
MATHEMATICA, 64 (87), No 2, 2022, pp. 211–221

CLOSED CO-HOPFIAN MODULES

THAAR YOUNIS GHAWI

Abstract. In this paper, we properly generalize the notion of co-Hopficity for
modules to the concept of closed co-Hopficity. A module M is said to be closed
co-Hopfian if any injective endomorphism of M has a closed submodule image.
The aim of this paper is to study and investigate this class of modules. In
addition, some relations for this class with other types of modules are provided.
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1. INTRODUCTION

The notion of co-Hopfian modules have been studied previously. Co-Hopfian
modules were given and have been investigated by Varadarajan K. in [9].
Recall that an R-module M is called co-Hopfian if every injective R-endo-
morphism of M is automatically an R-isomorphism. A submodule N of a
module M is called closed if it has no proper essential extensions inside M ,
i.e. if N essential in K of M implies N = K.

In this paper, we introduce and study the concept of closed co-Hopfian
modules. An R-module M is called closed co-Hopfian if any injective R-
endomorphism of M has a closed submodule image. Clearly, all co-Hopfian
modules are closed co-Hopfian. We dealt with some properties of closed co-
Hopfian modules and rings. Several relations between this concept and other
classes of modules are given. An R-module M is called weakly co-Hopfian if
every injective R-endomorphism of M is essential [5]. Recall [11], that an R-
moduleM is called a generalized co-Hopfian module, briefly a GCH module, if
any essential injective R-endomorphism of M is an isomorphism. It is shown
that every closed co-Hopfian module is GCH. We proved that the concepts
co-Hopfian, closed co-Hopfian and GCH modules are equivalent under weakly
co-Hopfian modules. Many examples of closed co-Hopfian modules and their
relations with other concepts have been obtained.

Throughout this paper, all rings are associative with identity and all mod-
ules are unital left modules unless otherwise specified. For any R-module M ,
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if m ∈ M then lR(m) will denote the left annihilator of m over R. We will
denote the R-endomorphisms ring ofM by EndR(M). The notations N ⊆M ,
N ≤M , N �M , N ≤c M and N ≤⊕ M mean that N is a subset, a submod-
ule, an essential submodule, a closed submodule, or a direct summand of M ,
respectively. For definitions and notations that are unexplained in this work,
we refer the reader to [3, 6].

2. CLOSED CO-HOPFIAN MODULES

An R-moduleM is called co-Hopfian if any injective R-endomorphism ofM
is an isomorphism [9]. Recall that an R-moduleM is called semi co-Hopfian if
any injective R-endomorphism of M has a direct summand image, i.e. every
injective R-endomorphism ofM splits [2]. This section is devoted to the study
of one of the generalizations of co-Hopfian modules, namely, closed co-Hopfian
modules, as follows:

Definition 2.1. A left R-moduleM is called closed co-Hopfian if the image
of every injective R-endomorphism of M is a closed submodule. A ring R is
left closed co-Hopfian if R is left closed co-Hopfian as a R-module. Also, a
module M1 is called closed co-Hopfian related to a module M2 if for every
injective R-homomorphism φ : M1 → M2, Imφ is a closed submodule of M2.
As a matter of fact, a moduleM is closed co-Hopfian if and only ifM is closed
co-Hopfian related to itself.

Clearly, every co-Hopfian module is semi co-Hopfian, hence a closed co-
Hopfian module. Also, every semisimple (simple) module is closed co-Hopfian,
but not conversely, for example: the Z-module Q is closed co-Hopfian but it
is neither semisimple nor simple. However, the Z-module Z is not closed co-
Hopfian. Notice that Z is closed co-Hopfian as a ring, because the only ring
monomorphism of Z into itself is the identity map.

Remarks 2.2. (1) A closed co-Hopfian property for a module is not in-
herited by its submodules, such as in the following example: it is well known
that Q as Z-module is closed co-Hopfian, while Z is not a closed co-Hopfian
as Z-submodule in Q.

(2) If the factor module of an arbitrary module M is closed co-Hopfian,
then M may not be closed co-Hopfian, for example: let M = Z as Z-module
and N = pZ ≤ M where p is a prime number, then M/N ∼= Zp is simple and
hence closed co-Hopfian as Z-module, while M = Z is not a closed co-Hopfian
Z-module. Later, we will give the necessary condition for this property to be
achieved, in general (see Proposition 2.25).

The following gives a characterization for a closed co-Hopfian module.

Theorem 2.3. Let M be an R-module. Then M is closed co-Hopfian if and
only if for any submodule N of M with N ∼= M , N is a closed submodule of
M .
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Proof. Let N be any submodule of a closed co-Hopfian R-module M such
that N ∼= M . So there exists an R-isomorphism φ : M → N . Then, we have
that ψ = i ◦ φ is an injective R-endomorphism of M , where i is the inclusion
map. By closed co-Hopficity for M , we get Imψ ≤c M , notice that Imψ = N ,
hence N is closed in M . Conversely, let α be any injective R-endomorphism
of M , i.e. Kerα = 0. We have Imα ∼= M/Kerα ∼= M , hence by the condition,
Imα is a closed submodule of M , and this completes the proof. □

Corollary 2.4. Let M be a module. If for any non-closed submodule of
M is closed co-Hopfian, then M is closed co-Hopfian.

Proof. If false, then there exists a non-closed submodule N of M such that
N ∼=M by Theorem 2.3, so N is not closed co-Hopfian, which contradicts the
assumption. □

In the following, we will consider the descending chain condition (DCC) on
non-closed submodules.

Proposition 2.5. If M is a module which has the DCC on non-closed
submodules, then M is closed co-Hopfian.

Proof. Suppose that M is not a closed co-Hopfian module, so by Theo-
rem 2.3, there exists a non-closed submodule K1 of M such that K1

∼= M .
Also K1 is not closed co-Hopfian, hence there exists a non-closed submod-
ule K2 of K1 such that K2

∼= K1. If K2 is a closed submodule of M , then
K2 is closed in K1, contradiction, so K2 must be a non-closed submodule of
M . By repeating this argument, we get M ⊃ K1 ⊃ K2 ⊃ ..., which is a
strictly descending chain of non-closed submodules of M , that contradicts the
assumption. Hence M is a closed co-Hopfian module. □

From Varadarajan K. [10], recall that a nonzero moduleM is said to be anti
co-Hopfian if M is non-simple and any nonzero submodule of M is isomorphic
to M . Note that, anti co-Hopfian and closed co-Hopfian modules are different
notions, as in the following example: the Z-module Z is clearly anti co-Hopfian
but it is not closed co-Hopfian, while Q as a Z-module is closed co-Hopfian but
it is not anti co-Hopfian. However, in the following theorem we give a condition
such that the notions coincide. Before that, we will prove the following lemma
in detail which appeared in [6, Exercise 6(c), p.139].

Lemma 2.6. Let M be a module. Then M is semisimple if and only if every
submodule of M is closed.

Proof. Suppose M is a semisimple module, then every submodule of M is
a direct summand, and so all its submodules are closed. Conversely, assume
M is a module for which all its submodules are closed. Let N ≤ M , so by
[3, Proposition 1.3], there exists a submodule K of M such that N ⊕K �M ,
so by assumption, N ⊕K =M . Thus, N ≤⊕ M and M is semisimple. □
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Theorem 2.7. An anti co-Hopfian module M is closed co-Hopfian if and
only if it is semisimple.

Proof. The sufficiency is clear. Conversely, assume that N is a non trivial
submodule of a closed co-Hopfian module M , then N ∼= M , by the anti co-
Hopficity of M , and so by Theorem 2.3, N is a closed submodule of M , so the
result follows by Lemma 2.6. □

Proposition 2.8. Consider the following for a ring R:
(1) R is left semi co-Hopfian.
(2) R is left closed co-Hopfian.
(3) For x ∈ R, if lR(x) = 0 then xR is a closed submodule of R.
(4) For x ∈ R, if lR(x) = 0 then xR = R.
(5) Every R-isomorphism xR→ R, x ∈ R, can be extended to R.
Then (1) ⇒ (2), (5) ⇒ (4) ⇒ (3) ⇒ (2). If R extends, then all five

statements are equivalent.

Proof. (1) ⇒ (2) Obvious.

(5) ⇒ (4) Assume lR(x) = 0, for x ∈ R. Define φ : xR → R by φ(xr) = r,
for all r ∈ R. It is easy to see that φ is well-defined and a R-epimorphism.
If xr ∈ Kerφ, then r = 0, and so xr = 0 implies Kerφ = 0. Thus φ is an
R-isomorphism. So by (5), φ can be extended to R by ψ. Hence, we have
1 = φ(x) = ψ(x) = x.ψ(1) ∈ xR, thus xR = R.

(4) ⇒ (3) Obvious.

(3) ⇒ (2) Suppose α : R → R is a left R-monomorphism. If we assume
r ∈ lR(α(1)), then α(r) = 0, which implies r ∈ Kerα = 0, so lR(α(1)) = 0.
Thus by (3), α(1).R = α(R) is a closed submodule of R; that is Imα ≤c R.
Hence R is closed co-Hopfian.

(2) ⇒ (5) Suppose xR → R is an R-isomorphism, x ∈ R, i.e. xR ∼=
R. Thus, by Theorem 2.3, xR ≤c R implies xR ≤⊕ R by extending for R,
therefore (5) is achieved. By extending R, (2) ⇒ (1). □

Corollary 2.9. Consider the following for a uniform ring R:
(1) R is field.
(2) R is left co-Hopfian.
(3) R is left semi co-Hopfian.
(4) R is left closed co-Hopfian.
(5) For x ∈ R, if lR(x) = 0 then xR is a closed submodule of R.
(6) For x ∈ R, if lR(x) = 0 then xR = R.
(7) Every R-isomorphism xR→ R, x ∈ R, can be extended to R.
Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6) ⇔ (7). If R is an integral domain

(so it is uniform), then (1) through (7) are equivalent.
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Proof. Since R is a uniform ring, it is extending. Thus, we have (3) ⇔
(4) ⇔ (5) ⇔ (6) ⇔ (7) by Proposition 2.8.

(2) ⇒ (3) Clear. (3) ⇒ (2) Let φ : R → R be a left R-monomorphism, so
Imφ is a direct summand of R, because R is semi co-Hopfian. Since R is a
uniform ring and Imφ ̸= 0, it implies Imφ� R, and so Imφ = R. Hence R is
co-Hopfian.

(1) ⇒ (2) Let φ : R → R be a left R-monomorphism. Since R is a field
and Imφ ̸= 0, then Imφ = R, this means that φ is surjective and so R is
co-Hopfian.

(2) ⇒ (1) Let (0 ̸=)t ∈ R, then t is a non-zero divisor (since R is an integral
domain), so lR(t) = 0. By (6), we have tR = R; that is 1 = tr for some r ∈ R,
hence t is an invertible element in R, so R is field. □

Proposition 2.10. Let M be a module. If any proper submodule of M is
closed co-Hopfian, then M is closed co-Hopfian.

Proof. It is easy to check. □

Proposition 2.11. Let M be a module such that N is closed co-Hopfian
whenever N is a non-closed submodule of M , then M is closed co-Hopfian.

Proof. It is easy to check. □

A module M is said to have the closed sum property, briefly the CSP, if the
sum of any two closed submodules of M is again closed [4]. Hadi I. M-A. and
Ghawi T.Y. in [4, Corollary 1.9] present the following result.

Corollary 2.12. Let M be a module which has the CSP. For every de-
composition M = M1 ⊕M2 and any homomorphism φ : M1 → M2, Imφ is a
closed submodule of M .

The following is a immediate consequence of Corollary 2.12.

Corollary 2.13. Let M be a module. If M ⊕M has the CSP, then M is
closed co-Hopfian.

The reverse of Corollary 2.13, is not true, in general, for example: let M =
Z4 ⊕ Z4 as a Z-module. Thus M is co-Hopfian (in fact, M is Artinian), and
hence M is closed co-Hopfian. Define φ : M → M as a Z-homomorphism by
φ(x̄, ȳ) = (2x̄, 2ȳ) for all x̄, ȳ ∈ Z4. Thus, Imφ = 2Z4 ⊕ 2Z4 is not a closed
submodule of M (in fact, 2Z4⊕2Z4�Z4⊕Z4). So, by Corollary 2.12, M ⊕M
does not have the CSP.

Following [5], a moduleM is called weakly co-Hopfian if any injective endo-
morphism ofM has an essential image. Note that, in general, ifM is a weakly
co-Hopfian (not simple) module then M is not closed co-Hopfian. Since Z
as a Z-module is uniform, it is easy to see that Z is weakly co-Hopfian as a
Z-module, and that is another reason for Z not to be closed co-Hopfian as a
Z-module.
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The following proposition gives a connection between co-Hopfian, closed
co-Hopfian and weakly co-Hopfian modules.

Proposition 2.14. Let M be an R-module. Then M is co-Hopfian if and
only if M is closed co-Hopfian and weakly co-Hopfian.

Proof. The necessity is clear. Conversely, assume that M is a closed co-
Hopfian and a weakly co-Hopfian R-module. Let φ ∈ EndR(M) be an injec-
tion, so Imφ �M and Imφ ≤c M , hence it follows that Imφ = M , i.e. φ is
surjective, and hence M is co-Hopfian. □

We recall from Wang Y. [11], that a module M is called a generalized
co-Hopfian module, briefly a GCH module, if any essential injective endomor-
phism of M is an isomorphism.

It is easy to prove that any co-Hopfian module is a GCH module. Now, we
weaken this condition as follows.

Proposition 2.15. Every closed co-Hopfian module is a GCH module.

Proof. Suppose φ : M → M is a left essential R-monomorphism. Since M
is a closed co-Hopfian module, then Imφ ≤c M , but Imφ�M , so Imφ = M .
This means φ is a surjective. Hence M is a GCH module. □

The Z-module Z is a GCH module while it is not closed co-Hopfian; this
indicates that the GCH modules are considered a proper generalization of
closed co-Hopfian modules.

Proposition 2.16. Let M be an R-module with the property that for any
R-endomorphism φ of M , there is a positive integer n such that Kerφn +
Imφn �M . If M is a GCH module, then M is co-Hopfian, and hence it is
closed co-Hopfian.

Proof. Suppose φ : M → M is a left R-monomorphism. By the condition,
there is an integer n ≥ 1 such that

Kerφn + Imφn �M.(1)

Since φ is injective, then it is clear that so is φn, i.e. Kerφn = 0, then by (1),
we get Imφn �M . But, we have that Imφn ⊆ Imφ, which implies Imφ�M ,
hence M is also a GCH module, so φ is a left R-epimorphism and therefore
M is a co-Hopfian module. □

Corollary 2.17. The following are equivalent for an R-module M .
(1) M is co-Hopfian.
(2) M is closed co-Hopfian and weakly co-Hopfian.
(3) M is GCH and weakly co-Hopfian.

Proof. (1) ⇔ (2) ⇒ (3) By Propositions 2.14 and 2.15.

(3) ⇒ (1) Suppose φ : M → M is an injective R-endomorphism. Since M
is weakly co-Hopfian, then Imφ�M , which implies that φ is surjective, as M
is a GCH module, and hence M is co-Hopfian. □
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As an analogous concept of the notion of indecomposable modules we recall
from Hadi I. M-A. and Ghawi T.Y. [4], that a moduleM is called closed simple
if the trivial submodules are the only closed submodules of M . It is clear that
every closed simple module extends. Also, we know that the concepts of closed
co-Hopfian and semi co-Hopfian modules coincide when extended. However,
we present the following.

Proposition 2.18. The following are equivalent for a closed simple R-
module M .

(1) M is co-Hopfian.
(2) M is semi co-Hopfian.
(3) M is closed co-Hopfian.

Proof. It is easy to check. □

Recall from Roman C.S. [8], that an R-moduleM is called to be mono-endo
if all nonzero R-endomorphisms are monomorphisms, or, equivalently, for any
R-endomorphism f of M , Kerf is either M or 0. A left R-module M is called
dual Rickart (closed dual Rickart), briefly d-Rickart (c-d-Rickart), if for any
f ∈ EndR(M), Imf is a direct summand (resp. closed) submodule of M , (see
[4, 7]). So, we have:

Proposition 2.19. Every d-Rickart (c-d-Rickart) R-module is semi co-
Hopfian (resp. closed co-Hopfian). The converse holds, under an mono-endo
R-module.

Proof. The necessity is clear. Conversely, assume that M is a closed co-
Hopfian R-module. Let f ∈ EndR(M). If f = 0 then Imf is trivially closed
in M . Let f ̸= 0 and as M is mono-endo, then f is an R-monomorphism,
hence Imf ≤c M , by the closed co-Hopficity for M . Thus M is a c-d-Rickart
R-module. □

The following is immediate according to Propositions 2.18 and 2.19.

Corollary 2.20. If M is a closed simple and a mono-endo module, then
all of the five following statements are equivalent.

(1) M is co-Hopfian.
(2) M is semi co-Hopfian.
(3) M is closed co-Hopfian.
(4) M is d-Rickart.
(5) M is c-d-Rickart.

The property of closed co-Hopfian is inherited by the direct summands of
closed co-Hopfian modules, as follows.

Proposition 2.21. Every direct summand of a closed co-Hopfian module
is also closed co-Hopfian.
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Proof. Suppose M is a closed co-Hopfian module and N a direct summand
ofM , thenM = N⊕K for someK ≤M . Let f : N → N be a monomorphism.
We can define an endomorphism g : M → M by g(n + k) = f(n) + k where
n ∈ N and k ∈ K. It is easy to prove that g is injective. Since M is closed
co-Hopfian, Img ≤c M . We have Img = Imf ⊕ K, so Imf ≤⊕ Img which
implies Imf ≤c Img. By the transitive property for closed submodules, we get
that Imf is closed in M , and therefore also in N . □

A natural question is whether or not a direct sum of closed co-Hopfian
modules is again closed co-Hopfian. We do not have a counterexample to this
question. Moreover, we present the following Proposition. Before that, we will
prove the following lemma in detail which appeared in [3, Exercise 15, p.20].

Lemma 2.22. Let {Ai} and {Bi} be collections of modules such that Ai is
a closed submodule of Bi for all i ∈ I. Then

⊕
i∈I Ai is a closed submodule of⊕

i∈I Bi.

Proof. It is enough to prove when the index set consists exactly of two
elements, say I = {1, 2}. Let A1 ≤c B1 and A2 ≤c B2. Then, A1 is a relative
complement of X1 ≤ B1, i.e. A1 is a maximal submodule of B1 with the
property A1 ∩ X1 = 0. Similarly, A2 is a relative complement of X2 ≤ B2,
i.e. A2 is a maximal submodule of B2 with the property A2 ∩ X2 = 0. It
follows that X1 ⊕ X2 ≤ B1 ⊕ B2 and (A1 ⊕ A2) ∩ (X1 ⊕ X2) = 0. Suppose
L ⊃ A1 ⊕A2 in B1 ⊕B2 with L ∩ (X1 ⊕X2) = 0. Hence L ⊃ A1 and L ⊃ A2

such that L∩X1 ⊆ L∩ (X1⊕X2) = 0 and L∩X2 ⊆ L∩ (X1⊕X2) = 0, which
contradicts the maximality for A1 and A2, respectively. Hence A1 ⊕ A2 is a
relative complement forX1⊕X2 ≤ B1⊕B2, and hence A1⊕A2 ≤c B1⊕B2. □

Proposition 2.23. Let M =M1⊕M2 be an R-module such that lR(M1)⊕
lR(M2) = R. Then M is closed co-Hopfian if and only if Mi is closed co-
Hopfian for all i = 1, 2.

Proof. The necessity follows directly by Proposition 2.21. Conversely, as-
sume f : M → M is a left R-monomorphism. Since lR(M1) ⊕ lR(M2) = R
and Imf ≤ M1 ⊕M2, by [1, Proposition 1.4.2] Imf = A ⊕ B where A ≤ M1

and B ≤ M2, that is Im(f |M1) ⊕ Im(f |M2) = A ⊕ B implies that Im(f |M1)
and Im(f |M2) are submodules of M1 and M2, respectively. As M1 and M2

are closed co-Hopfian modules and f is a left monomorphism (so are f |M1

and f |M2), then Im(f |M1) ≤c M1 and Im(f |M2) ≤c M2, so by Lemma 2.22
Im(f |M1) ⊕ Im(f |M2) ≤c M1 ⊕ M2, thus Imf ≤c M . Hence M is closed
co-Hopfian. □

A submodule N of an R-module M is called fully invariant if f(N) ⊆ N for
each f ∈ EndR(M).

In the following, we gave another case under which an infinite direct sum
of closed co-Hopfian modules is closed co-Hopfian.
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Proposition 2.24. Let M =
⊕

i∈I Mi such that Mi is fully invariant under
any injection of M for all i ∈ I. Then M is closed co-Hopfian if and only if
Mi is closed co-Hopfian for all i ∈ I.

Proof. Suppose that Mi is a closed co-Hopfian module for all i ∈ I. Let
φ :M →M be injective. Let φi be the restriction of φ to Mi , i.e. φi =: φ|Mi

for all i ∈ I. Since φ is a monomorphism, so is φi for all i ∈ I. As Mi is closed
co-Hopfian and fully invariant, then Imφi ≤c Mi for all i ∈ I. Lemma 2.22
implies

⊕
i∈I φi ≤c

⊕
i∈I Mi, thus Imφ ≤c M , and hence M is a closed co-

Hopfian module. The converse follows by Proposition 2.21. □

Proposition 2.25. Let M be a module and N a fully invariant closed sub-
module of M . If N is co-Hopfian and M/N is closed co-Hopfian, then M is
closed co-Hopfian.

Proof. Let φ : M → M be a monomorphism. Put ψ = φ|N , then ψ is
a monomorphism. As N is a fully invariant co-Hopfian submodule, hence
ψ(N) = N and so φ(N) = N . Define the endomorphism h :M/N →M/N by
h(m +N) = φ(m) +N for all m ∈ M . It is easy to show that h is injective.
Since M/N is closed co-Hopfian, then Imh ≤c M/N , so that Imφ/N ≤c M/N
implies that Imφ ≤c M , by N ≤c M . Therefore M is a closed co-Hopfian
module. □

Proposition 2.26. Let N be a proper closed submodule of a module M
such that for any injective endomorphism φ of M , N ⊆ Imφ and M/φ−1(N)
is closed co-Hopfian related to each other proper factor of M , then M is closed
co-Hopfian.

Proof. Let φ : M → M be a monomorphism. Since N is a proper closed
submodule of M , then M/N is proper factor, so by assumption we have N ⊆
Imφ andM/φ−1(N) is closed co-Hopfian related toM/N . IfN = 0, then there
is nothing to prove. Suppose N ̸= 0, so we can define ψ :M/φ−1(N) →M/N
by ψ(m + φ−1(N)) = φ(m) + N for all m ∈ M . It is easy to show that ψ
is well defined and a monomorphism. Since M/φ−1(N) is closed co-Hopfian
related to M/N , then Imψ = Imφ/N is closed in M/N , which implies that
Imφ ≤c M , by N ≤c M . Therefore M is a closed co-Hopfian module. □

Theorem 2.27. A nonzero R-module M is closed co-Hopfian if and only if
M is closed co-Hopfian related to each of its nonzero submodules.

Proof. Suppose M is a closed co-Hopfian R-module. Let N be any nonzero
submodule of M such that φ : M → N is a left R-monomorphism. Thus, we
have that h = i ◦ φ ∈ EndR(M) and h is injective, where i : N → M is the
inclusion map. Since M is closed co-Hopfian, Imh ≤c M . As Imh = Imφ, it
follows that Imφ ≤c N , and hence M is closed co-Hopfian related to N . The
converse is clear. □

Let M be a module over an integral domain R. Then M is called torsion
free if the submodule T (M)={m ∈ M | rm = 0 for some (0 ̸=)r ∈ R } is
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equal to zero. Notice that the concepts of torsion free and closed co-Hopfian
modules are different, as in the following example: the left Z-module Z is
torsion free but it is not closed co-Hopfian, while Zp as Z-module is closed
co-Hopfian but it is not torsion free, where p is a prime number. However, we
have the following consequence.

Proposition 2.28. Let M be a torsion free module over an integral domain
R. If M is a closed co-Hopfian R-module, then M is injective.

Proof. If (0 ̸=)r ∈ R. Define an R-endomorphism φ : M → M by φ(m) =
rm for all m ∈ M . Now, if m ∈ Kerφ, rm = 0 implies m ∈ T (M) = 0,
thus φ is injective. Since M is closed co-Hopfian, then Imφ = rM is a closed
submodule of M . But, we have rM �M , to see this: if (0 ̸=)m ∈ M , then
m /∈ T (M), so sm ̸= 0 for all nonzero element s ∈ R, hence rm ̸= 0 and
rm ∈ rM . So we get rM = M for all (0 ̸=)r ∈ R, this means that M is a
torsion free divisible R-module, therefore M is an injective R-module. □

Notice that the condition (torsion free) in Proposition 2.28, is necessary, for
example; the Z-module Z6 is closed co-Hopfian but it is not injective, in fact
Z6 as Z-module is not torsion free.

Let M be an R-module. The set {
∑
mix

i | mi ∈ M, i ∈ I} is denoted by
M [x]. Then M [x] can be considered as a R[x]-module. This module is called
a polynomial module.

Theorem 2.29. Let M be an R-module. If M [x] is a closed co-Hopfian
R[x]-module, then M is a closed co-Hopfian R-module.

Proof. Let φ : M → M be an R-monomorphism, so φ[x] : M [x] → M [x]
defined by φ[x](

∑
mix

i) =
∑
φ(mi)x

i is an R[x]-endomorphism. To prove
that φ[x] is injective, if

∑
mix

i ∈ Ker(φ[x]), then
∑
φ(mi)x

i = 0 this implies
φ(mi) = 0, so mi ∈ Kerφ for i, hence

∑
mix

i = 0. As M [x] is a closed co-
Hopfian R[x]-module, then Im(φ[x]) = Imφ[x] is a closed submodule of M [x].
We claim that Imφ ≤c M . If Imφ�N ⊆M , then Imφ∩L ̸= 0 for every nonzero
submodule L of N , thus Imφ[x] ∩ L[x] = (Imφ ∩ L)[x] ̸= 0 for any nonzero
submodule L[x] of N [x] in M [x], we deduce that Imφ[x] � N [x] ⊆ M [x], so
that Imφ[x] = N [x] (because Imφ[x] ≤c M [x]), thus Imφ = N . Therefore
Imφ ≤c M , and M is a closed co-Hopfian R-module. □
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