,l“(vwl + U819,815)

+ Vsy,1Vsy5,287

D(Ua) = —"_ le U319’315 + le Uw2 - Uw2vslgysl5 + U3771v319»s7511

D(vy,) =0

A~

D(USISaZS’?) =V,

Z\)(USMJ) :1)87,1(1)102 + Uy + U319,315)

D(vsyy,0) = = Vs7,1 = Vsy o (Vwy + Vwy + Vsyg,s15)
ﬁ(UW2) =0

ﬁ(v5771) =0

ZA)(vsﬂw) =0.

Thus the minimal model M (Bautip) of the free DGA
m(Bautip) := C*(Der )M (X))
is given by

M (Baut1p) = (AUsi,1, Usig,575 Usio, 575115 Usy,z, Uss Uz ), d)

|U81971| =20 |U819787| =13 |[Us|=9 [U:|=5 |US771‘| =3 ’U819,S7811‘ =2
d(Usw,l) =d(Us) =d(U;) = d(Usmc) = d(U8197S7811) =0

d(Usyg,57) = —2Us7 2UsUsy 57,511 -
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Here the quasi-isomorphic DGA-map ¢ : M (Baut1p) — m(Baut;p) is given
by

‘P(U819,87811 ) ~Usig,s7511

‘P(USNC) =Vsr,x
(P(UT) =Usig,s15
@(UU) :21}819,811 + Va + 0819,33311”519,815 + US15,36871)519,515 - v811,xv819,87511

T Usis,zs7Vwi T Vsy,zVUsig,s11 Vsio,srsin T Usy,aUsis,esr Usig,srsii

‘P(US19,S7> =2Us19,57 T 2Vs19,515Us19,257 T 2Us15,357Us19,511 T 2Us1g,2511 Usig,511

2
+ 2Us15,2Us19,57511 T 2Us1g,515Vs1s,257 Us10,0511 T 21}319,903111)519,515
- 2’081175131)319,96811’0819757511 + 21)37,11)815,9537”819@311US19,57811
+ Vg 02 v
S7,LV819,r811 ~S19,57511
©(Us1g,1) =Vs19,1 + VwyUsig,z — Usig,s15Usio,x T Usiy,aUsig,sy T Usiy,1Usig,ws7
— Usis,@s7Vs15,1 — ValUsis,x = Usig,s11 Usis,x — Vw1 Usig,s7Usii,a
— 20s5,9,515Us19,257Us11,@ + VwsUsis5,2Vs19,xs11 — Vwi Usis,azUsig,@s11
+v v? +v v v — 205, 20U v
$11,1Vs19,2511 s11,1Vs15,287 Vs19,2511 s7,xVs19,87 Vs15,xs7
= Us7,2Us19,57Us19,2511 — Us7,2VUs19,ws11 VUs19,515 Us19,xs7
- 27}877367)515,&387”5197815081975587 - 21)87,567)819,811US157:ES7US19,$811

2

— Usi9,515VUs11,2Vs19,2811 — Us19,515VUs11,2VUs19,2511 Usi5,as7
+ U315azvsl573337,037:3311519737511 - U315a1'v519:x311Us77xU519137511
— Vg 2V v? — Vg, 1V v2

87,819,811 Ys15,287 s7,1Vs15,257 Vs 19,2511
T Vsr,aUsig,a57 Vwa Vsig,zs11 — Usy,aVsig,zsr Vwi Usig,si1
+v 02 Vi — SV 2 v v

511, ¥ 819,811 " W1 S7,LY819,x811 ~ 519,515 Y S15,LS87
— Vg V2 ) )

S7,LY815,x87 ©8519,515 V519,511
- USll,IE,USu),LBSll0815,1871]87,1,0819,37811

- 3Us7,:rvw1 v8157ZS7U§19,x511
By the similar arguments, we obtain the minimal model of Baut; X:
M(Bauth) - M(C* (DeTM(X))) - (A(Uslg,lﬂ U819,S77 US19,S7811’ US7,I> UU)’ d)

as a sub-DGA of M(Bautip). In this case, the element U, from 9(z,1) =
(s19, 515) + (s15,511) + (811, 87) = 7, does not exist. O
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REMARK 3.2. In general, let a fibration ¢ : S% x S? x §¢ x §¢ — X — §¢
with a, b, ¢, d, e odd and e < a < 2e — 1 be given by the relative model

(A(z),0) = M(X) = (A(z, Sa; S, Ses Sd), D) — (A(Sa, Sps Sc, Sd),0)

where |z| = e, |s,| =n, Dz =0, Ds, =0, Dsy = 54, Ds. = xsp, Dsq = xsc.
Then we obtain the same result as Theorem from a similar proof.

EXAMPLE 3.3. For any fibration & : §° x §9 x §13 x S17 = X — S°, we can
check that Baut; X and Bautp are coformal. Especially, when £ is given by

(A(z),0) = (A(z, s5, S9, 513, 517), D) — (A(ss5, S9, 513, 517),0)

with Dz = 0, Dss = 0, Dsg = xs5, Ds13 = xs9, Ds17 = xs13, then Baut1 X
and Baut,p are rational H-spaces.
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