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AN EXAMPLE
OF NON-COFORMAL CLASSIFYING SPACE

WITH RATIONAL H(2)-STRUCTURE

HIROKAZU NISHINOBU and TOSHIHIRO YAMAGUCHI

Abstract. Let Baut1X and Baut1p be the Dold-Lashof classifying spaces of
a space X and a fibration p : X → Y , respectively. In this paper, we give an

example that there exists a fibration ξ : S7 × S11 × S15 × S19 → X
p→ S5 such

that Baut1X and Baut1p are not coformal and are rational H(2)-spaces.
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1. INTRODUCTION

Let X be a connected and simply connected finite CW complex having
dimπ∗(X)Q < ∞ (GQ = G⊗Q) and let Baut1X be the Dold-Lashof classifying
space of orientable fibrations [2].

Here aut1X = map(X,X; idX) is the identity component of the space autX
of self-equivalences of X. Then any orientable fibration ξ with fibre X over
a base space B is the pull-back of a universal fibration by a map from B to
Baut1X [2].

The Sullivan minimal model M(X) ([18]) determines the rational homotopy
type of X, the homotopy type of the rationalization X0 [9] of X. The differen-
tial graded Lie algebra (DGL) DerM(X), the negative derivations of M(X)
(see Section 2), gives rise to the DGL model for Baut1X due to Sullivan [18]
(cf. [7, 19]), i.e., the spatial realization ||DerM(X)|| is (Baut1X)0. Further-

more, for a fibration ξ : F → X
p→ Y with fiber F and base Y finite, let

aut1p = {f ∈ aut1X | p ◦ f = p} be the monoid of fibrewise self-equivalences
homotopic to the identity. Then the DGL model of the Dold-Lashof classifying
space Baut1p is given by [1, Theorem 1]. See Theorem 2.2 in Section 2.

A simply connected CW complex Z of finite type is said to be formal if
there is a DGA-quasi-isomorphism M(Z) → (H∗(Z;Q), 0). Let L(Z) be the
Quillen DGL-model of Z [4].
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Definition 1.1 (cf. [19, II.7.(6)]). A space Z is said to be coformal if there
is a DGL-quasi-isomorphism L(Z) → (π∗(ΩZ)Q, 0).

This is equivalent to the fact that the differential d of a Sullivan minimal
model M(Z) = (ΛV, d) is quadratic.

For example, rationalH-spaces and one-point unions of spheres are coformal
[19]. Notice that Baut1X is not formal even when X = S3 × S5. In this case,
we obtain that M(Baut1X) = (Λ(x, y, z), d) with |x| = 3, |y| = 4, |z| = 6,
d(x) = d(y) = 0 and d(z) = xy from Theorem 2.1 of Section 2. Then the non-
formality is induced by the element [xz] ∈ H9(Baut1X;Q). (H∗(Baut1X;Q)
is infinitely generated as a Q-algebra.) But it is coformal since the differential
d is quadratic. See [14, Theorem 4.1] for some non-coformal examples of the
classifying space Baut1X.

A space X is said to be pure if dM(X)even = 0 and dM(X)odd ⊂ M(X)even.
A pure space is said to be an F0-space (or positively elliptic) if dimπeven(X)⊗
Q = dimπodd(X)⊗Q and Hodd(X;Q) = 0.

In 1976, S. Halperin [8] conjectured that the Serre spectral sequences of all
fibrations X → E → B of simply connected CW complexes collapse at the
E2-terms for any F0-space X [4]. For compact connected Lie groups G and
H where H is a subgroup of G, when rank G = rank H, the homogeneous
space G/H satisfies the Halperin conjecture [16]. Also, the conjecture is true
when n ≤ 3 [10]. Due to [12], the Halperin conjecture is relaxed to the form:
is Baut1X a rational H-space if X is an F0-space?. Of course, even if X is
not an F0-space, Baut1X can be a rational H-space. For example, X = S3,
(Baut1X)0 ≃ K(Q, 4) [13]. When is Baut1X or Baut1p a rational H-space?
([1, 3.2]) Also how near is it to a rational H-space?

Definition 1.2 ([6]). A simply connected CW complex Z of finite type is
an H(n)-space if there exists a map µn : Gn(Z × Z) → Z such that µn ◦ iln =
µn ◦ irn = pn : Gn(Z) → Z. Here pn : Gn(Z) → Z is the n-th Ganea fibration
and iln, irn : Gn(Z) → Gn(Z × Z) are the canonical maps induced by the
standard injections of Z in Z × Z.

Notice that Z is a rational H(n)-space (Z0 is an H(n)-space) if and only if
the word of length k of the differential d = dk + dk+1 + · · · of M(Z) = (ΛV, d)
is bigger than n [6, Proposition 8]. Here dk : V → ΛkV = V · ... · V (k-
times). Thus all spaces are rational H(1)-spaces and H-spaces are rational
H(∞)-spaces. Remark that a rational H(m)-space is a rational H(n)-space
when m > n and that coformal spaces are not rational H(2)-spaces. Recall
the following problem stated in the Oberwolfach Workshop in 2009:

Problem 1.3 ([3, Problem 23]). Is Baut1X a rational H-space if it is a
rational H(2)-space ?

However, in this paper, we show that there exists a counter example, given
by the following theorem.
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Theorem 1.4. There exists a space X such that Baut1X is not coformal
and is a rational H(2)-space. Furthermore, it is the total space of a fibration

ξ : S7 × S11 × S15 × S19 → X
p→ S5 such that Baut1p is not coformal and is

a rational H(2)-space, too.

The Sullivan minimal models are given by

M(Baut1X) = (Λ(v2, v3, v9, v13, v20), d)

M(Baut1p) = (Λ(v2, v3, v5, v9, v13, v20), d)

where |vn| = n, d(v13) = v2v3v9 and d(vi) = 0 for the other i. Remark that
M(CP 2) = (Λ(v2, v5), d) where d(v2) = 0 and d(v5) = v32. So CP 2 is not
coformal and is a rational H(2)-space, too. But it can not be realized as
(Baut1X)0 [11, Theorem 2].

Remark 1.5. In this case, Baut1X and Baut1p are not formal and the
rational cohomologies are finitely generated as Q-algebras:

H∗(Baut1X;Q) ∼= ∧(v3, v9)⊗Q[v2, v20, w16, w22]/ I and

H∗(Baut1p;Q) ∼= ∧(v3, v5, v9)⊗Q[v2, v20, w16, w22]/ I

where w16 = [v3v13], w22 = [v9v13] and I is the ideal generated by

{v2v3v9, v3w16, v3w22 + v9w16, v9w22, w
2
16, w16w22, w

2
22}.

2. MODELS

LetM(Z) = (ΛV, d) be the Sullivan minimal model of simply connected CW
complex Z of finite type [18]. It is a free Q-commutative differential graded
algebra (DGA) with a Q-graded vector space V =

⊕
i≥1 V

i where dimV i < ∞
and a decomposable differential, i.e., d(V i) ⊂ (Λ+V · Λ+V )i+1 and d ◦ d = 0.
Here Λ+V is the ideal of ΛV generated by elements of positive degree. The
degree of a homogeneous element x of a graded algebra is denoted as |x|.
Then xy = (−1)|x||y|yx and d(xy) = d(x)y + (−1)|x|xd(y). Note that M(X)
determines the rational homotopy type of X, namely the spatial realization is
given as ||M(Z)|| ≃ Z0. In particular,

V n ∼= Hom(πn(Z),Q) and H∗(ΛV, d) ∼= H∗(Z;Q).

Here the second is an isomorphism of graded algebras. Refer to [4] for details.
Let DeriM(X) be the set of Q-derivations of M(X) decreasing the degree

by i with σ(xy) = σ(x)y + (−1)i·|x|xσ(y) for x, y ∈ M(X). The boundary
operator ∂ : DeriM(X) → Deri−1M(X) is defined by

∂(σ) = d ◦ σ − (−1)iσ ◦ d
for σ ∈ DeriM(X). We denote ⊕i>0DeriM(X) by DerM(X) in which
Der1M(X) is ∂-cycles. Then DerM(X) is a DGL by the Lie bracket

[σ, τ ] := σ ◦ τ − (−1)|σ||τ |τ ◦ σ.
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Furthermore, recall the definition of D. Tanré [19, p.25]: Let (L, ∂) be a DGL
of finite type with positive degree. Then C∗(L, ∂) := (Λs−1♯L,D = d1 + d2)
with

⟨d1s−1z; sx⟩ = −⟨z; ∂x⟩ and ⟨d2s−1z; sx1, sx2⟩ = (−1)|x1|⟨z; [x1, x2]⟩,

where ⟨s−1z; sx⟩ = (−1)|z|⟨z;x⟩ and ♯L is the dual space of L.

Theorem 2.1 ([18, §11],[7, 19]). For a Sullivan model M(X) = (ΛV, d)
of X, Der(ΛV ) is a DGL-model of Baut1X. Thus C∗(Der(ΛV )) is a free
DGA-model of Baut1X.

Consider the simply connected fibration ξ : F → X
p→ Y of finite type given

by the relative model (Koszul-Sullivan extension)

M(Y ) = (ΛV, d)
i
↪→ (ΛV ⊗ ΛW,D) → (ΛW,D) = M(F )(1)

for a certain differential D with D |ΛV = d. There is a quasi-isomorphism
M(X) ≃ (ΛV ⊗ ΛW,D) [4]. Let DerΛV (ΛV ⊗ ΛW ) be the sub-DGL in
Der(ΛV ⊗ ΛW ) of elements σ with σ(v) = 0 for v ∈ V .

Theorem 2.2 ([1, Theorem 1], [5]). For a fibration ξ : F → X
p→ Y given by

model (1) with F and Y finite, DerΛV (ΛV ⊗ΛW ) is a DGL-model of Baut1p.
Thus C∗(DerΛV (ΛV ⊗ ΛW )) is a free DGA-model of Baut1p.

For a fibration ξ, there is a map Baut1p → Baut1X induced by the monoid
inclusion aut1p↪→aut1X. The DGL-map between DGL-models is given by the
natural inclusion DerΛV (ΛV ⊗ ΛW )↪→Der(ΛV ⊗ ΛW ).

3. THE PROOF

Convention 3.1 ([18]). For a free DGA-model (ΛV, d), the symbol (v, f)
means the elementary derivation that takes a generator v of V to an element
f of ΛV and the other generators to 0. Note that |(v, f)| = |v| − |f |.

The proof of Theorem 1.4. Let the relative model of a fibration S7 × S11 ×
S15 × S19 → X

p−→ S5 be given by

(Λ(x), 0) → M(X) = (Λ(x, s7, s11, s15, s19), D) → (Λ(s7, s11, s15, s19), 0)

where |x| = 5, |sn| = n, Dx = 0, Ds7 = 0, Ds11 = xs7, Ds15 = xs11,
Ds19 = xs15.

Let us calculate the DGA-model of Baut1p by using Theorem 2.2. The
basis of DerΛ(x)M(X) is given by the following 18-elements

(s7, 1), (s7, x), (s11, 1), (s11, x), (s11, s7), (s15, 1), (s15, x), (s15, s7)

(s15, s11), (s15, xs7), (s19, 1), (s19, x), (s19, s7), (s19, s11)

(s19, s15), (s19, xs7), (s19, xs11), (s19, s7s11)
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and the differential ∂ is given by

∂(s19, 1) = 0, ∂(s19, x) = 0, ∂(s19, s7) = 0

∂(s19, s11) = (s19, xs7), ∂(s19, s15) = (s19, xs11)

∂(s19, xs7) = 0, ∂(s19, xs11) = 0, ∂(s19, s7s11) = 0

∂(s15, 1) = −(s19, x), ∂(s15, x) = 0, ∂(s15, s7) = −(s19, xs7)

∂(s15, s11) = (s15, xs7)− (s19, xs11), ∂(s15, xs7) = 0

∂(s11, 1) = −(s15, x), ∂(s11, x) = 0, ∂(s11, s7) = −(s15, xs7)

∂(s7, 1) = −(s11, x), ∂(s7, x) = 0.

Note that there are six non-exact ∂-cycles:

(s19, 1), (s19, s7), (s19, s7s11), (s7, x)

σ = (s19, s11) + (s15, s7)

τ = (s19, s15) + (s15, s11) + (s11, s7).

Let vsa,f be the dual element of the derivation (sa, f) for some sa ∈ W and
f ∈ ΛV ⊗ ΛW with degree +1. Then d1 of Section 2 is given by

d1(vs19,1) = 0, d1(vs19,x) = −vs15,1, d1(vs19,s7) = 0, d1(vs19,s11) = 0

d1(vs19,s15) = 0, d1(vs19,xs7) = −vs19,s11 + vs15,s7

d1(vs19,xs11) = −vs19,s15 + vs15,s11 , d1(vs19,s7s11) = 0

d1(vs15,1) = 0, d1(vs15,x) = −vs11,1, d1(vs15,s7) = 0, d1(vs15,s11) = 0

d1(vs15,xs7) = −vs15,s11 + vs11,s7 , d1(vs11,1) = 0

d1(vs11,x) = −vs7,1, d1(vs11,s7) = 0, d1(vs7,1) = 0, d1(vs7,x) = 0.

The Lie bracket of DerΛ(x)M(X) is given by

[(s15, 1), (s19, s15)] = (s19, 1), [(s11, 1), (s19, s11)] = (s19, 1),

[(s7, 1), (s19, s7)] = (s19, 1), [(s15, x), (s19, s15)] = (s19, x),

[(s11, x), (s19, s11)] = (s19, x), [(s7, x), (s19, s7)] = (s19, x),

[(s11, 1), (s19, xs11)] = −(s19, x), [(s7, 1), (s19, xs7)] = −(s19, x),

[(s15, s7), (s19, s15)] = (s19, s7), [(s11, s7), (s19, s11)] = (s19, s7),

[(s11, 1), (s19, s7s11)] = −(s19, s7), [(s15, s11), (s19, s15)] = (s19, s11),

[(s7, 1), (s19, s7s11)] = (s19, s11), [(s11, s7), (s19, xs11)] = (s19, xs7),

[(s11, x), (s19, s7s11)] = −(s19, xs7), [(s15, xs7), (s19, s15)] = (s19, xs7),

[(s7, x), (s19, s7s11)] = (s19, xs11), [(s11, 1), (s15, s11)] = (s15, 1)

[(s7, 1), (s15, s7)] = (s15, 1), [(s11, x), (s15, s11)] = (s15, x),

[(s7, x), (s15, s7)] = (s15, x), [(s7, 1), (s15, xs7)] = −(s15, x),

[(s11, s7), (s15, s11)] = (s15, s7), [(s7, 1), (s11, s7)] = (s11, 1),

[(s7, x), (s11, s7)] = (s11, x).
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Then d2 of Section 2 is given by

d2(vs19,1) =vs7,1vs19,s7 + vs11,1vs19,s11 + vs15,1vs19,s15

d2(vs19,x) =− vs7,xvs19,s7 − vs11,xvs19,s11 − vs15,xvs19,s15
+ vs7,1vs19,xs7 + vs11,1vs19,xs11

d2(vs19,s7) =− vs11,s7vs19,s11 − vs15,s7vs19,s15 + vs11,1vs19,s7s11

d2(vs19,s11) =− vs15,s11vs19,s15 − vs7,1vs19,s7s11

d2(vs19,s15) =0

d2(vs19,xs7) =vs15,xs7vs19,s15 − vs11,s7vs19,xs11 + vs11,xvs19,s7s11

d2(vs19,xs11) =− vs7,xvs19,s7s11

d2(vs19,s7s11) =0

d2(vs15,1) =vs7,1vs15,s7 + vs11,1vs15,s11

d2(vs15,x) =− vs7,xvs15,s7 − vs11,xvs15,s11 + vs7,1vs15,xs7

d2(vs15,s7) =− vs11,s7vs15,s11

d2(vs15,s11) =0

d2(vs15,xs7) =0

d2(vs11,1) =vs7,1vs11,s7

d2(vs11,x) =− vs7,xvs11,s7

d2(vs11,s7) =0

d2(vs7,1) =0

d2(vs7,x) =0.

Let

vw1 := −vs19,s15 + vs15,s11 ,

vw2 := −vs15,s11 + vs11,s7 ,

vα := −vs19,s11 + vs15,s7 .

Then the differential D̂ = d1 + d2 of C∗(DerΛ(x)M(X)) is given by

D̂(vs19,1) = + vs7,1vs19,s7 + vs11,1vs19,s11 + vs15,1vs19,s15

D̂(vs19,x) =− vs15,1 − vs7,xvs19,s7 − vs11,xvs19,s11 − vs15,xvs19,s15
+ vs7,1vs19,xs7 + vs11,1vs19,xs11
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D̂(vs19,s7) =− (vw2 + vw1)vs19,s11 − vαvs19,s15 + vs11,1vs19,s7s11

D̂(vs19,s11) =− vw1vs19,s15 − vs7,1vs19,s7s11

D̂(vs19,s15) =0

D̂(vs19,xs7) =vα + vs15,xs7vs19,s15 − (vw2 + vw1 + vs19,s15)vs19,xs11
+ vs11,xvs19,s7s11

D̂(vs19,xs11) =vw1 − vs7,xvs19,s7s11

D̂(vs19,s7s11) =0

D̂(vs15,1) =vs7,1(vα + vs19,s11) + vs11,1(vw1 + vs19,s15)

D̂(vs15,x) =− vs11,1 − vs7,x(vα + vs19,s11)− vs11,x(vw1 + vs19,s15)

+ vs7,1vs15,xs7

D̂(vα) = + vw1vs19,s15 + vw1vw2 − vw2vs19,s15 + vs7,1vs19,s7s11

D̂(vw1) =0

D̂(vs15,xs7) =vw2

D̂(vs11,1) =vs7,1(vw2 + vw1 + vs19,s15)

D̂(vs11,x) =− vs7,1 − vs7,x(vw2 + vw1 + vs19,s15)

D̂(vw2) =0

D̂(vs7,1) =0

D̂(vs7,x) =0.

Thus the minimal model M(Baut1p) of the free DGA

m(Baut1p) := C∗(DerΛ(x)M(X))

is given by

M(Baut1p) = (Λ(Us19,1, Us19,s7 , Us19,s7s11 , Us7,x, Uσ, Uτ ), d)

|Us19,1| = 20 |Us19,s7 | = 13 |Uσ| = 9 |Uτ | = 5 |Us7,x| = 3 |Us19,s7s11 | = 2

d(Us19,1) = d(Uσ) = d(Uτ ) = d(Us7,x) = d(Us19,s7s11) = 0

d(Us19,s7) = −2Us7,xUσUs19,s7,s11 .
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Here the quasi-isomorphic DGA-map φ : M(Baut1p) → m(Baut1p) is given
by

φ(Us19,s7s11) =vs19,s7s11

φ(Us7,x) =vs7,x

φ(Uτ ) =vs19,s15

φ(Uσ) =2vs19,s11 + vα + vs19,xs11vs19,s15 + vs15,xs7vs19,s15 − vs11,xvs19,s7s11
+ vs15,xs7vw1 + vs7,xvs19,xs11vs19,s7s11 + vs7,xvs15,xs7vs19,s7s11

φ(Us19,s7) =2vs19,s7 + 2vs19,s15vs19,xs7 + 2vs15,xs7vs19,s11 + 2vs19,xs11vs19,s11

+ 2vs15,xvs19,s7s11 + 2vs19,s15vs15,xs7vs19,xs11 + 2v2s19,xs11vs19,s15
− 2vs11,xvs19,xs11vs19,s7s11 + 2vs7,xvs15,xs7vs19,xs11vs19,s7s11

+ vs7,xv
2
s19,xs11vs19,s7s11

φ(Us19,1) =vs19,1 + vw2vs19,x − vs19,s15vs19,x + vs11,xvs19,s7 + vs11,1vs19,xs7
− vs15,xs7vs15,1 − vαvs15,x − vs19,s11vs15,x − vw1vs19,xs7vs11,x

− 2vs19,s15vs19,xs7vs11,x + vw2vs15,xvs19,xs11 − vw1vs15,xvs19,xs11

+ vs11,1v
2
s19,xs11 + vs11,1vs15,xs7vs19,xs11 − 2vs7,xvs19,s7vs15,xs7

− vs7,xvs19,s7vs19,xs11 − vs7,xvs19,xs11vs19,s15vs19,xs7
− 2vs7,xvs15,xs7vs19,s15vs19,xs7 − 2vs7,xvs19,s11vs15,xs7vs19,xs11

− vs19,s15vs11,xv
2
s19,xs11 − vs19,s15vs11,xvs19,xs11vs15,xs7

+ vs15,xvs15,xs7vs7,xvs19,s7s11 − vs15,xvs19,xs11vs7,xvs19,s7s11

− vs7,xvs19,s11v
2
s15,xs7 − vs7,1vs15,xs7v

2
s19,xs11

+ vs7,xvs19,xs7vw2vs19,xs11 − vs7,xvs19,xs7vw1vs19,xs11

+ vs11,xv
2
s19,xs11vw1 − 3vs7,xv

2
s19,xs11vs19,s15vs15,xs7

− vs7,xv
2
s15,xs7vs19,s15vs19,xs11

− vs11,xvs19,xs11vs15,xs7vs7,xvs19,s7s11

− 3vs7,xvw1vs15,xs7v
2
s19,xs11

By the similar arguments, we obtain the minimal model of Baut1X:

M(Baut1X) = M(C∗(DerM(X))) = (Λ(Us19,1, Us19,s7 , Us19,s7s11 , Us7,x, Uσ), d)

as a sub-DGA of M(Baut1p). In this case, the element Uτ from ∂(x, 1) =
(s19, s15) + (s15, s11) + (s11, s7) = τ , does not exist. □
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Remark 3.2. In general, let a fibration ξ : Sa × Sb × Sc × Sd → X → Se

with a, b, c, d, e odd and e < a < 2e− 1 be given by the relative model

(Λ(x), 0) → M(X) = (Λ(x, sa, sb, sc, sd), D) → (Λ(sa, sb, sc, sd), 0)

where |x| = e, |sn| = n, Dx = 0, Dsa = 0, Dsb = xsa, Dsc = xsb, Dsd = xsc.
Then we obtain the same result as Theorem 1.4 from a similar proof.

Example 3.3. For any fibration ξ : S5×S9×S13×S17 → X → S5, we can
check that Baut1X and Baut1p are coformal. Especially, when ξ is given by

(Λ(x), 0) → (Λ(x, s5, s9, s13, s17), D) → (Λ(s5, s9, s13, s17), 0)

with Dx = 0, Ds5 = 0, Ds9 = xs5, Ds13 = xs9, Ds17 = xs13, then Baut1X
and Baut1p are rational H-spaces.
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