AN EXAMPLE OF NON-COFORMAL CLASSIFYING SPACE WITH RATIONAL $H(2)$-STRUCTURE

HIROKAZU NISHINOBU and TOSHIHIRO YAMAGUCHI

Abstract

Let $B a u t_{1} X$ and $B a u t_{1} p$ be the Dold-Lashof classifying spaces of a space X and a fibration $p: X \rightarrow Y$, respectively. In this paper, we give an example that there exists a fibration $\xi: S^{7} \times S^{11} \times S^{15} \times S^{19} \rightarrow X \xrightarrow{p} S^{5}$ such that $B a u t_{1} X$ and $B a u t_{1} p$ are not coformal and are rational $H(2)$-spaces.

MSC 2010. 55P62, 55R15.
Key words. Rational homotopy theory, Sullivan (minimal) model, derivation, classifying space for fibration, formal, coformal, $H(n)$-space.

1. INTRODUCTION

Let X be a connected and simply connected finite CW complex having $\operatorname{dim} \pi_{*}(X)_{\mathbb{Q}}<\infty\left(G_{\mathbb{Q}}=G \otimes \mathbb{Q}\right)$ and let Baut $1_{1} X$ be the Dold-Lashof classifying space of orientable fibrations [2].

Here $a u t_{1} X=\operatorname{map}\left(X, X ; i d_{X}\right)$ is the identity component of the space aut X of self-equivalences of X. Then any orientable fibration ξ with fibre X over a base space B is the pull-back of a universal fibration by a map from B to Baut ${ }_{1} X$ [2.

The Sullivan minimal model $M(X)$ ([18]) determines the rational homotopy type of X, the homotopy type of the rationalization $X_{0}[9]$ of X. The differential graded Lie algebra (DGL) $\operatorname{Der} M(X)$, the negative derivations of $M(X)$ (see Section 2), gives rise to the DGL model for Baut $_{1} X$ due to Sullivan 18 (cf. [7, 19]), i.e., the spatial realization $\|\operatorname{Der} M(X)\|$ is $\left(\operatorname{Baut}_{1} X\right)_{0}$. Furthermore, for a fibration $\xi: F \rightarrow X \xrightarrow{p} Y$ with fiber F and base Y finite, let aut $_{1} p=\left\{f \in \operatorname{aut}_{1} X \mid p \circ f=p\right\}$ be the monoid of fibrewise self-equivalences homotopic to the identity. Then the DGL model of the Dold-Lashof classifying space $B a u t_{1} p$ is given by [1, Theorem 1]. See Theorem 2.2 in Section 2 .

A simply connected CW complex Z of finite type is said to be formal if there is a DGA-quasi-isomorphism $M(Z) \rightarrow\left(H^{*}(Z ; \mathbb{Q}), 0\right)$. Let $L(Z)$ be the Quillen DGL-model of Z (4).

The authors thank the referee for his helpful comments and suggestions.

Definition 1.1 (cf. [19, II.7.(6)]). A space Z is said to be coformal if there is a DGL-quasi-isomorphism $L(Z) \rightarrow\left(\pi_{*}(\Omega Z)_{\mathbb{Q}}, 0\right)$.

This is equivalent to the fact that the differential d of a Sullivan minimal model $M(Z)=(\Lambda V, d)$ is quadratic.

For example, rational H-spaces and one-point unions of spheres are coformal [19]. Notice that Baut $_{1} X$ is not formal even when $X=S^{3} \times S^{5}$. In this case, we obtain that $M\left(\right.$ Baut $\left._{1} X\right)=(\Lambda(x, y, z), d)$ with $|x|=3,|y|=4,|z|=6$, $d(x)=d(y)=0$ and $d(z)=x y$ from Theorem 2.1 of Section 2 Then the nonformality is induced by the element $[x z] \in H^{9}\left(\operatorname{Baut}_{1} X ; \mathbb{Q}\right) .\left(H^{*}\left(\operatorname{Baut}_{1} X ; \mathbb{Q}\right)\right.$ is infinitely generated as a \mathbb{Q}-algebra.) But it is coformal since the differential d is quadratic. See [14, Theorem 4.1] for some non-coformal examples of the classifying space $B_{a u t} X$.

A space X is said to be pure if $d M(X)^{\text {even }}=0$ and $d M(X)^{\text {odd }} \subset M(X)^{\text {even }}$. A pure space is said to be an F_{0}-space (or positively elliptic) if $\operatorname{dim} \pi_{\text {even }}(X) \otimes$ $\mathbb{Q}=\operatorname{dim} \pi_{\text {odd }}(X) \otimes \mathbb{Q}$ and $H^{\text {odd }}(X ; \mathbb{Q})=0$.

In 1976, S. Halperin [8] conjectured that the Serre spectral sequences of all fibrations $X \rightarrow E \rightarrow B$ of simply connected CW complexes collapse at the E_{2}-terms for any F_{0}-space X (4). For compact connected Lie groups G and H where H is a subgroup of G, when rank $G=$ rank H, the homogeneous space G / H satisfies the Halperin conjecture [16]. Also, the conjecture is true when $n \leq 3$ [10. Due to [12], the Halperin conjecture is relaxed to the form: is Baut ${ }_{1} X$ a rational H-space if X is an F_{0}-space?. Of course, even if X is not an F_{0}-space, $B a u t_{1} X$ can be a rational H-space. For example, $X=S^{3}$, $\left(\text { Baut }_{1} X\right)_{0} \simeq K(\mathbb{Q}, 4)[13]$. When is $B a u t_{1} X$ or Baut ${ }_{1} p$ a rational H-space? ([1, 3.2]) Also how near is it to a rational H-space?

Definition $1.2([6])$. A simply connected CW complex Z of finite type is an $H(n)$-space if there exists a map $\mu_{n}: G_{n}(Z \times Z) \rightarrow Z$ such that $\mu_{n} \circ i_{n}^{l}=$ $\mu_{n} \circ i_{n}^{r}=p_{n}: G_{n}(Z) \rightarrow Z$. Here $p_{n}: G_{n}(Z) \rightarrow Z$ is the n-th Ganea fibration and $i_{n}^{l}, i_{n}^{r}: G_{n}(Z) \rightarrow G_{n}(Z \times Z)$ are the canonical maps induced by the standard injections of Z in $Z \times Z$.

Notice that Z is a rational $H(n)$-space (Z_{0} is an $H(n)$-space) if and only if the word of length k of the differential $d=d_{k}+d_{k+1}+\cdots$ of $M(Z)=(\Lambda V, d)$ is bigger than n [6, Proposition 8]. Here $d_{k}: V \rightarrow \Lambda^{k} V=V \cdot \ldots \cdot V(k-$ times). Thus all spaces are rational $H(1)$-spaces and H-spaces are rational $H(\infty)$-spaces. Remark that a rational $H(m)$-space is a rational $H(n)$-space when $m>n$ and that coformal spaces are not rational $H(2)$-spaces. Recall the following problem stated in the Oberwolfach Workshop in 2009:

Problem 1.3 ([3, Problem 23]). Is $B_{a u t} X$ a rational H-space if it is a rational $H(2)$-space ?

However, in this paper, we show that there exists a counter example, given by the following theorem.

Theorem 1.4. There exists a space X such that Baut ${ }_{1} X$ is not coformal and is a rational $H(2)$-space. Furthermore, it is the total space of a fibration $\xi: S^{7} \times S^{11} \times S^{15} \times S^{19} \rightarrow X \xrightarrow{p} S^{5}$ such that Baut ${ }_{1} p$ is not coformal and is a rational $H(2)$-space, too.

The Sullivan minimal models are given by

$$
\begin{aligned}
& M\left(\text { Baut }_{1} X\right)=\left(\Lambda\left(v_{2}, v_{3}, v_{9}, v_{13}, v_{20}\right), d\right) \\
& M\left(\text { Baut }_{1} p\right)=\left(\Lambda\left(v_{2}, v_{3}, v_{5}, v_{9}, v_{13}, v_{20}\right), d\right)
\end{aligned}
$$

where $\left|v_{n}\right|=n, d\left(v_{13}\right)=v_{2} v_{3} v_{9}$ and $d\left(v_{i}\right)=0$ for the other i. Remark that $M\left(\mathbb{C} P^{2}\right)=\left(\Lambda\left(v_{2}, v_{5}\right), d\right)$ where $d\left(v_{2}\right)=0$ and $d\left(v_{5}\right)=v_{2}^{3}$. So $\mathbb{C} P^{2}$ is not coformal and is a rational $H(2)$-space, too. But it can not be realized as $\left(\text { Baut }_{1} X\right)_{0}$ [11, Theorem 2].

Remark 1.5. In this case, Baut $_{1} X$ and Baut $_{1} p$ are not formal and the rational cohomologies are finitely generated as \mathbb{Q}-algebras:

$$
\begin{aligned}
& H^{*}\left(\text { Baut }_{1} X ; \mathbb{Q}\right) \cong \wedge\left(v_{3}, v_{9}\right) \otimes \mathbb{Q}\left[v_{2}, v_{20}, w_{16}, w_{22}\right] / I \text { and } \\
& H^{*}\left(\text { Baut }_{1} p ; \mathbb{Q}\right) \cong \wedge\left(v_{3}, v_{5}, v_{9}\right) \otimes \mathbb{Q}\left[v_{2}, v_{20}, w_{16}, w_{22}\right] / I
\end{aligned}
$$

where $w_{16}=\left[v_{3} v_{13}\right], w_{22}=\left[v_{9} v_{13}\right]$ and I is the ideal generated by

$$
\left\{v_{2} v_{3} v_{9}, v_{3} w_{16}, v_{3} w_{22}+v_{9} w_{16}, v_{9} w_{22}, w_{16}^{2}, w_{16} w_{22}, w_{22}^{2}\right\} .
$$

2. MODELS

Let $M(Z)=(\Lambda V, d)$ be the Sullivan minimal model of simply connected CW complex Z of finite type [18]. It is a free \mathbb{Q}-commutative differential graded algebra (DGA) with a \mathbb{Q}-graded vector space $V=\bigoplus_{i \geq 1} V^{i}$ where $\operatorname{dim} V^{i}<\infty$ and a decomposable differential, i.e., $d\left(V^{i}\right) \subset\left(\Lambda^{+} V \cdot \Lambda^{+} V\right)^{i+1}$ and $d \circ d=0$. Here $\Lambda^{+} V$ is the ideal of ΛV generated by elements of positive degree. The degree of a homogeneous element x of a graded algebra is denoted as $|x|$. Then $x y=(-1)^{|x| y \mid} y x$ and $d(x y)=d(x) y+(-1)^{|x|} x d(y)$. Note that $M(X)$ determines the rational homotopy type of X, namely the spatial realization is given as $\|M(Z)\| \simeq Z_{0}$. In particular,

$$
V^{n} \cong \operatorname{Hom}\left(\pi_{n}(Z), \mathbb{Q}\right) \text { and } H^{*}(\Lambda V, d) \cong H^{*}(Z ; \mathbb{Q})
$$

Here the second is an isomorphism of graded algebras. Refer to 4 for details.
Let $\operatorname{Der}_{i} M(X)$ be the set of \mathbb{Q}-derivations of $M(X)$ decreasing the degree by i with $\sigma(x y)=\sigma(x) y+(-1)^{i \cdot|x|} x \sigma(y)$ for $x, y \in M(X)$. The boundary operator $\partial: \operatorname{Der}_{i} M(X) \rightarrow \operatorname{Der}_{i-1} M(X)$ is defined by

$$
\partial(\sigma)=d \circ \sigma-(-1)^{i} \sigma \circ d
$$

for $\sigma \in \operatorname{Der}_{i} M(X)$. We denote $\oplus_{i>0} \operatorname{Der}_{i} M(X)$ by $\operatorname{Der} M(X)$ in which $\operatorname{Der}_{1} M(X)$ is ∂-cycles. Then $\operatorname{Der} M(X)$ is a DGL by the Lie bracket

$$
[\sigma, \tau]:=\sigma \circ \tau-(-1)^{|\sigma \| \tau|} \tau \circ \sigma .
$$

Furthermore, recall the definition of D. Tanré $[19$, p.25]: Let (L, ∂) be a DGL of finite type with positive degree. Then $C^{*}(L, \partial):=\left(\Lambda s^{-1} \sharp L, D=d_{1}+d_{2}\right)$ with

$$
\left\langle d_{1} s^{-1} z ; s x\right\rangle=-\langle z ; \partial x\rangle \text { and }\left\langle d_{2} s^{-1} z ; s x_{1}, s x_{2}\right\rangle=(-1)^{\left|x_{1}\right|}\left\langle z ;\left[x_{1}, x_{2}\right]\right\rangle
$$

where $\left\langle s^{-1} z ; s x\right\rangle=(-1)^{|z|}\langle z ; x\rangle$ and $\sharp L$ is the dual space of L.
Theorem $2.1([18, \S 11],[7, \mid 9])$. For a Sullivan model $M(X)=(\Lambda V, d)$ of $X, \operatorname{Der}(\Lambda V)$ is a $D G L$-model of Baut ${ }_{1} X$. Thus $C^{*}(\operatorname{Der}(\Lambda V))$ is a free $D G A$-model of Baut ${ }_{1} X$.

Consider the simply connected fibration $\xi: F \rightarrow X \xrightarrow{p} Y$ of finite type given by the relative model (Koszul-Sullivan extension)

$$
\begin{equation*}
M(Y)=(\Lambda V, d) \stackrel{i}{\hookrightarrow}(\Lambda V \otimes \Lambda W, D) \rightarrow(\Lambda W, \bar{D})=M(F) \tag{1}
\end{equation*}
$$

for a certain differential D with $\left.D\right|_{\Lambda V}=d$. There is a quasi-isomorphism $M(X) \simeq(\Lambda V \otimes \Lambda W, D)$ [4]. Let $\operatorname{Der}_{\Lambda V}(\Lambda V \otimes \Lambda W)$ be the sub-DGL in $\operatorname{Der}(\Lambda V \otimes \Lambda W)$ of elements σ with $\sigma(v)=0$ for $v \in V$.

Theorem 2.2 ([1, Theorem 1], [5]). For a fibration $\xi: F \rightarrow X \xrightarrow{p} Y$ given by model (1) with F and Y finite, $\operatorname{Der}_{\Lambda V}(\Lambda V \otimes \Lambda W)$ is a $D G L$-model of Baut ${ }_{1} p$. Thus $C^{*}\left(\operatorname{Der}_{\Lambda V}(\Lambda V \otimes \Lambda W)\right)$ is a free $D G A$-model of Baut p.

For a fibration ξ, there is a map $B a u t_{1} p \rightarrow B a u t_{1} X$ induced by the monoid inclusion $a u t_{1} p \hookrightarrow a u t_{1} X$. The DGL-map between DGL-models is given by the natural inclusion $\operatorname{Der}_{\Lambda V}(\Lambda V \otimes \Lambda W) \hookrightarrow \operatorname{Der}(\Lambda V \otimes \Lambda W)$.

3. THE PROOF

Convention $3.1(\llbracket 18])$. For a free DGA-model $(\Lambda V, d)$, the symbol (v, f) means the elementary derivation that takes a generator v of V to an element f of ΛV and the other generators to 0 . Note that $|(v, f)|=|v|-|f|$.

The proof of Theorem 1.4. Let the relative model of a fibration $S^{7} \times S^{11} \times$ $S^{15} \times S^{19} \rightarrow X \xrightarrow{p} S^{5}$ be given by

$$
(\Lambda(x), 0) \rightarrow M(X)=\left(\Lambda\left(x, s_{7}, s_{11}, s_{15}, s_{19}\right), D\right) \rightarrow\left(\Lambda\left(s_{7}, s_{11}, s_{15}, s_{19}\right), 0\right)
$$

where $|x|=5,\left|s_{n}\right|=n, D x=0, D s_{7}=0, D s_{11}=x s_{7}, D s_{15}=x s_{11}$, $D s_{19}=x s_{15}$.

Let us calculate the DGA-model of $B a u t_{1} p$ by using Theorem 2.2. The basis of $\operatorname{Der}_{\Lambda(x)} M(X)$ is given by the following 18-elements

$$
\begin{aligned}
& \left(s_{7}, 1\right),\left(s_{7}, x\right),\left(s_{11}, 1\right),\left(s_{11}, x\right),\left(s_{11}, s_{7}\right),\left(s_{15}, 1\right),\left(s_{15}, x\right),\left(s_{15}, s_{7}\right) \\
& \left(s_{15}, s_{11}\right),\left(s_{15}, x s_{7}\right),\left(s_{19}, 1\right),\left(s_{19}, x\right),\left(s_{19}, s_{7}\right),\left(s_{19}, s_{11}\right) \\
& \left(s_{19}, s_{15}\right),\left(s_{19}, x s_{7}\right),\left(s_{19}, x s_{11}\right),\left(s_{19}, s_{7} s_{11}\right)
\end{aligned}
$$

and the differential ∂ is given by

$$
\begin{aligned}
& \partial\left(s_{19}, 1\right)=0, \partial\left(s_{19}, x\right)=0, \partial\left(s_{19}, s_{7}\right)=0 \\
& \partial\left(s_{19}, s_{11}\right)=\left(s_{19}, x s_{7}\right), \partial\left(s_{19}, s_{15}\right)=\left(s_{19}, x s_{11}\right) \\
& \partial\left(s_{19}, x s_{7}\right)=0, \partial\left(s_{19}, x s_{11}\right)=0, \partial\left(s_{19}, s_{7} s_{11}\right)=0 \\
& \partial\left(s_{15}, 1\right)=-\left(s_{19}, x\right), \partial\left(s_{15}, x\right)=0, \partial\left(s_{15}, s_{7}\right)=-\left(s_{19}, x s_{7}\right) \\
& \partial\left(s_{15}, s_{11}\right)=\left(s_{15}, x s_{7}\right)-\left(s_{19}, x s_{11}\right), \partial\left(s_{15}, x s_{7}\right)=0 \\
& \partial\left(s_{11}, 1\right)=-\left(s_{15}, x\right), \partial\left(s_{11}, x\right)=0, \partial\left(s_{11}, s_{7}\right)=-\left(s_{15}, x s_{7}\right) \\
& \partial\left(s_{7}, 1\right)=-\left(s_{11}, x\right), \partial\left(s_{7}, x\right)=0
\end{aligned}
$$

Note that there are six non-exact ∂-cycles:

$$
\begin{aligned}
& \left(s_{19}, 1\right),\left(s_{19}, s_{7}\right),\left(s_{19}, s_{7} s_{11}\right),\left(s_{7}, x\right) \\
& \sigma=\left(s_{19}, s_{11}\right)+\left(s_{15}, s_{7}\right) \\
& \tau=\left(s_{19}, s_{15}\right)+\left(s_{15}, s_{11}\right)+\left(s_{11}, s_{7}\right)
\end{aligned}
$$

Let $v_{s_{a}, f}$ be the dual element of the derivation $\left(s_{a}, f\right)$ for some $s_{a} \in W$ and $f \in \Lambda V \otimes \Lambda W$ with degree +1 . Then d_{1} of Section 2 is given by

$$
\begin{aligned}
& d_{1}\left(v_{s_{19}, 1}\right)=0, d_{1}\left(v_{s_{19}, x}\right)=-v_{s_{15}, 1}, d_{1}\left(v_{s_{19}, s_{7}}\right)=0, d_{1}\left(v_{s_{19}, s_{11}}\right)=0 \\
& d_{1}\left(v_{s_{19}, s_{15}}\right)=0, d_{1}\left(v_{s_{19}, x s_{7}}\right)=-v_{s_{19}, s_{11}}+v_{s_{15}, s_{7}} \\
& d_{1}\left(v_{s_{19}, x s_{11}}\right)=-v_{s_{19}, s_{15}}+v_{s_{15}, s_{11}}, d_{1}\left(v_{s_{19}, s_{7} s_{11}}\right)=0 \\
& d_{1}\left(v_{s_{15}, 1}\right)=0, d_{1}\left(v_{s_{15}, x}\right)=-v_{s_{11}, 1}, d_{1}\left(v_{s_{15}, s_{7}}\right)=0, d_{1}\left(v_{s_{15}, s_{11}}\right)=0 \\
& d_{1}\left(v_{s_{15}, x s_{7}}\right)=-v_{s_{15}, s_{11}}+v_{s_{11}, s_{7}}, d_{1}\left(v_{s_{11}, 1}\right)=0 \\
& d_{1}\left(v_{s_{11}, x}\right)=-v_{s_{7}, 1}, d_{1}\left(v_{s_{11}, s_{7}}\right)=0, d_{1}\left(v_{s_{7}, 1}\right)=0, d_{1}\left(v_{s_{7}, x}\right)=0 .
\end{aligned}
$$

The Lie bracket of $\operatorname{Der}_{\Lambda(x)} M(X)$ is given by

$$
\begin{aligned}
& {\left[\left(s_{15}, 1\right),\left(s_{19}, s_{15}\right)\right]=\left(s_{19}, 1\right),\left[\left(s_{11}, 1\right),\left(s_{19}, s_{11}\right)\right]=\left(s_{19}, 1\right),} \\
& {\left[\left(s_{7}, 1\right),\left(s_{19}, s_{7}\right)\right]=\left(s_{19}, 1\right),\left[\left(s_{15}, x\right),\left(s_{19}, s_{15}\right)\right]=\left(s_{19}, x\right),} \\
& {\left[\left(s_{11}, x\right),\left(s_{19}, s_{11}\right)\right]=\left(s_{19}, x\right),\left[\left(s_{7}, x\right),\left(s_{19}, s_{7}\right)\right]=\left(s_{19}, x\right),} \\
& {\left[\left(s_{11}, 1\right),\left(s_{19}, x s_{11}\right)\right]=-\left(s_{19}, x\right),\left[\left(s_{7}, 1\right),\left(s_{19}, x s_{7}\right)\right]=-\left(s_{19}, x\right),} \\
& {\left[\left(s_{15}, s_{7}\right),\left(s_{19}, s_{15}\right)\right]=\left(s_{19}, s_{7}\right),\left[\left(s_{11}, s_{7}\right),\left(s_{19}, s_{11}\right)\right]=\left(s_{19}, s_{7}\right),} \\
& {\left[\left(s_{11}, 1\right),\left(s_{19}, s_{7} s_{11}\right)\right]=-\left(s_{19}, s_{7}\right),\left[\left(s_{15}, s_{11}\right),\left(s_{19}, s_{15}\right)\right]=\left(s_{19}, s_{11}\right),} \\
& {\left[\left(s_{7}, 1\right),\left(s_{19}, s_{7} s_{11}\right)\right]=\left(s_{19}, s_{11}\right),\left[\left(s_{11}, s_{7}\right),\left(s_{19}, x s_{11}\right)\right]=\left(s_{19}, x s_{7}\right),} \\
& {\left[\left(s_{11}, x\right),\left(s_{19}, s_{7} s_{11}\right)\right]=-\left(s_{19}, x s_{7}\right),\left[\left(s_{15}, x s_{7}\right),\left(s_{19}, s_{15}\right)\right]=\left(s_{19}, x s_{7}\right),} \\
& {\left[\left(s_{7}, x\right),\left(s_{19}, s_{7} s_{11}\right)\right]=\left(s_{19}, x s_{11}\right),\left[\left(s_{11}, 1\right),\left(s_{15}, s_{11}\right)\right]=\left(s_{15}, 1\right)} \\
& {\left[\left(s_{7}, 1\right),\left(s_{15}, s_{7}\right)\right]=\left(s_{15}, 1\right),\left[\left(s_{11}, x\right),\left(s_{15}, s_{11}\right)\right]=\left(s_{15}, x\right),} \\
& {\left[\left(s_{7}, x\right),\left(s_{15}, s_{7}\right)\right]=\left(s_{15}, x\right),\left[\left(s_{7}, 1\right),\left(s_{15}, x s_{7}\right)\right]=-\left(s_{15}, x\right),} \\
& {\left[\left(s_{11}, s_{7}\right),\left(s_{15}, s_{11}\right)\right]=\left(s_{15}, s_{7}\right),\left[\left(s_{7}, 1\right),\left(s_{11}, s_{7}\right)\right]=\left(s_{11}, 1\right),} \\
& {\left[\left(s_{7}, x\right),\left(s_{11}, s_{7}\right)\right]=\left(s_{11}, x\right) .}
\end{aligned}
$$

Then d_{2} of Section 2 is given by

$$
\begin{aligned}
& d_{2}\left(v_{s_{19}, 1}\right)= v_{s_{7}, 1} v_{s_{19}, s_{7}}+v_{s_{11}, 1} v_{s_{19}, s_{11}}+v_{s_{15}, 1} v_{s_{19}, s_{15}} \\
& d_{2}\left(v_{s_{19}, x}\right)=-v_{s_{7}, x} v_{s_{19}, s_{7}}-v_{s_{11}, x} v_{s_{19}, s_{11}}-v_{s_{15}, x} v_{s_{19}, s_{15}} \\
&+v_{s_{7}, 1} v_{s_{19}, x_{s}}+v_{s_{11}, 1} v_{s_{19}, s_{11}} \\
& d_{2}\left(v_{s_{19}, s_{7}}\right)=-v_{s_{11}, s_{7}} v_{s_{19}, s_{11}}-v_{s_{15}, s_{7}} v_{s_{19}, s_{15}}+v_{s_{11}, 1} v_{s_{19}, s_{7} s_{11}} \\
& d_{2}\left(v_{s_{19}, s_{11}}\right)=-v_{s_{15}, s_{11}} v_{s_{19}, s_{15}}-v_{s_{7}, 1} v_{s_{19}, s_{7} s_{11}} \\
& d_{2}\left(v_{s_{19}, s_{15}}\right)= \\
& d_{2}\left(v_{s_{19}, x s_{7}}\right)= v_{s_{15}, x s_{7}} v_{s_{19}, s_{15}}-v_{s_{11}, s_{7}} v_{s_{19}, x s_{11}}+v_{s_{11}, x} v_{s_{19}, s_{7} s_{11}} \\
& d_{2}\left(v_{s_{19}, x s_{11}}\right)=-v_{s_{7}, x} v_{s_{19}, s_{7}} \\
& d_{2}\left(v_{s_{19}, s_{1}}\right)= \\
& d_{2}\left(v_{s_{15}, 1}\right)= v_{s_{7}, 1} v_{s_{15}, s_{7}}+v_{s_{11}, 1} v_{s_{15}, s_{11}} \\
& d_{2}\left(v_{s_{15}, x}\right)=-v_{s_{7}, x} v_{s_{15}, s_{7}}-v_{s_{11}, x} v_{s_{15}, s_{11}}+v_{s_{7}, 1} v_{s_{15}, x s_{7}} \\
& d_{2}\left(v_{s_{15}, s_{7}}\right)=-v_{s_{11}, s_{7}} v_{s_{15}, s_{11}} \\
& d_{2}\left(v_{s_{15}, s_{11}}\right)=0 \\
& d_{2}\left(v_{s_{15}, x s_{7}}\right)=0 \\
& d_{2}\left(v_{s_{11}, 1}\right)= v_{s_{7}, 1} v_{s_{11}, s_{7}} \\
& d_{2}\left(v_{s_{11}, x}\right)=-v_{s_{7}, x} v_{s_{11}, s_{7}} \\
& d_{2}\left(v_{s_{11}, s_{7}}\right)=0 \\
& d_{2}\left(v_{s_{7}, 1}\right)=0 \\
& d_{2}\left(v_{s_{7}, x}\right)= 0 .
\end{aligned}
$$

Let

$$
\begin{aligned}
& v_{w_{1}}:=-v_{s_{19}, s_{15}}+v_{s_{15}, s_{11}}, \\
& v_{w_{2}}:=-v_{s_{15}, s_{11}}+v_{s_{11}, s_{7}}, \\
& v_{\alpha}:=-v_{s_{19}, s_{11}}+v_{s_{15}, s_{7}} .
\end{aligned}
$$

Then the differential $\hat{D}=d_{1}+d_{2}$ of $C^{*}\left(\operatorname{Der}_{\Lambda(x)} M(X)\right)$ is given by

$$
\begin{aligned}
\hat{D}\left(v_{s_{19}, 1}\right)= & +v_{s_{7}, 1} v_{s_{19}, s_{7}}+v_{s_{11}, 1} v_{s_{19}, s_{11}}+v_{s_{15}, 1} v_{s_{19}, s_{15}} \\
\hat{D}\left(v_{s_{19}, x}\right)= & -v_{s_{15}, 1}-v_{s_{7}, x} v_{s_{19}, s_{7}}-v_{s_{11}, x} v_{s_{19}, s_{11}}-v_{s_{15}, x} v_{s_{19}, s_{15}} \\
& +v_{s_{7}, 1} v_{s_{19}, x s_{7}}+v_{s_{11}, 1} v_{s_{19}, s_{11}}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{D}\left(v_{s_{19}, s_{7}}\right)=-\left(v_{w_{2}}+v_{w_{1}}\right) v_{s_{19}, s_{11}}-v_{\alpha} v_{s_{19}, s_{15}}+v_{s_{11}, 1} v_{s_{19}, s_{7} s_{11}} \\
& \hat{D}\left(v_{s_{19}, s_{11}}\right)=-v_{w_{1}} v_{s_{19}, s_{15}}-v_{s_{7}, 1} v_{s_{19}, s_{7} s_{11}} \\
& \hat{D}\left(v_{s_{19}, s_{15}}\right)= 0 \\
& \hat{D}\left(v_{s_{19}, x s_{7}}\right)= v_{\alpha}+v_{s_{15}, x s_{7}} v_{s_{19}, s_{15}}-\left(v_{w_{2}}+v_{w_{1}}+v_{s_{19}, s_{15}}\right) v_{s_{19}, x s_{11}} \\
&+v_{s_{11}, x} v_{s_{19}, s_{7}} \\
& \hat{D}\left(v_{s_{19}, x_{s_{11}}}\right)= v_{w_{1}}-v_{s_{7}, x} v_{s_{19}, s_{7} s_{11}} \\
& \hat{D}\left(v_{s_{19}, s_{7}}\right. \\
& \hat{D}\left(v_{s_{15}}\right)= 0 \\
& \hat{D}\left(v_{s_{15}, x}\right)= v_{s_{7}, 1}\left(v_{\alpha}+v_{s_{19}, s_{11}}\right)+v_{s_{11}, 1}\left(v_{w_{1}}+v_{s_{19}, 1, s_{15}}\right) \\
&+v_{s_{7}, x}\left(v_{\alpha}+v_{s_{19}, s_{11}}\right)-v_{s_{11}, x}\left(v_{w_{1}}+v_{s_{19}, s_{15}}\right) \\
& \hat{D}\left(v_{\alpha}\right)=+v_{w_{1}} v_{s_{19}, s_{15}}+v_{w_{1}} v_{w_{2}}-v_{w_{2}} v_{s_{19}, s_{15}}+v_{s_{7}, 1} v_{s_{19}, s_{7} s_{11}} \\
& \hat{D}\left(v_{w_{1}}\right)= 0 \\
& \hat{D}\left(v_{s_{15}, x s_{7}}\right)= v_{w_{2}} \\
& \hat{D}\left(v_{s_{11}, 1}\right)= v_{s_{7}, 1}\left(v_{w_{2}}+v_{w_{1}}+v_{s_{19}, s_{15}}\right) \\
& \hat{D}\left(v_{s_{11}, x}\right)=-v_{s_{7}, 1}-v_{s_{7}, x}\left(v_{w_{2}}+v_{w_{1}}+v_{s_{19}, s_{15}}\right) \\
& \hat{D}\left(v_{w_{2}}\right)= 0 \\
& \hat{D}\left(v_{s_{7}, 1}\right)= 0 \\
& \hat{D}\left(v_{s_{7}, x}\right)= 0 .
\end{aligned}
$$

Thus the minimal model $M\left(\right.$ Baut $\left._{1} p\right)$ of the free DGA

$$
m\left(\text { Baut }_{1} p\right):=C^{*}\left(\operatorname{Der}_{\Lambda(x)} M(X)\right)
$$

is given by

$$
\begin{aligned}
& M\left(\text { Baut }_{1} p\right)=\left(\Lambda\left(U_{s_{19}, 1}, U_{s_{19}, s_{7}}, U_{s_{19}, s_{7} s_{11}}, U_{s_{7}, x}, U_{\sigma}, U_{\tau}\right), d\right) \\
& \left|U_{s_{19}, 1}\right|=20 \quad\left|U_{s_{19}, s_{7}}\right|=13 \quad\left|U_{\sigma}\right|=9 \quad\left|U_{\tau}\right|=5 \quad\left|U_{s_{7}, x}\right|=3 \quad\left|U_{s_{19}, s_{7} s_{11}}\right|=2 \\
& d\left(U_{s_{19}, 1}\right)=d\left(U_{\sigma}\right)=d\left(U_{\tau}\right)=d\left(U_{s_{7}, x}\right)=d\left(U_{s_{19}, s_{7} s_{11}}\right)=0 \\
& d\left(U_{s_{19}, s_{7}}\right)=-2 U_{s_{7}, x} U_{\sigma} U_{s_{19}, s_{7}, s_{11}} .
\end{aligned}
$$

Here the quasi-isomorphic DGA-map $\varphi: M\left(\right.$ Baut $\left._{1} p\right) \rightarrow m\left(\right.$ Baut $\left._{1} p\right)$ is given by

$$
\begin{aligned}
& \varphi\left(U_{s_{19}, s_{7} s_{11}}\right)=v_{s_{19}, s_{7} s_{11}} \\
& \varphi\left(U_{s_{7}, x}\right)=v_{s_{7}, x} \\
& \varphi\left(U_{\tau}\right)=v_{s_{19}, s_{15}} \\
& \varphi\left(U_{\sigma}\right)=2 v_{s_{19}, s_{11}}+v_{\alpha}+v_{s_{19}, x s_{11}} v_{s_{19}, s_{15}}+v_{s_{15}, x s_{7}} v_{s_{19}, s_{15}}-v_{s_{11}, x} v_{s_{19}, s_{7} s_{11}} \\
& +v_{s_{15}, x s_{7}} v_{w_{1}}+v_{s_{7}, x} v_{s_{19}, x s_{11}} v_{s_{19}, s_{7} s_{11}}+v_{s_{7}, x} v_{s_{15}, x s_{7}} v_{s_{19}, s_{7} s_{11}} \\
& \varphi\left(U_{s_{19}, s_{7}}\right)=2 v_{s_{19}, s_{7}}+2 v_{s_{19}, s_{15}} v_{s_{19}, x s_{7}}+2 v_{s_{15}, x s_{7}} v_{s_{19}, s_{11}}+2 v_{s_{19}, x s_{11}} v_{s_{19}, s_{11}} \\
& +2 v_{s_{15}, x} v_{s_{19}, s_{7} s_{11}}+2 v_{s_{19}, s_{15}} v_{s_{15}, x s_{7}} v_{s_{19}, x s_{11}}+2 v_{s_{19}, x s_{11}}^{2} v_{s_{19}, s_{15}} \\
& -2 v_{s_{11}, x} v_{s_{19}, x s_{11}} v_{s_{19}, s_{7} s_{11}}+2 v_{s_{7}, x} v_{s_{15}, x s_{7}} v_{s_{19}, x s_{11}} v_{s_{19}, s_{7} s_{11}} \\
& +v_{s_{7}, x} v_{s_{19}, x s_{11}}^{2} v_{s_{19}, s_{7} s_{11}} \\
& \varphi\left(U_{s_{19}, 1}\right)=v_{s_{19}, 1}+v_{w_{2}} v_{s_{19}, x}-v_{s_{19}, s_{15}} v_{s_{19}, x}+v_{s_{11}, x} v_{s_{19}, s_{7}}+v_{s_{11}, 1} v_{s_{19}, x s_{7}} \\
& -v_{s_{15}, x s_{7}} v_{s_{15}, 1}-v_{\alpha} v_{s_{15}, x}-v_{s_{19}, s_{11}} v_{s_{15}, x}-v_{w_{1}} v_{s_{19}, x s_{7}} v_{s_{11}, x} \\
& -2 v_{s_{19}, s_{15}} v_{s_{19}, x s_{7}} v_{s_{11}, x}+v_{w_{2}} v_{s_{15}, x} v_{s_{19}, x s_{11}}-v_{w_{1}} v_{s_{15}, x} v_{s_{19}, x s_{11}} \\
& +v_{s_{11}, 1} v_{s_{19}, x s_{11}}^{2}+v_{s_{11}, 1} v_{s_{15}, x s_{7}} v_{s_{19}, x s_{11}}-2 v_{s_{7}, x} v_{s_{19}, s_{7}} v_{s_{15}, x s_{7}} \\
& -v_{s_{7}, x} v_{s_{19}, s_{7}} v_{s_{19}, x s_{11}}-v_{s_{7}, x} v_{s_{19}, x s_{11}} v_{s_{19}, s_{15}} v_{s_{19}, x s_{7}} \\
& -2 v_{s_{7}, x} v_{s_{15}, x s_{7}} v_{s_{19}, s_{15}} v_{s_{19}, x s_{7}}-2 v_{s_{7}, x} v_{s_{19}, s_{11}} v_{s_{15}, x s_{7}} v_{s_{19}, x s_{11}} \\
& -v_{s_{19}, s_{15}} v_{s_{11}, x} v_{s_{19}, x s_{11}}^{2}-v_{s_{19}, s_{15}} v_{s_{11}, x} v_{s_{19}, x s_{11}} v_{s_{15}, x s_{7}} \\
& +v_{s_{15}, x} v_{s_{15}, x s_{7}} v_{s_{7}, x} v_{s_{19}, s_{7} s_{11}}-v_{s_{15}, x} v_{s_{19}, x s_{11}} v_{s_{7}, x} v_{s_{19}, s_{7} s_{11}} \\
& -v_{s_{7}, x} v_{s_{19}, s_{11}} v_{s_{15}, x s_{7}}^{2}-v_{s_{7}, 1} v_{s_{15}, x s_{7}} v_{s_{19}, x s_{11}}^{2} \\
& +v_{s_{7}, x} v_{s_{19}, x s_{7}} v_{w_{2}} v_{s_{19}, x s_{11}}-v_{s_{7}, x} v_{s_{19}, x s_{7}} v_{w_{1}} v_{s_{19}, x s_{11}} \\
& +v_{s_{11}, x} v_{s_{19}, x s_{11}}^{2} v_{w_{1}}-3 v_{s_{7}, x} v_{s_{19}, x s_{11}}^{2} v_{s_{19}, s_{15}} v_{s_{15}, x s_{7}} \\
& -v_{s_{7}, x} v_{s_{15}, x s_{7}}^{2} v_{s_{19}, s_{15}} v_{s_{19}, x s_{11}} \\
& -v_{s_{11}, x} v_{s_{19}, x s_{11}} v_{s_{15}, x s_{7}} v_{s_{7}, x} v_{s_{19}, s_{7} s_{11}} \\
& -3 v_{s_{7}, x} v_{w_{1}} v_{s_{15}, x s_{7}} v_{s_{19}, x s_{11}}^{2}
\end{aligned}
$$

By the similar arguments, we obtain the minimal model of $\operatorname{Baut}_{1} X$:
$M\left(\right.$ Baut $\left._{1} X\right)=M\left(C^{*}(\operatorname{Der} M(X))\right)=\left(\Lambda\left(U_{s_{19}, 1}, U_{s_{19}, s_{7}}, U_{s_{19}, s_{7} s_{11}}, U_{s_{7}, x}, U_{\sigma}\right), d\right)$
as a sub-DGA of $M\left(\right.$ Baut $\left._{1} p\right)$. In this case, the element U_{τ} from $\partial(x, 1)=$ $\left(s_{19}, s_{15}\right)+\left(s_{15}, s_{11}\right)+\left(s_{11}, s_{7}\right)=\tau$, does not exist.

REMARK 3.2. In general, let a fibration $\xi: S^{a} \times S^{b} \times S^{c} \times S^{d} \rightarrow X \rightarrow S^{e}$ with a, b, c, d, e odd and $e<a<2 e-1$ be given by the relative model

$$
(\Lambda(x), 0) \rightarrow M(X)=\left(\Lambda\left(x, s_{a}, s_{b}, s_{c}, s_{d}\right), D\right) \rightarrow\left(\Lambda\left(s_{a}, s_{b}, s_{c}, s_{d}\right), 0\right)
$$

where $|x|=e,\left|s_{n}\right|=n, D x=0, D s_{a}=0, D s_{b}=x s_{a}, D s_{c}=x s_{b}, D s_{d}=x s_{c}$. Then we obtain the same result as Theorem 1.4 from a similar proof.

EXAMPLE 3.3. For any fibration $\xi: S^{5} \times S^{9} \times S^{13} \times S^{17} \rightarrow X \rightarrow S^{5}$, we can check that Baut $_{1} X$ and Baut $_{1} p$ are coformal. Especially, when ξ is given by

$$
(\Lambda(x), 0) \rightarrow\left(\Lambda\left(x, s_{5}, s_{9}, s_{13}, s_{17}\right), D\right) \rightarrow\left(\Lambda\left(s_{5}, s_{9}, s_{13}, s_{17}\right), 0\right)
$$

with $D x=0, D s_{5}=0, D s_{9}=x s_{5}, D s_{13}=x s_{9}, D s_{17}=x s_{13}$, then Baut ${ }_{1} X$ and $B a u t_{1} p$ are rational H-spaces.

REFERENCES

[1] U. Buijs and S. B. Smith, Rational homotopy type of the classifying space for fibrewise self-equivalences, Proc. Amer. Math. Soc., 141 (2013), 2153-2167.
[2] A. Dold and R. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math., 3 (1959), 285-305.
[3] Y. Félix, Problems on mapping spaces and related subjects, in Homotopy theory of function spaces and related topics, Proceedings of the Oberwolfach workshop, Mathematisches Forschungsinstitut Oberwolfach, Germany, April 5-11, 2009; Contemp. Math., Vol. 519, American Mathematical Society (AMS), Providence, RI, 2010, 217-230.
[4] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., Vol. 205, Springer-Verlag, New York, 2001.
[5] Y. Félix, G. Lupton and S. B. Smith, The rational homotopy type of the space of selfequivalences of a fibration, Homology Homotopy Appl., 12 (2010), 371-400.
[6] Y. Félix and D. Tanré, H-space structure on pointed mapping spaces, Algebr. Geom. Topol., 5 (2005), 713-724.
[7] J. B. Gatsinzi, The homotopy Lie algebra of classifying spaces, J. Pure Appl. Algebra, 120 (1997), 281-289.
[8] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199.
[9] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, NorthHolland Mathematics Studies, Vol. 15, North-Holland Publishing Company, Amsterdam, 1975.
[10] G. Lupton, Note on a Conjecture of Stephen Halperin, in Topology and combinatorial group theory, Proc. Fall Foliage Topology Semin., New Hampshire/UK 1986-88; Lect. Notes Math., Vol. 1440, Springer-Verlag, Berlin, 1990, 148-163.
[11] G. Lupton and S. B. Smith, Realizing spaces as classifying spaces, Proc. Amer. Math. Soc., 144 (2016), 3619-3633.
[12] W. Meier, Rational universal fibrations and flag manifolds, Math. Ann., 258 (1982), 329-340.
[13] J. Milnor, On space having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280.
[14] H. Nishinobu and T. Yamaguchi, Sullivan minimal models of classifying spaces for nonformal spaces of small rank, Topology Appl., 196 (2015), 290-307.
[15] H. Nishinobu and T. Yamaguchi, Rational cohomologies of classifying spaces for homogeneous spaces of small rank, Arab. J. Math. (Springer), 5 (2016), 225-237.
[16] H. Shiga and M. Tezuka, Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians, Ann. Inst. Fourier (Grenoble), $\mathbf{3 7}$ (1987), 81-106.
[17] J. D. Stasheff, A classification theorem for fibre spaces, Topology, 2 (1963), 239-246.
[18] D. Sullivan, Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci., 47 (1977), 269-331.
[19] D. Tanré, Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan, Lecture Notes in Math., Vol. 1025, Springer-Verlag, New York, 1983.

Received May 18, 2021
Accepted October 26, 2021

Nagano Natural College of Technology
Department of general education 716, Nagano, 381-0041, Japan E-mail: h_nishinobu@nagano-nct.ac.jp

Kochi University
2-5-1, Kochi, 780-8520, Japan
E-mail: tyamag@kochi-u.ac.jp

