MATHEMATICA, 64 (87), N° 2, 2022, pp. 233—-246

NEW QUANTUM INEQUALITIES OF HERMITE-HADAMARD
TYPE VIA GREEN FUNCTION

SUNDAS KHAN, HUSEYIN BUDAK, and YUMING CHU

Abstract. In this study, the Hermite-Hadamard inequality for ¢”2-integrals is
demonstrated by a new method called the Green Function Technique. For this
purpose, we first obtain certain identities. Then, by using these identities, we
establish many new inequalities for functions whose second derivative is convex,
monotone and concave in absolute value.
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1. INTRODUCTION

Quantum Calculus is a limitless calculation study. In the eighteenth cen-
tury, the famous mathematician, Newton, laid the foundation for g-calculus by
initializing the ¢ parameter in his work about infinite series. Later, in the twen-
tieth century, Jackson [8] began a study of g-calculus in a symmetrical way and
introduced g-integrals. Many researchers have studied various integral inequal-
ities through the use of classical convexity in the context of g-derivatives and
g-integrals. The most famous of these is the Hermite-Hadamard inequality.
The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard
(see, for example, [5], |15, p.137]) is one of the most well-established inequali-
ties in the theory of convex functions with geometric interpretation and many
applications. This inequality states that if F : I, — R is a convex function at
the interval I, of real numbers and k1, k9 € I, with k1 < kKo, then

F<H1+K2>§ 1 72F(X)dX§F(m)+F(m)_

2 Ko — K1 2
K1

Both inequalities remain in the reversed direction if F is concave. We note
that the Hermite-Hadamard inequality can be seen as a refining of the con-
cept of convexity and can easily be traced back to Jensen’s inequality. Many
researchers have worked extensively on the development and refining of the
Hermit-Hadamard inequality. Noor et al. [12], Sudsutad et al. [16] and Zhang
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et al. [19] have contributed a great deal to ongoing research and have de-
veloped quantum estimates for the right part of the quantum analog of the
Hermite-Hadamard inequality through g-differentiable convex functions and ¢-
differentiable quasi-convex functions. The main idea of this paper is to reshape
the inequality presented in [4] with a novel approach using Green Functions,
while also establishing some new useful results and identities. The anatomy
of this paper includes the introduction of a quantum calculus with prelimi-
nary results, and the main results are demonstrated and discussed in the next
section with concluding remarks at the end. We note that the opinion and
technique of this work may stimulate new research in this field.

2. PRELIMINARIES OF ¢-CALCULUS AND SOME INEQUALITIES

Many integral inequalities are well known in the classical analysis of this
kind, such as Hélder’s inequality, the Hermit-Hadamard inequality and Os-
trowski’s inequality. The Cauchy-Bunyakovsky-Schwarz inequality, Gruss’s
inequality, the Gruss-Cebysev inequality, and other integral inequalities have
been established and applied for g-calculus using classical convexity. For other
results for g-calculus, please refer to [6,(7,/10%/12,14},(16,20].

In this section, we present some of the definitions required and related to
the g-calculus inequalities. Here, too, we use the following notation (see [9]):

_1-4

- =14+q+¢+..+¢"Y ¢e(0,1).

[,

In [§], Jackson gave the g-Jackson integral from 0 to k2 for 0 < ¢ < 1 as

follows:
K2

[r 00 dix =-am > a (e
0 n=0

provided the sum converges absolutely.
Jackson in [8] gave the g-Jackson integral in a generic interval [k1, k2] as:

7F(x) dgx 272F(X) dgx —?F(x) dgx -
K1 0 0

DEFINITION 2.1 ([17]). For a continuous function ¢ : [k1,k2] — R, the
qr,-derivative of F at x € [k1, k2] is characterized by the expression

_FX)—Fax+ 0 -q) k)
(1—q) (x — k1)

Since F : [k1,k2] — R is a continuous function, we have ,, DgF (k1) =
lim «,DgF (x) . The function F is said to be g¢-differentiable on [k, k2]
X—k1

if ., DgF (1) exists for all x € [k1,k2]. If K1 = 0 in , then oDy (x) =

(1) w1 Dal (x) . X # K1
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DyF (x), where DyF (x) is the familiar g-derivative of [ at x € [k1, k2] defined

by the expression (see [9])

_FO)=F ()
(1—q)x

DEFINITION 2.2 (|4]). For a continuous function f : [k1, k2] — R, the ¢"2-
derivative of F at x € [k1, ko] is characterized by the expression

_Flx+(0-q)r)—F K
(1—q) (k2 = x)

DEFINITION 2.3 (|17]). Let F : [k1, k2] — R be a continuous function. The
qx,-definite integral on [k1, ko] is defined as

DqF (x) , X #0.

"Dyl (x) , X # K.

K2

/ F 00w dox = (=) (k2 — i) S 0"F (d"a + (1— ") 1)

K1 n=0

1
= (kg — K1 /F (1 —=7) kK1 + Tha) dgT
0

In [3], Alp et al. proved the following g,,-Hermite-Hadamard inequalities
for convex functions in the setting of quantum calculus:

THEOREM 2.4. If F : [k1,k2] — R is a convex differentiable function on
[k1, k2] and 0 < q < 1. Then q-Hermite-Hadamard inequalities are as follows:

K2
gr1 + K2 1 / qF(m)—FF(ng)
2 < .d .
@ ()<L [ < T

K1

In [3,[13], the authors established some bounds for the left and right hand
sides of the inequality .

On the other hand, Bermudo et al. gave the following new definition and
related Hermite-Hadamard type inequalities:

DEFINITION 2.5 ([4]). Let F : [k1, k2] — R be a continuous function. Then,
the ¢"*2-definite integral on [k1, ko] is defined as

K2

/ F 0™ dgx = (1—q) (2 — r1) S 0" (¢ + (1 — ") )

o1 n=0

1

= (kg — m)/F (k1 + (1 — 7) k2) dgT.
0
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THEOREM 2.6 ([4]). Let F : [k1,k2] — R be a convex function on [k1, ko)
and 0 < g < 1. Then, qg-Hermite-Hadamard inequalities are as follows:

K2

K1+ qKo 1 / F (k1) +qF (k2)

r < F () ®dex < .
< 14+¢ >_/€2—/€1 (X) X = 1+g¢

K1

From Theorem and Theorem one can the following inequalities:

COROLLARY 2.7 ([4]). For any convez function F : [k1,k2] — R and 0 <
q < 1, we have

qK1 + Ko K1+ qk2
[t — _|_ [
F( 1+gq ) F< I+¢ >
1 K2 K2
< /F(x) r1dgX +/F(X) "2dgx
R2 — K1

K1 K1

< F (k1) + F (ko)

and
K1+ Ko
()
1 K2 K2
— rp d "2
S 2 — 1) /F(x) 1dgx +/F(x) X
K1 R1
<P )+ T (ko)
p— 2 .
LEMMA 2.8. Let n € R\ {—1}, then we have the formula
: Ko — T qT_[n—l-l} Ko —Xx)" .

q
3. MAIN RESULTS
We will use the following lemma to prove our main results.
LEMMA 3.1 ([2)11]). Let ¢ be the Green function defined on [k1, k2] X [K1, k2]
by
o ={ ML NETEL

We can express any F € C?([k1, k2]) as

@ r00=rm)+ e mr ) + [ otenr
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Our main results are as follows.

THEOREM 3.2. Let F : [k1, k2] = R be a convex function twice differentiable
on (k1,k2). If 0 < ¢ <1, then

1 "2
. (m + qm) < / F () dyy < F (k1) + qF(ﬁg)'
K1

g+1 Ko — K1 q+1

Proof. If we set xy = % in , then we obtain
F(qu + 1)
R2
+ +
(4) =F (k1) + (Im — m)F’(/ig) +/ lig(b(m q1<a277_> F"(r)dr
K1

q+1
+ a (K2—N1)F/(fi2)+/
qg+1

= F (k1) ¢(K1 + qmgﬂ_) F"(r)dr.

qg+1
By evaluating, we obtain that

1 2
F(x)"=d
) AU

O = e e +

K2

o(x, 7')F"(7')d7'}"””2 dgx

K1

q 1 K2 K2 o
=F(k1)+ =y 1(/@ — k1)F'(k2) + p— /m /m d(x, T)F" (T)dT"*d X
Subtracting from , we get

K1 + gKa2 1 /M
F - F(x)"2d
(g L "

=)+ e = ) () + /f%("“l*q“?,T)F"(T)dT

g+1
_F(“l)_qi("'@_@lr(

q / " o
+1 2*51/ / X (M)dr "dyx
_ " K1t gka 1
(6) _/1 d)( g+1 ’T)F (r)dr
a 2—1‘61/ / ¢ ) 2dX
K1+ gKe 1 2 . "
_ [ K1+ ka2
_/m {(b(qul ,T)

g 2 2 ”
T D0 L ) = G ) }]F (7)dr.




238 S. Khan, H. Budak, and Y. Chu 6

Now we contemplate the function
K1+ gK2

o) = oL

We have the following possible cases.

Case I.If g <7< %, then

B R e (SRR R

(K2 — K1)

=K —T— q ko — 7)% — (ko — K1)?
9(1) = K1 (q+1)(f€2—/<e1)[(2 )" — (k2 — K1)7]
N 2q(k2 — 7)
S = D — )
P p— )

(¢ + 1) (k2 — K1)
This implies that ¢’ is decreasing and ¢'(k1) = 0, which shows that ¢'(7) <
T €

0. Thus g is also decreasing, and g(k1) = 0, that is, g(7) < 0 for all
[Hl m+qﬁ2]
v T gl

Case II. If '“;17‘{6 < 7 < Ko, then

_ —4(ke — k1) q
g(T)_ q+1 - (q+1)(/€2_ﬁl>[(’%2_T)Q_(’%Q_Kl)Q]
)= —dm=T)

(g + 1) (k2 — K1)

Hence g is increasing and g(xz) = 0. So, g(7) < 0 for all 7 € [£LE9"2

pEs)
using (6)) and the fact that F”(7) > 0 for all 7 € [k1, k2], since g is convex, we

obtain the first inequality:
K1+ gK2 1 / 2
< d x.
F( g+1 >_m—/<c1 K1 Fl0dsx
For the right hand side inequality, from , we have

, K2]. Now,

F (k) = F (k1) + (ko — k1) F'(K2) + /H2 é(ke, T)F" (T)dT

and thus

F (k1) + qF (k2)

q+1

(7) _ F(/f )+ q("GZ - Kll)F/(H )+ q /KQ (b('% )F//( )d

= 1 BCES 2 1 . 2, T T)dT.
Subtracting from , we get

F (k1) +qF I
Wq Hafla) [

(8) -

_ [ [q9(kasT) q 2 (e 02
= [ (7 = (52— ) (e
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Let
gk, ) q((k2 = 7)* = (k2 — K1)?)
=" EDICEr
Then
, o —q  2(k2—1)
CO = T G Dm )
Q"(r) = - 24

(¢ +1)(k2 — K1)

Case IIL If 1 < 7 < #1822 then G”(7) < 0. This implies that G’ is
decreasing, and also G’ (%) = 0, which shows that G'(r) > 0. Moreover,
G is increasing, and G(k1) = 0. Hence G(7) > 0, for all 7 € [y, 21322].

Case IV. Also, if #13%2 < 7 < kg, then G”(7) < 0. This implies that G’
is decreasing, and G’ (£:4#2) = 0, which implies that G’(7) < 0. Hence G is

decreasing, and G(k2) = 0, and then G(7) > 0, for all 7 € [®13£2 k],

Combining the above two cases, we conclude that G(7) > 0, for all 7 €
[k1, k2]. Applying and the convexity of F, we establish the right-hand side
of the desired inequality. The proof is completed. O

Now for the class of monotone and convex functions, we prove new quantum
Hermite-Hadamard type inequalities.

THEOREM 3.3. Let F € C?([k1,k2]) and 0 < q < 1. Then:

(i) If |F"| is an increasing function, then

Flob o) L 1 g < o [0

(ii) If |[F"| is a decreasing function, then

‘F(m) + qF (r2) 1 /”2

q(ko — K1)?
q+1 K9 — K1

K1

(iii) If |[F"| is a convex function, then

Fm)+al(re) L ™

‘ 1q+1 : _/<62—'€1fm F) qu'
R2 — KR 2

< max{|F"(k1)],|F"(rk2)|} {(](6(2(]-}-11))}
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Proof. To prove (i), by . we get:

F (k1) + qF (k2) 1 /”2 )
_ K2
‘ q+1 K2 — K1 FO0™dax

- ) Q¢(/‘$1,T)_ a Ko —T)" — (kK2 — K "(r)dr
/m [ q+1 (q+1)(/¢2—/@1){( 2= 1) — (k2 1)2}]F()d

— k)2
Sl {Q(es(?q + 11>) |

which proves the inequality from part (i). The second part can be proved in
a similar manner. For part (iii), using (8) and the fact that |F”| is bounded
above, on the interval [k1, k2|, by max{|F"(k1)|,|F"(k2)|} as a convex func-

tion, we obtain
1 w2
‘F("fl) + qF (k2) . / F(X)mqu'

qg+1 Ko — K1

K 2
< max{[F" (k)] [F* <nz>|}[<(q+;)>]

0

THEOREM 3.4. Let [ € C?([k1,k2]), and let |F"| be a concave function.
Then for 0 < g <1

’F(m) +qF (k) 1 /“2 F (0™ dgy

qg+1 Ko — K1
M F”("il +2"£2> + (K2 — Hl)zq FH<3K:1 +l€2>’
2(q+1) 3 3(g+1) 4 '

Proof. By using the identity , we have
F (k1) +qf (k 1 " .
e e AR

q+1 Ko — K1

" Tqg(k1,7) q 2 (o — k)2 " Vdr
[, [ - Gt (= - )|

“lalr—m) 4 Ko —7)% — (ko — Kk1)? "(r)dr
[ 5 - =y (a7 = e o)
Suppose T = (1 — x)k1 + xr2 with x € [0,1]. Then

F (k1) + qF (k2 1 " "
: )(]-Fl( )_Hz—m/ FO0™dox

/:2 [Q(mq;ﬁllfx _ Q(’z;jrf)l)Q [1—)? - 1}} o +Xff2))dx‘
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—Q(@ - ffl)2
q+1

(H2 - f<~'1)2q
q+1

0

1
| = om + m)dX]

[0 =208 - 0m + m)dx\.

Now by using Jensen’s integral inequality, we obtain the following estimates:

I =

1
/ xF"((1=x)r1 + X@)dx‘
0

[ (R0 ey

_ ’ <Iﬁ:1f0 dx+/<c2f0 2dx>'

2 1

_1 i K1+ 2K2
- (25))

I =

2

/0 (F — 20" (1 — ) +><f<z)dx‘

/1 ngX’F,,<f01 (1= x)k1 + Xﬁ2)dx> ’
0

fol x*dx

+2/1xdx‘ "<ﬁ) Hl+xﬂ2)dx>’
0

foxdx
71 7 3/€1+I€2 17 I€1+2/€2
(e ()

By substituting the values of I; and Is, we get the required result. ([l

THEOREM 3.5. Let f € C?([r1,k2]) and q € (0,1). Then:

(i) If |F"] is an increasing function, then

K1 + gk 1 /“2
r -~ F(x)"d
() - [ e
— k1)2q(7¢% + 24¢% + 27¢ + 103
< ’F”(KQ)‘((HQ "il) Q( Q3 g q ))
6(q+1)(g® +3¢%2 + 3¢+ 1)

(ii) If |F"| is a decreasing function, then

fi1+q/<a2> 1 /’“2 K
r - F(x)"2d
' ( ) [T
ko — k1)2q(Tq> + 24¢% + 27g + 103
S|Fu(m)|<( 2 — k1)°q( Q3 g q ))
6(q+1)(q3 +3¢2+3¢+1)
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(iii) If [F"| is a convex function, then

K1+ qka 1 /”2 .
r - F(x)™d
’ < q+1 > K2 — K1 Ji, 00 dax

9) = max{|F " (k2)], [F " (k1)[}

. |F”(/€2)| ((HQ — H1)2q(7q3 + 24(]2 + 27q + 10)>
6(q+1)(¢®>+3¢* +3q+1)

Proof. To prove (i), we use (6)) and the fact that || is an increasing func-
tion to get

K1+ gk 1 " )
_ k2q

K1

/ P(Klqiql@ ’ T) * m {2 =7)% = (k2 = ,1)*} } F'(r)dr

K2

< \F"(m)|/ [(b(mqiqlmm) - m {(k2 = 7)% = (K2 — m)Q}] dr
< |F"(k2)] - [/ " (k1 —7)+ m {(Hz — 7')2 — (ko — 51)2} dr
" lg(k1 — k) q
o | e (e e o]
=|r"(k2)| - [/ " (T — K1) — m {(k2 = 7)* = (k2 — k1)*} |dT
" q(ke — K1) _ q k2 —7)% — (kg — 11)2)} |dT
+/++ q+1 (¢ +1)(k2 — K1) t2 = = (e = m )y }

r1takg

272 + ((3k1 — 9k2)q — 3k +3K1) | 771
+(18k1k2 — 1263)q + 61 kg — 6K3

_ F//
[ (r2)] 6(k2 —k1)(g+1)
K1
+ |F”(1‘€2)| |:—q7'(7'2 — BHQT — 3/1% + 12/11%2 — 6%%):| 2
3(&2 — :‘{1)((] + ].) r1takro

q+1

e q2(,€2 - "31)2(7(12 +12¢ +3)
= P (m)l [( 6(g+ 1) + 3¢ + 3¢ + 1) )

N |F,,(I_€2)|(q(/<;2 — K1)%(6¢% + 12¢ + 5) )] _

3(g+1)(¢®+3¢2+3¢+1)
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Second part can be proved in a similar manner. For the third part, us-
ing @ and the fact that |[F”| is bounded above, on the interval [k1, k2], by
max{|r1], |k2|} as a convex function, we obtain the inequality (9).

This completes the proof. O

THEOREM 3.6. Let | € C?([r1,k2]), and let |["| be a convex function.
Then for q € (0,1), the following inequality holds:

e eyl ALY
[ e [,
Proof. By using (8)), we get
He ) - [
=| [ [G5R  ra e 7 - e e
< [MT - ey (e P - e ) )l
- [ et e - ) il
Suppose 7 = (1 — x)k1 + xkz with x € [0, 1], we have
’f (Hl)qiqf ) i i . /N F(x)“qux'
<l [ [l Q((’jj;f;” (7 = 2 |10 = 0+ )y
< [ I 8 = 1= 0l ) el

= ”m\/ - X [q+1 (q+1){x2_2X}]dx

q
IF |/ [q+1 (g+1) {XQ_QX}}dX

" q(“i — K )2 " Q(K — K )2
-l iy ey )

which is the required result. ]
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THEOREM 3.7. Let F € [k1, ko] be such that |F"| is a convex function. Then
for any q € (0,1), the following inequality holds:

K1+ qr2 1 /“2 5
r - I (x)"=d
| <q+1 ) o |

< [F"(k1)] [(q(@ - Hi;(jfl;’m : 9)>]

T 1F"(s2)] [(“’(m - ml):((ngj 1+>32 - 11))} |

Proof. By using @, we get
K1 + qR2 1 /N2
r = F(x)=d
() [ o

q+ (KJZ_K )
K2
</
K1
r1+qkr2

[ )= ey e =7 = (2 = w0} e

l‘i2—/€1)
" q(ke — K1) q roo — )2 — (Ko — jo1)2 " dr
+/[ e G (e G i o]
Q(HQ_Kl) 2 "
K — K1) [ X—W{X —QX}‘LE (1 = x)k1 + xrz)|dx
q(k2 — k1) q(k2 — K1) 2 "
Ko — K1) / P R P {x —QX}‘|F ((1—x)f~c1+><f<2)ldx}

52_51

i
——

= [F" (k1) KQ(@ - 532551;12(1 = ﬂ

N (e,

which is the required result. O

1) 06 =20 [0 = 01" )]+ X )

5 08 = 2[00l )| ]

q+1 (g +
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4. CONCLUSION

We used the inspiring concept of quantum calculus to study the Hermite-
Hadamard inequality in a different way. We have made new estimates by
employing newly developed identities. Using the method presented in this
paper, we anticipate a number of other inequalities that will stimulate further
research in this area.
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