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ON A GENERALIZED CAYLEY GRAPH OF COLUMN
MATRICES OF ELEMENTS OF A FINITE GROUP

AYAT ABDULAALI NEAMAH, AHMAD ERFANIAN, and ABDULRAHMAN H.
MAJEED

Abstract. Let G be a finite group and let Xm be an m × 1 column matrix
of elements of G. Let S be a nonempty subset of G such that e /∈ S and
S−1 ⊆ S. If Cay(G,S) is the usual Cayley graph, whose vertices are all elements
of G and two vertices x and y are adjacent if and only if xy−1 ∈ S, then the
generalized Cayley graph Caym(G,S) is a graph with vertex set consisting of all
column matrices Xm, and two vertices Xm and Ym are adjacent if and only if
Xm[(Ym)−1]t ∈ M(S), where Ym

−1 is a column matrix that each entry is the
inverse of the corresponding entry of Ym, M(S) is anm×mmatrix with all entries
in S, [Y −1]t is the transpose of Y −1, and m ≥ 1. It is obvious that if m = 1,
then Caym(G,S) and Cay(G,S) coincide. In this article, we establish some basic
properties of the new graph and determine the structure of Caym(G,S) when
Cay(G,S) is a cycle, Cn, for every n ≥ 3.
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1. INTRODUCTION AND BASIC RESULTS

The notion of Cayley graphs was introduced by Arthur Cayley in 1878
[2]. He gave a geometrical representation of groups by means of a set of
generators. This translates groups into geometrical objects that can be studied
from a geometrical view. In particular, it provides a rich source of highly
symmetric graphs, known as transitive graphs, which play an important role
in many graph theoretical problems as well as group theoretical problems, like
expanders, width of groups, the representation of interconnection networks,
Hamiltonian path and cycles that naturally arise in computer science, and so
on.

In this paper, we introduce a new generalization of Cayley graphs. Previ-
ously, some kinds of generalization of the Cayley graphs have been introduced
and studied by several authors. For instance, Marušič, Scapellato, and Salvi
[5] gave a generalization of Cayley graphs in terms of an automorphism of a
group. Later, Zho [7] introduced the Cayley graph of a semigroup. Recently,
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the second author introduced a generalized Cayley graph for all m× 1 matri-
ces, namely Caym(G,S), which is a new generalization of usual Cay(G,S).
We recall that for any group G and any nonempty set S of G such that e /∈ S
and S−1 ⊆ S, the Cayley graph Cay(G,S) is an undirected simple graph
whose vertices are all elements of G and two vertices x and y are adjacent if
and only if xy−1 ∈ S [3]. It is known that Cay(G,S) is connected whenever
S is a generating set of G and that it is always regular and vertex transitive
(see [3] for more details). Now, we are going to define Caym(G,S) as follows.

Definition 1.1. For eachm ≥ 1, the generalized Cayley graph of Cay(G,S)
denoted by Caym(G,S) is an undirected simple graph with vertex set consist-

ing all m× 1 matrices
[
x1 x2 · · · xm

]t
, where xi ∈ G, 1 ≤ i ≤ m, and two

vertices X =
[
x1 x2 · · · xm

]t
and Y =

[
y1 y2 · · · ym

]t
are adjacent if

and only if

X(Y −1)
t
=


x1y1

−1 x1y2
−1 · · · x1ym

−1

x2y1
−1 x2y2

−1 · · · x2ym
−1

...
...

. . .
...

xmy1
−1 xmy2

−1 · · · xmym
−1

 ∈ Mm×m(S), where

Mm×m(S) =



x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...
xm1 xm2 · · · xmm

 | xij ∈ S , 1 ≤ i, j ≤ m

 .

Note that, in this paper, we always assume that e /∈ S, that S−1 ⊆ S, and
that S is a generating set. Hence, Cay(G,S) is connected.
In the following lemma from [6], we can find a necessary and sufficient condi-
tion for two arbitrary vertices in Caym(G,S) to be adjacent.

Lemma 1.2 ([6]). Let X =
[
x1 x2 · · · xm

]t
and Y =

[
y1 y2 · · · ym

]t
be two vertices of Caym(G,S), where xi, yj ∈ G for 1 ≤ i, j ≤ m. Then X and
Y are adjacent in Caym(G,S) if and only if xi is adjacent to yj in Cay(G,S)
for all 1 ≤ i, j ≤ m.

The following lemma gives a formula for the degree of any vertex, deg(·), in
Caym(G,S) in terms of some right cosets of S.

Lemma 1.3 ([6]). Let X =
[
x1 x2 · · · xm

]t
be a vertex of Caym(G,S).

Then deg(X) = |
⋂m

i=1 Sxi|.

As mentioned earlier, Cay(G,S) is connected (by assuming S to be a gen-
erating set of G), so there is no isolated vertex. Indeed, Caym(G,S) is not
necessary connected, even when S is a generating set and we have some iso-
lated vertices. The following lemma states that under some conditions, we
may have an isolated vertex in Caym(G,S).
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Lemma 1.4 ([6]). Let X =
[
x1 x2 · · · xm

]t
be a vertex of Caym(G,S).

If d(xi, xj) ̸= 2 in Cay(G,S) for some 1 ≤ i ̸= j ≤ m and Cay(G,S) is
triangle free, then X is an isolated vertex in Caym(G,S), where d(xi, xj) is
the distance between xi and xj in Cay(G,S).

One more property of the usual Cayley graph Cay(G,S) that fails for
Caym(G,S), is regularity. We know that Cay(G,S) is |S|-regular. Indeed,
Caym(G,S) is not necessary regular. For instance, if G =< x | x2 = e >=
{e, x} is a cyclic group of order two, then Cay(G,S) = P2 [1]. Now, we can
easily check that Cay2(G,S) = K2 ∪K2, which has two isolated vertices, so it
is not regular (see Figure 1.1).

In this paper, we are going to investigate the structure of Caym(G,S) when-
ever Cay(G,S) is a cycle of length n for all n ≥ 3 and m ≥ 2. In fact, the
following theorem is the main result of the paper.

Fig. 1.1 – Cay(Z2, {x}) and Cay2(Z2, {x})

Theorem 1.5. Let G be a group and let S be a subset of G such that
e /∈ S, S−1 ⊆ S, and Cay(G,S) = Cn for n ≥ 3. Then:

(i) Caym(G,S) = K2m,2m ∪K2m+1(2m−1−1), if n = 4.

(ii) Caym(G,S) = (Cn◦K2m−2)∪Knm−n(2m−1), if n ̸= 4, where Cn◦K2m−2

is the corona product of graphs Cn and K2m−2.

In the next section, we prove some necessary lemmas and results, which will
be used in the proof of Theorem 1.5. Moreover, we will give an application of
this theorem in the case when G is a dihedral group of order 2n.

2. PROOF OF THEOREM 1.5

First, let us recall the definition of the corona product, which we need to
use in the proof of Theorem 1.5.

Definition 2.1 ([4]). Suppose that G and H are two graphs. Then the
corona product of G and H denoted by G ◦H is obtained by taking one copy
of G and |V (G)| copies of H and by joining each vertex of ith copy of H to
the ith vertex of G, where 1 ≤ i ≤ |V (G)|.
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For example, the corona product of graphs C4 and K2 is shown in Figure
2.2 (a).

In the following three lemmas, we determine some special cases of Theorem
1.5 for n = 3, 4 and m = 2, 3.

Lemma 2.2. Let Cay(G,S) = C3. Then we have Cay2(G,S) = C3 ◦K2 and
Cay3(G,S) = (C3 ◦K6) ∪K6.

Proof. Assume that Cay(G,S) = C3. Then we have |G| = 3 and |S| = 2.
Hence, G is a cyclic group of order three and S = G− {e}.

If G =< x | x3 = e >= {e, x, x2}, then S = {x, x2}. Thus Cay2(G,S) has
32 = 9 vertices, and we can see that Cay2(G,S) = C3 ◦ K2. The graph of
Cay2(G,S) is shown in Figure 2.2 (b). In the case of Cay3(G,S), we have
33 = 27 vertices and the graph is shown in Figure 2.3. □

(a) Graph C4 ◦K2 (b) Graph Cay2(G,S)

Fig. 2.2 – Graph C4 ◦K2 and Graph Cay2(G,S)

Fig. 2.3 – A component of the graph Cay3(G,S) of C3
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Lemma 2.3. Let Cay(G,S) = C4. Then Cay2(G,S) = K4,4 ∪K8.

Proof. Assume that G = {x1, x2, x3, x4} and that Cay(G,S) is the cycle
x1 − x2 − x3 − x4 − x1. Then we have 42 = 16 vertices in Cay2(G,S) and the
graph is a complete bipartite graph K4,4 with eight isolated vertices as shown
in Figure 2.4. □

Fig. 2.4 – Graph Cay2(G,S) of C4

Lemma 2.4. Let Cay(G,S) = C4. Then Cay3(G,S) = K8,8 ∪K48.

Proof. Assume that G = {x1, x2, x3, x4} and that Cay(G,S) is a cycle x1 −
x2 − x3 − x4 − x1. We know that Cay3(G,S) has 43 = 64 vertices. Put
A = {[a, b, c]t : a, b, c ∈ {x1, x3}} and B = {[a, b, c]t : a, b, c ∈ {x2, x4}}. It
is clear that both sets A and B are independent sets and that each vertex
in A is adjacent to each vertex in B and vice versa. Moreover, A and B are
disjoint. Hence, the subgraph induced by A∪̇B is complete and bipartite.
The rest of vertices outside A∪̇B are all isolated vertices. Hence, we have
Cay3(G,S) = K|A|,|B| ∪K43−(|A|+|B|) = K8,8 ∪K48, as required. □

In the following theorem, we extend Lemmas 2.3 and 2.4.

Theorem 2.5. Let Cay(G,S) = C4. Then

Caym(G,S) = K2m,2m ∪K2m+1(2m−1−1)

for all m ≥ 2.

Proof. Assume that G = {x1, x2, x3, x4} and that Cay(G,S) is the cycle
x1 − x2 − x3 − x4 − x1 of length four. We have V = V (Caym(G,S)) ={[

a1 a2 · · · am
]t

: ai ∈ G, 1 ≤ i ≤ m
}
, so |V | = 4m. Consider the subsets

A and B of V as follows:

A =
{[

a1 a2 · · · am
]t

: ai ∈ {x1, x3}, 1 ≤ i ≤ m
}
,

B =
{[

a1 a2 · · · am
]t

: ai ∈ {x2, x4}, 1 ≤ i ≤ m
}
.
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By the same method as in the proof of Lemma 2.4, we can see that A and B
are independent sets and that every vertex from one is adjacent to another set.
Hence, the union of disjoint sets, A∪̇B, induces a complete bipartite graph and
the rest of vertices are all isolated vertices. Therefore, we have Caym(G,S) =
K|A|,|B| ∪ K |V |−(|A|+|B|) = K2m,2m ∪ K4m−(2m+2) = K2m,2m ∪ K2m+1(2m−1−1)

for all m ≥ 2. □

Now, we are in position to prove Theorem 1.5.

Proof of Theorem 1.5. (i) It follows directly from Theorem 2.5.

(ii) Let V (Cay(G,S)) = {x1, x2, . . . , xn} and let Cay(G,S) be a cycle x1 −
x2 − · · · − xn − x1 of length n. We know that Caym(G,S) has nm vertices.
Put

A1 =
{[

a1 a2 · · · am
]t | ai ∈ {x2, xn}, 1 ≤ i ≤ m

}
,

Aj =
{[

a1 a2 · · · am
]t | ai ∈ {xj−1, xj+1}, 1 ≤ i ≤ m

}
for j = 2, 3, . . . , n− 1, and

An =
{[

a1 a2 · · · am
]t | ai ∈ {x1, xn−1}, 1 ≤ i ≤ m

}
.

Then we can see that the vertex [xjxj . . . xj ]
t is adjacent to all vertices in Aj

and that |Aj | = 2m for every j = 1, 2, . . . , n. Consider the sets

B1 = A1 −
{
[x2x2 . . . x2]

t, [xnxn . . . xn]
t
}
,

Bj = Aj −
{
[xj−1xj−1 . . . xj−1]

t, [xj+1xj+1 . . . xj+1]
t
}

for 1 ≤ j − 1 ≤ n− 1, and

Bn = An −
{
[x1x1 . . . x1]

t, [xn−1xn−1 . . . xn−1]
t
}
.

We have |Bj | = |Aj | − 2 = 2m − 2 for all 1 ≤ j ≤ n. All sets B1, B2, . . . , Bn

are disjoint and independent sets and the subgraph induced by
⋃n

j=1Aj is the

Corona product of Cn and |Bj | = 2m−2 isolated vertices. Hence, Caym(G,S)

has a component consisting of Cn ◦K2m−2, and the rest of the components are
all isolated vertices. The number of isolated components is |V (Cay(G,S))| −
n(2m − 2)− n = nm − n(2m − 2)− 1. Therefore, Caym(G,S) = Cn ◦K2m−2 ∪
Knm−n(2m−1), as required. □

Finally, we give an application of the main result: we determine the gen-
eralized Cayley graph Caym(G,S) for the case when G = D2n and |S| =
1 or 2. We restate that the dihedral group of order 2n is defined as D2n =<
a, b | an = b2 = e, b−1ab = a−1 >. For instance, if n = 4, then D8 =
{e, a, a2, a3, b, ab, a2b, a3b}. The next corollary gives us the structure of the
generalized Cayley graph of D2n when the order of S is one.
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Corollary 2.6. Let D2n be a dihedral group of order 2n and let |S| = 1.
Then for every m ≥ 1, it follows that Caym(D2n, S) = nK2∪K(2n)m−2n, where
n ≥ 3.

Proof. It is obvious that when |S| = 1, then Cay(G,S) = nK2. Assume
that D2n = {x1, x2, . . . , x2n} and that Cay(D2n, S) is the union of n edges

x1 − x2, x3 − x4, . . . , x2n−1 − x2n.

Then Caym(D2n, S) has a subgraph consisting of n edges

[x1 x1 . . . x1]
t − [x2 x2 . . . x2]

t,

[x3 x3 . . . x3]
t − [x4 x4 . . . x4]

t,

· · ·
[x2n−1x2n−1 . . . x2n−1]

t − [x2nx2n . . . x2n]
t.

All other vertices are isolated. □

Likewise, in the next corollary, we find the construction of the generalized
Cayley graph of the dihedral group D2n, when |S| = 2 and S = {x, x−1} such
that x ̸= x−1.

Corollary 2.7. Let D2n be the dihedral group of order 2n. If S ⊆ D2n

such that S = {x, x−1}, where x ̸= x−1 and o(x) = t, then the following hold:

(i) If t = 4, then Caym(D2n, S) =
n
2

[
K2m,2m ∪K2m+1(2m−1−1)

]
.

(ii) If t ̸= 4, then Caym(G,S) = (Ct ◦K2m−2) ∪Ktm−t(2m−1).

Proof. We know from [1] that Cay(D2n, S) =
2n
t Ct. Applying Theorem 1.5

completes the proof. □

Corollary 2.8. Let D2n be the dihedral group of order 2n. Let S ⊆ D2n

such that S = {x, y}, where x2 = y2 = e and o(xy) = t. If t = 2, then

Caym(D2n, S) =
n

2

[
K2m,2m ∪K2m+1(2m−1−1)

]
,

and if t ̸= 2, then

Caym(G,S) = (C2t ◦K2m−2) ∪K2tm−2m+2.

Proof. By applying Theorem 1.5, it follows from the fact that

Cay(D2n, S) =
n

t
C2t,

where o(xy) = t. □
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