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POSITIVE SOLUTIONS FOR A (p,2)-LAPLACIAN STEKLOV
PROBLEM

ABDELMAJID BOUKHSAS, ABDELLAH ZEROUALI, OMAR CHAKRONE,
and BELHADJ KARIM

Abstract. In this work, we study positive solutions of a Steklov problem driven
by the (p,2)-Laplacian operator by using the variational method. A sufficient
condition for the existence of positive solutions is characterized by the eigenvalues
of a linear eigenvalue problem and another nonlinear eigenvalue problem.
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1. INTRODUCTION

Let Q C RY (N > 2) be a bounded domain with a C?-boundary 99Q. In
this paper we study the following nonlinear Steklov eigenvalue problem:

(Sy2) —Apu— Au+ [uf2ut+u = 0 in Q,
P2 (|VulP=2Vu + Vu,v) = f(z,u) on Q.

Here for any p > 2 by A, we denote the p-Laplacian differential operator
defined by

Apu = div(|VulP2Vu) for all u € WHP(Q).

When p = 2, we write Ay = A (the standard Laplace differential operator).
v is the outward unit normal vector on 9, (.,.) is the scalar product of R,
while the reaction term f : 92 x R — R is a Carathéodory function.

In problem (S, 2), the differential operator u — —A,u — Au is nonhomo-
geneous. We mention that equations involving the sum of a p-Laplacian and
a Laplacian (also known as (p,2)-equations) arise in mathematical physics,
see, for example the works of Benci et al. [2] (quantum physics), Cherfils and
II’'yasov [6] (plasma physics) and Zhirkov [16] (homogenization of composites
consisting of two different materials with distinct hardening exponents, double
phase problems). Recently, in a series of papers, problem (S 2) has been in-
vestigated for p > 2, under the boundary condition u = 0. In [12], the authors
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studied the following Dirichlet problem

—Apu—Au = f(z,u) inQ,
(DP’Q){ u = 0 on 0N.

They impose certain conditions on the reaction term f(z,u) to make equa-
tion resonant at oo and zero. Using variational methods and critical groups,
they obtain existence and multiplicity results. In [8], the authors consider the
case with a reaction term f(x,u) which is superlinear in the positive direc-
tion (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear
resonant in the negative direction. They apply Morse theory and variational
methods to establish the existence of at least three non-trivial smooth solu-
tions. Using critical point theory, truncation and comparison techniques, and
Morse theory, Papageorgiou and Radulescu |11] proved multiplicity results for
(Dp2) for both p > 2 and p < 2.

A more general problem with a (p, ¢)-Laplacian equation under a Steklov
boundary condition (1 < ¢ < p < o0), was studied in [3-5,/14,|]15]. Elliptic
equations involving differential operators of the form

Au = div(D(u)Vu) = Apu + Agu,

where D(u) = (|Vu|P~2 + |Vu|972), usually called (p, ¢)-Laplacian, occurs in
many important concrete situations. For instance, this happens when one
seeks stationary solutions to the reaction-diffusion system

(1) w = Au+ c(z, u),

where D(u) = (|]Vu[P~2 + |Vu|?72). This system has a wide range of ap-
plications in physics and related sciences like chemical reaction design [1f,
biophysics [7] and plasma physics [13]. In such applications, the function u
describes a concentration, the first term on the right-hand side of corre-
sponds to the diffusion with a diffusion coefficient D(u); whereas the second
one is the reaction and relates to source and loss processes. Typically, in chemi-
cal and biological applications, the reaction term ¢(z;u) has a polynomial form
with respect to the concentration.
Now, we give our hypothesis on the reaction term f(z,u):

H(f)1 f:00 xR — Ris a Carathéodory function with f(z,¢) > 0 for any

x €00, t>0.
H(f)2 For fo, foo < 00, the limits
o fxt) L flet)
(2) t1_1>r(§1+ n - an tliglo -1 Joo

exist uniformly for xz € 01.

REMARK 1.1. Since we are looking for positive solutions and the above
hypotheses concerns the positive semiaxis Ry = [0, 400), without any loss of
generality we assume that

f(z,t) =0 for a.e. x € 0, for all t < 0.
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The asymptotic behaviors of f near zero and infinity lead us to define
1 = inf{/(|Vu\2 +u?)dr :u € HY(R), / lu|*do = 1}
o0
N = inf{/(]Vu\p FlufP)dz : u e Wl’p(Q),/ ufPdo = 1}.
Q o0

(3)

1/r
Throughout this paper, ||ul],, := <f9(|Vur + |u|r)dx> is the W (Q)-

norm, where W17 (Q)* denotes the dual space, and by (.,.) we denote the

duality pairing between W17 (Q) and Wi (Q)*. The letters C1, Oy, ....

will

denote various positive constants whose exact values are not essential to the
analysis of the problem. Let P = {u € W'P(Q) : u(z) > 0, a.e Q} and

= Np/(N —p) if p < N or p* = 00 if p > N. We always assume H(f);
and H(f)2 hold with fy < p1 and foo > A1. Hence, for any given £ > 0, there

exist C. > 0 such that

|f(z,t) = fool® Y < etP™r +C., z €00, t >0,
which implies that
(4) F(z,t) >
And there exists ¢ € (p, p*) such that

|f(z,t) — fo(1 —e)t| < Ct97L, z € 90, t € R.
Subsequently, we have that

()\1*6) —C., x €00, t>0.

’B\H

1
(5) F(a:,t)gi(l—a) pt? — Cet?, x € 0Q,t € R,
where F(z,t) fo f(z,s)ds.
The followmg functlon illustrates our main result

ExXaMPLE 1.2.

(B ()t 4207t >0,
f(x’t)_{ 0 if1<0,

where € : 002 = R is a measurable function.

2. PRELIMINARIES

In this section, we state some preliminary results which will be used to prove

our main theorem in this paper. First, recall a theorem from [9].

THEOREM 2.1. Let (E,||.||) be a Banach space and U C Ry an interval.

Consider the family of C' functionals on E,
(6) Je(u) = S(u) — kT (u), k€U,



204 A. Boukhsas, A. Zerouali, O. Chakrone, and B. Karim 4

with J.(0) =0, k € U, T nonnegative and either S(u) — oo or T(u) — oo as
lul| = oo. for any k € U, we set

(7) Iy = {v € C([0,1], E) : 7(0) = 0, Ju(7(1)) < 0}.
If for every k € U the set I'y is nonempty and

8 . = inf Je(v(1)) > 0,

(8) ¢x = Inf max Jx(7(1))

then for almost every k € U there exists a sequence {ul}} C E such that
(1) {uk} is bounded;
(i) J.({ull}) = ¢ as n — oo;
(iii) JL({uf}) = 0 in the dual E* as n — co.

Next, we state the following inequality that will be used later.

LEMMA 2.2 ([10, Lemma 4.2]). If p > 2, then

P |y|P p—2 _ M
jwl? = [of? = plolP2.(w — v) > T

for all points v and w in R™.

In the setting of Theorem [2.1| we have E = WLP(Q), U = [5,1]
1 1
S(u) = lulls + el T = [ Faudo,
p oQ

1 1
Tu(w) = el o + Sl ~ x| P upo, wue WP@) ke U
20 7% p P o0
It is easy to verify that
(J(u),v) = /(Vu - Vv + uv)dz + / (|VulP~2Vu - Vo + |u[P~2uv)dx
Q Q

(10)

—k | flz,u)vdo, ueW'P(Q),kcU.
o0

Firstly, we show that J, satisfies the conditions of Theorem [2.1] by proving
several lemmas.

LEMMA 2.3. Ty, # 0 for any k € U.
Proof. Let ¢1 > 0 be a Aj-eigenfunction. For ¢t > 0, we have by that

1 1
Iuton) = 52l + S elenl, - x / Flz, té)do
1
< Pl + 0 o <A1 — 07161 oy + C

1
= *t2H¢1H1 2+ Pl ol on) + O

where Cy = A\(1 — ) +ed > 0. We can choose ty > 0 large enough so that
Ji(tod1) < 0, where tg is independent of k € U. The proof is completed. [
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LEMMA 2.4. There exists a constant ¢ > 0 such that ¢, > ¢ for any k € U.
Proof. For any u € WHP(Q), it follows from that

1 1
Tuw) = lulfo+ Sl = | Fleudo

1 1 1
> glulfo+ Sl = 50 =<y [ uao=C. [ juptao

M1 1 1
> Ll + ol — 50— il oy — Collulfgony

>

—C: ||uHLq Q)"

By trace embedding W1P(Q2) — LP(9Q), we conclude that there exists p > 0
and ¢ > 0 such that Ji(u) > 0 for |[ul| € (0,p) and J.(u) > ¢, ||ullip = p.
Fix k € U and v € T',,. By definition of I',;, we have that ||7(1)|| > p. Hence,
there exists ¢, € (0,1) such that ||y(¢,)| = p. So

11 — inf > inf >
(11) ¢x = inf max Je(v(1)) > inf Ju((ty)) = ¢

The proof is completed.
O

LEMMA 2.5. For any k € U, if {uyn} is bounded and J/,(u,) — 0 in WLP(Q)*
as n — oo, then {u,} admits a convergent subsequence.

Proof. Given k € U, assume that {u,} is bounded and J.(u,) — 0 in
WLP(Q)* as n — oo. By extracting a subsequence, we may suppose that
there exists u € W1P(Q) such that as n — oo

(12) up — win WHP(Q), u, — uin LP(Q), u, — uin L*(9Q), s € [1,p%).

Noting that
(Ji(un) = Ty (u), un — u)

= (Jh(un), un = u) = (Ji (), un — u)
= / Vu, - V(u, —u)dz + / U (U, — uw)dx
Q Q
+ / |V, P2V, - V(u, —u)dz
Q
b [ P P~ e = [ )~ )
Q o9
- / Vu - V(u, —u)dz + / u(u, —u)dx
Q Q

+ / \Vu|P~2Vu - V(u, — u)dz
Q

- / lulP~%u(u, —u)dz + K f(z,u)(uy, — u)do
)

oQ
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= /(|V(un —u)? + |u, — ul?dz
Q

+ / (|Vun P2 Vu, — |VuP~2Vu) - V(u, —u)dz
Q

+ / (\un\pfzun - |u|p72u)(un —u)dx — K flx,up)(uy — u)do
Q o0

+ K flz,u)(u, —u)do
Eto)
and using the inequality in Lemma [2.2] we deduce the following inequality

/ (|Vun P2V, — |VulP72Vu) - V(u, — u)dz
Q

2
> n—uw)|Pdz.
> s | [V = wPds

It follows from and that

(14)

=y L [V = )P < () = Ty, = )
(15)
+K - flx,up)(uy —u)do — K - f(z,u)(uy — u)do.
Note that
(16) (T (un) — J(w), up —u) = 0, as n — oo.

It follows from H(f); and H(f)2 that there exists C1,C2 > 0 such that
(17) fla,t) < Clt| + ColtP™", z € 00, t € R.

Hence, by Holder’s inequality and trace embedding W1P(Q) — LP(9Q) , we
have

‘/{m f(z,un)(up — u)do

+C’2/ | [Py, — uldo
o0

1/2 1/2
(18) <y </ \un]2d0> (/ |ty — u|2da)
oN o
(r—1)/p 1/p
+ C’g(/ |un]pda> (/ |ty — u|pda>
o0 o0

< Csllun — ullr2(90) + Callun — ullpra0) — 0, as n — oo.

< cl/ i [ — w]dor
[99)
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Similarly, we have

(19) f(z,u)(up, —u)do| — 0, as n — oo.

‘BQ

Now, using , and we deduce from that

/ IV (up, —u)Pdz — 0, as n — co.
Q

Hence, u, — u in WP(Q). The proof is completed. O

LEMMA 2.6. There ezists a sequence {r,} C U with k, — 17 as n — o0
and {u,,} C WHP(Q) such that Ji, (us,) = Cx,, I}, (Uy,) = 0.

Proof. We only need to show that for almost every x € U there exists
u® € WP(Q) such that J,(u”) = ¢y, J.(u”) = 0. By Theorem for almost
each x € U, there exists a bounded sequence {uf} C WHP(Q) such that

(20) Jo(ul) = ¢, JL(ul) =0, n— oco.

By, Lemma we may assume that u — u® in WHP(Q) as n — oo. Then
the continuity of J, and J/, implies that J(u") = ¢4, and J.,(u*) = 0. The
proof is completed. H

LEMMA 2.7. Suppose H(f)1 and H(f)2 hold, then

Lu — fooKu

(21) foo!

— 0, u e P,

where (Lu,v) = [5, f(z,u)vdo and (Ku,v) = [q [ulP2uvdz, u,v € WHP(Q).

Proof. By H(f)1 and H(f)2 for every € > 0, there is a constant C. > 0
such that

(22) (2, 1) — foot? Y < Co+etP™!, 2 €0, t>0.

For € P\{0}, letting w = u/||u||1,, by Holder’s inequality and trace embed-
ding W'P(Q) — LP(09) , we have

|v|do

Lu — foKu fz,u) = foouP™!
BT < sup —
llufl1 p<1 Jull, a1 p<1 /002 lull,

(2 < g / (Cellully o] + wP~1o]do
o0

[l p<1
< 06”“”1 +8057

where Cj is independent of €. The proof is completed. U
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3. MAIN RESULTS
Our main result is the following theorem.

THEOREM 3.1. Suppose that f satisfies H(f)1 and H(f)2 with fo < p1 and
foo > Ai. Then (Sp2) has a positive solution.

Proof. By Lemma, there exists a sequence {k,} C U with k, — 1~ as
n — oo and {uy, } C WHP(Q2) such that

(24) J/{n (u/‘fn) = Cﬁn? J, (u/‘@n) = 0

Rn

By Lemmanand ([24), we have ¢, > ¢ > 0 and (J]. (us,),u,, ) = 0. Hence,

u,, € P\{0}. In the following, we first claim that {x,} in W1P(Q2). Assume
by contradiction that, for a subsequence, |us, |1, — oo. Put w, = —==

Ilu'in”lap )
Hence we have, for v € WP(Q),

1
p_g/(vanv + wpv)dz
15,7 o
(25) + / [Vonl”* T - Vede + / lwn|P~2wpvde
Q Q
f((L',U%n) - foou£:1

vdo.

= knfoo / wﬁ_zv + K, 3
o9 o9 s, |17,

Since {#,} is bounded in WP (), for a further subsequence, w, — w in P C
WLP(Q), w, — w in LP(Q) and by the trace embedding WhP(Q) — LP(09Q),
wy, — w in LP(0Q). Letting v = w,, — w in 1 ), we get

/wnw?wn.w dm+/ (P2 (w0, — w)da = 0.
Q

Thus by (S, ) property, we have w, — w in W1P(Q). Passing to the limit in
, we obtain by Lemma that

/ Vw[P~2Vw - Vvdx—}—/ lw|P~2wodz
= foo/ wPwdo Yo € WHP(Q).

o0N
From and the fact that ||w]||1, = 1, we get that foo = Ay, which contradicts
the assumption foo > Ay. Since K, — 17, we can show that
(28) Ji(ue, ) = 0 in WHP(Q)*, n — oo.

In fact, for any v € WHP(Q), it follows from , Holder’s inequality, and
trace embedding W1P(Q)) — LP(99) that

f(x, uy, )vdo
o0

§C’1/ |u,€n||vda+C’2/ |u,,m]p_1|v|da
15)9) 15)9)

< Crljvllp-

(29)
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Furthermore, implies that

(J{(u,{n),v) + (1 - unn) /emf(:r,u,.;n)vda

= (J}(us,),v) = 0, v € WP(Q).

(30)

Hence, Jj(ux,) — 0 in WHP(Q)* as n — oo. By Lemma {ux, } has
a convergent subsequence. Without loss of generality, we may assume that
Uy, — w as n — 00. According to Lemma and

(31) / F(z,uy, )vde| < Cs,
o0
we have
= 1 = 1 >
) Ji(u) = lim Ji(ug,) = lim Ji, (ug,) > ¢ >0,
Ji(u) = lim Jj(ug,) = 0.
n—oo
The standard process shows that u is a positive solution to (Sp2). The proof
is completed. O
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