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POSITIVE SOLUTIONS FOR A (p, 2)-LAPLACIAN STEKLOV
PROBLEM

ABDELMAJID BOUKHSAS, ABDELLAH ZEROUALI, OMAR CHAKRONE,
and BELHADJ KARIM

Abstract. In this work, we study positive solutions of a Steklov problem driven
by the (p, 2)-Laplacian operator by using the variational method. A sufficient
condition for the existence of positive solutions is characterized by the eigenvalues
of a linear eigenvalue problem and another nonlinear eigenvalue problem.
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1. INTRODUCTION

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with a C2-boundary ∂Ω. In
this paper we study the following nonlinear Steklov eigenvalue problem:

(Sp,2)

{
−∆pu−∆u+ |u|p−2u+ u = 0 in Ω,

⟨|∇u|p−2∇u+∇u, ν⟩ = f(x, u) on ∂Ω.

Here for any p > 2 by ∆p we denote the p-Laplacian differential operator
defined by

∆pu := div(|∇u|p−2∇u) for all u ∈ W 1,p(Ω).

When p = 2, we write ∆2 = ∆ (the standard Laplace differential operator).
ν is the outward unit normal vector on ∂Ω, ⟨., .⟩ is the scalar product of RN ,
while the reaction term f : ∂Ω× R → R is a Carathéodory function.

In problem (Sp,2), the differential operator u 7→ −∆pu − ∆u is nonhomo-
geneous. We mention that equations involving the sum of a p-Laplacian and
a Laplacian (also known as (p, 2)-equations) arise in mathematical physics,
see, for example the works of Benci et al. [2] (quantum physics), Cherfils and
Il’yasov [6] (plasma physics) and Zhirkov [16] (homogenization of composites
consisting of two different materials with distinct hardening exponents, double
phase problems). Recently, in a series of papers, problem (Sp,2) has been in-
vestigated for p > 2, under the boundary condition u = 0. In [12], the authors

The authors thank the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2022.2.05



202 A. Boukhsas, A. Zerouali, O. Chakrone, and B. Karim 2

studied the following Dirichlet problem

(Dp,2)

{
−∆pu−∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

They impose certain conditions on the reaction term f(x, u) to make equa-
tion resonant at ±∞ and zero. Using variational methods and critical groups,
they obtain existence and multiplicity results. In [8], the authors consider the
case with a reaction term f(x, u) which is superlinear in the positive direc-
tion (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear
resonant in the negative direction. They apply Morse theory and variational
methods to establish the existence of at least three non-trivial smooth solu-
tions. Using critical point theory, truncation and comparison techniques, and
Morse theory, Papageorgiou and Rădulescu [11] proved multiplicity results for
(Dp,2) for both p > 2 and p < 2.

A more general problem with a (p, q)-Laplacian equation under a Steklov
boundary condition (1 < q < p < ∞), was studied in [3–5, 14, 15]. Elliptic
equations involving differential operators of the form

Au := div(D(u)∇u) = ∆pu+∆qu,

where D(u) = (|∇u|p−2 + |∇u|q−2), usually called (p, q)-Laplacian, occurs in
many important concrete situations. For instance, this happens when one
seeks stationary solutions to the reaction-diffusion system

(1) ut = Au+ c(x, u),

where D(u) = (|∇u|p−2 + |∇u|q−2). This system has a wide range of ap-
plications in physics and related sciences like chemical reaction design [1],
biophysics [7] and plasma physics [13]. In such applications, the function u
describes a concentration, the first term on the right-hand side of (1) corre-
sponds to the diffusion with a diffusion coefficient D(u); whereas the second
one is the reaction and relates to source and loss processes. Typically, in chemi-
cal and biological applications, the reaction term c(x;u) has a polynomial form
with respect to the concentration.

Now, we give our hypothesis on the reaction term f(x, u):

H(f)1 f : ∂Ω × R → R is a Carathéodory function with f(x, t) ≥ 0 for any
x ∈ ∂Ω, t > 0.

H(f)2 For f0, f∞ < ∞, the limits

(2) lim
t→0+

f(x, t)

t
= f0, lim

t→∞

f(x, t)

tp−1
= f∞,

exist uniformly for x ∈ ∂Ω.

Remark 1.1. Since we are looking for positive solutions and the above
hypotheses concerns the positive semiaxis R+ = [0,+∞), without any loss of
generality we assume that

f(x, t) = 0 for a.e. x ∈ ∂Ω, for all t ≤ 0.
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The asymptotic behaviors of f near zero and infinity lead us to define

µ1 = inf

{∫
Ω
(|∇u|2 + u2)dx : u ∈ H1(Ω),

∫
∂Ω

|u|2dσ = 1

}
,

λ1 = inf

{∫
Ω
(|∇u|p + |u|p)dx : u ∈ W 1,p(Ω),

∫
∂Ω

|u|pdσ = 1

}
.

(3)

Throughout this paper, ∥u∥1,r :=
(∫

Ω(|∇u|r + |u|r)dx
)1/r

is the W 1,r(Ω)-

norm, where W 1,r(Ω)∗ denotes the dual space, and by ⟨., .⟩ we denote the
duality pairing between W 1,r(Ω) and W 1,r(Ω)∗. The letters C1, C2, .... will
denote various positive constants whose exact values are not essential to the
analysis of the problem. Let P = {u ∈ W 1,p(Ω) : u(x) ≥ 0, a.e Ω} and
p∗ = Np/(N − p) if p < N or p∗ = ∞ if p ≥ N . We always assume H(f)1
and H(f)2 hold with f0 < µ1 and f∞ > λ1. Hence, for any given ε > 0, there
exist Cε > 0 such that

|f(x, t)− f∞tp−1| ≤ εtp−1 + Cε, x ∈ ∂Ω, t ≥ 0,

which implies that

(4) F (x, t) ≥ 1

p
(λ1 − ε)tp − Cε, x ∈ ∂Ω, t ≥ 0.

And there exists q ∈ (p, p∗) such that

|f(x, t)− f0(1− ε)t| ≤ Cεt
q−1, x ∈ ∂Ω, t ∈ R.

Subsequently, we have that

(5) F (x, t) ≤ 1

2
(1− ε)µ1t

2 − Cεt
q, x ∈ ∂Ω, t ∈ R,

where F (x, t) =
∫ t
0 f(x, s)ds.

The following function illustrates our main result

Example 1.2.

f(x, t) =

{
(µ1

2 + tε(x))t+ 2λ1t
p−1 if t ≥ 0,

0 if t < 0 ,

where ε : ∂Ω → R is a measurable function.

2. PRELIMINARIES

In this section, we state some preliminary results which will be used to prove
our main theorem in this paper. First, recall a theorem from [9].

Theorem 2.1. Let (E, ∥.∥) be a Banach space and U ⊂ R+ an interval.
Consider the family of C1 functionals on E,

(6) Jκ(u) = S(u)− κT (u), κ ∈ U,
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with Jκ(0) = 0, κ ∈ U, T nonnegative and either S(u) → ∞ or T (u) → ∞ as
∥u∥ → ∞. for any κ ∈ U , we set

(7) Γκ = {γ ∈ C([0, 1], E) : γ(0) = 0, Jκ(γ(1)) < 0}.
If for every κ ∈ U the set Γκ is nonempty and

(8) cκ = inf
γ∈Γκ

max
t∈[0,1]

Jκ(γ(1)) > 0,

then for almost every κ ∈ U there exists a sequence {uκn} ⊂ E such that

(i) {uκn} is bounded;
(ii) Jκ({uκn}) → cκ as n → ∞;
(iii) J ′

κ({uκn}) → 0 in the dual E∗ as n → ∞.

Next, we state the following inequality that will be used later.

Lemma 2.2 ([10, Lemma 4.2]). If p ≥ 2, then

|w|p − |v|p − p|v|p−2v.(w − v) ≥ |w − v|p

2p−1 − 1

for all points v and w in Rn.

In the setting of Theorem 2.1 we have E = W 1,p(Ω), U = [δ, 1]

S(u) =
1

2
∥u∥21,2 +

1

p
∥u∥p1,p, T (u) =

∫
∂Ω

F (x, u)dσ,

Jκ(u) =
1

2
∥u∥21,2 +

1

p
∥u∥p1,p − κ

∫
∂Ω

F (x, u)dσ, u ∈ W 1,p(Ω), κ ∈ U.

(9)

It is easy to verify that

⟨J ′
κ(u), v⟩ =

∫
Ω
(∇u · ∇v + uv)dx+

∫
Ω
(|∇u|p−2∇u · ∇v + |u|p−2uv)dx

− κ

∫
∂Ω

f(x, u)vdσ, u ∈ W 1,p(Ω), κ ∈ U.

(10)

Firstly, we show that Jκ satisfies the conditions of Theorem 2.1 by proving
several lemmas.

Lemma 2.3. Γκ ̸= ∅ for any κ ∈ U.

Proof. Let ϕ1 > 0 be a λ1-eigenfunction. For t > 0, we have by (4) that

Jκ(tϕ1) =
1

2
t2∥ϕ1∥21,2 +

1

p
tp∥ϕ1∥p1,p − κ

∫
∂Ω

F (x, tϕ1)dσ

≤ 1

2
t2∥ϕ1∥21,2 +

1

p
tpλ1∥ϕ1∥pLp(∂Ω) −

1

p
(λ1 − ε)δtp∥ϕ1∥pLp(∂Ω) + C1

=
1

2
t2∥ϕ1∥21,2 +

1

p
tpC2∥ϕ1∥pLp(∂Ω) + C1,

where C2 = λ1(1 − δ) + εδ > 0. We can choose t0 > 0 large enough so that
Jκ(t0ϕ1) < 0, where t0 is independent of κ ∈ U. The proof is completed. □
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Lemma 2.4. There exists a constant c > 0 such that cκ ≥ c for any κ ∈ U.

Proof. For any u ∈ W 1,p(Ω), it follows from (5) that

Jκ(u) =
1

2
∥u∥21,2 +

1

p
∥u∥p1,p − κ

∫
∂Ω

F (x, u)dσ

≥ 1

2
∥u∥21,2 +

1

p
∥u∥p1,p −

1

2
(1− ε)µ1

∫
∂Ω

|u|2dσ − Cε

∫
∂Ω

|u|qdσ

≥ µ1

2
∥u∥2L2(∂Ω) +

1

p
∥u∥p1,p −

1

2
(1− ε)µ1∥u∥2L2(∂Ω) − Cε∥u∥qLq(∂Ω)

≥ 1

p
∥u∥p1,p − Cε∥u∥qLq(∂Ω).

By trace embedding W 1,p(Ω) → Lp(∂Ω), we conclude that there exists ρ > 0
and c > 0 such that Jκ(u) > 0 for ∥u∥ ∈ (0, ρ) and Jκ(u) ≥ c, ∥u∥1,p = ρ.
Fix κ ∈ U and γ ∈ Γκ. By definition of Γκ, we have that ∥γ(1)∥ > ρ. Hence,
there exists tγ ∈ (0, 1) such that ∥γ(tγ)∥ = ρ. So

(11) cκ = inf
γ∈Γκ

max
t∈[0,1]

Jκ(γ(t)) ≥ inf
γ∈Γκ

Jκ(γ(tγ)) ≥ c.

The proof is completed.
□

Lemma 2.5. For any κ ∈ U , if {un} is bounded and J ′
κ(un) → 0 in W 1,p(Ω)∗

as n → ∞, then {un} admits a convergent subsequence.

Proof. Given κ ∈ U , assume that {un} is bounded and J ′
κ(un) → 0 in

W 1,p(Ω)∗ as n → ∞. By extracting a subsequence, we may suppose that
there exists u ∈ W 1,p(Ω) such that as n → ∞
(12) un ⇀ u in W 1,p(Ω), un → u in Lp(Ω), un → u in Ls(∂Ω), s ∈ [1, p∗).

Noting that

⟨J ′
κ(un)− J ′

κ(u), un − u⟩

= ⟨J ′
κ(un), un − u⟩ − ⟨J ′

κ(u), un − u⟩

=

∫
Ω

∇un · ∇(un − u)dx+

∫
Ω

un(un − u)dx

+

∫
Ω

|∇un|p−2∇un · ∇(un − u)dx

+

∫
Ω

|un|p−2un(un − u)dx− κ

∫
∂Ω

f(x, un)(un − u)dσ

−
∫
Ω

∇u · ∇(un − u)dx+

∫
Ω

u(un − u)dx

+

∫
Ω

|∇u|p−2∇u · ∇(un − u)dx

−
∫
Ω

|u|p−2u(un − u)dx+ κ

∫
∂Ω

f(x, u)(un − u)dσ

(13)
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=

∫
Ω

(|∇(un − u)|2 + |un − u|2dx

+

∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u) · ∇(un − u)dx

+

∫
Ω

(|un|p−2un − |u|p−2u)(un − u)dx− κ

∫
∂Ω

f(x, un)(un − u)dσ

+ κ

∫
∂Ω

f(x, u)(un − u)dσ

and using the inequality in Lemma 2.2 we deduce the following inequality∫
Ω
(|∇un|p−2∇un − |∇u|p−2∇u) · ∇(un − u)dx

≥ 2

p(2p−1 − 1)

∫
Ω
|∇(un − u)|pdx.

(14)

It follows from (13) and (14) that

2

p(2p−1 − 1)

∫
Ω
|∇(un − u)|pdx ≤ ⟨J ′

κ(un)− J ′
κ(u), un − u⟩

+ κ

∫
∂Ω

f(x, un)(un − u)dσ − κ

∫
∂Ω

f(x, u)(un − u)dσ.

(15)

Note that

(16) ⟨J ′
κ(un)− J ′

κ(u), un − u⟩ → 0, as n → ∞.

It follows from H(f)1 and H(f)2 that there exists C1, C2 > 0 such that

(17) f(x, t) ≤ C1|t|+ C2|t|p−1, x ∈ ∂Ω, t ∈ R.

Hence, by Holder’s inequality and trace embedding W 1,p(Ω) → Lp(∂Ω) , we
have

∣∣∣∣ ∫
∂Ω

f(x, un)(un − u)dσ

∣∣∣∣ ≤ C1

∫
∂Ω

|un||un − u|dσ

+ C2

∫
∂Ω

|un|p−1|un − u|dσ

≤ C1

(∫
∂Ω

|un|2dσ
)1/2(∫

∂Ω
|un − u|2dσ

)1/2

+ C2

(∫
∂Ω

|un|pdσ
)(p−1)/p(∫

∂Ω
|un − u|pdσ

)1/p

≤ C3∥un − u∥L2(∂Ω) + C4∥un − u∥Lp(∂Ω) → 0, as n → ∞.

(18)



7 Positive solutions for a (p, 2)-Laplacian Steklov problem 207

Similarly, we have

(19)

∣∣∣∣ ∫
∂Ω

f(x, u)(un − u)dσ

∣∣∣∣ → 0, as n → ∞.

Now, using (16),(18) and (19) we deduce from (15) that∫
Ω
|∇(un − u)|pdx → 0, as n → ∞.

Hence, un → u in W 1,p(Ω). The proof is completed. □

Lemma 2.6. There exists a sequence {κn} ⊂ U with κn → 1− as n → ∞
and {uκn} ⊂ W 1,p(Ω) such that Jκn(uκn) = cκn , J

′
κn
(uκn) = 0.

Proof. We only need to show that for almost every κ ∈ U there exists
uκ ∈ W 1,p(Ω) such that Jκ(u

κ) = cκ, J
′
κ(u

κ) = 0. By Theorem 2.1, for almost
each κ ∈ U , there exists a bounded sequence {uκn} ⊂ W 1,p(Ω) such that

(20) Jκ(u
κ
n) → cκ, J ′

κ(u
κ
n) → 0 , n → ∞.

By, Lemma 2.5, we may assume that uκn → uκ in W 1,p(Ω) as n → ∞. Then
the continuity of Jκ and J ′

κ implies that Jκ(u
κ) = cκ, and J ′

κ(u
κ) = 0. The

proof is completed. □

Lemma 2.7. Suppose H(f)1 and H(f)2 hold, then

(21)
Lu− f∞Ku

∥u∥p−1
1,p

→ 0, u ∈ P,

where ⟨Lu, v⟩ =
∫
∂Ω f(x, u)vdσ and ⟨Ku, v⟩ =

∫
Ω |u|p−2uvdx, u, v ∈ W 1,p(Ω).

Proof. By H(f)1 and H(f)2 for every ε > 0, there is a constant Cε > 0
such that

(22) |f(x, t)− f∞tp−1| ≤ Cε + εtp−1, x ∈ ∂Ω, t ≥ 0.

For ∈ P\{0}, letting w = u/∥u∥1,p, by Holder’s inequality and trace embed-
ding W 1,p(Ω) → Lp(∂Ω) , we have

sup
∥u∥1,p≤1

∣∣∣∣〈Lu− f∞Ku

∥u∥p−1
1,p

, v

〉∣∣∣∣ ≤ sup
∥u∥1,p≤1

∫
∂Ω

f(x, u)− f∞up−1

∥u∥p−1
1,p

|v|dσ

≤ sup
∥u∥1,p≤1

∫
∂Ω

(Cε∥u∥−(p−1)
1,p |v|+ εwp−1|v|dσ

≤ C6∥u∥−(p−1)
1,p + εC5,

(23)

where C5 is independent of ε. The proof is completed. □



208 A. Boukhsas, A. Zerouali, O. Chakrone, and B. Karim 8

3. MAIN RESULTS

Our main result is the following theorem.

Theorem 3.1. Suppose that f satisfies H(f)1 and H(f)2 with f0 < µ1 and
f∞ > λ1. Then (Sp,2) has a positive solution.

Proof. By Lemma 2.6, there exists a sequence {κn} ⊂ U with κn → 1− as
n → ∞ and {uκn} ⊂ W 1,p(Ω) such that

(24) Jκn(uκn) = cκn , J ′
κn
(uκn) = 0.

By Lemma 2.4 and (24), we have cκn ≥ c > 0 and ⟨J ′
κn
(uκn), u

−
κn
⟩ = 0. Hence,

uκn ∈ P\{0}. In the following, we first claim that {κn} in W 1,p(Ω). Assume
by contradiction that, for a subsequence, ∥uκn∥1,p → ∞. Put wn = uκn

∥uκn∥1,p
.

Hence we have, for v ∈ W 1,p(Ω),

1

∥uκn∥
p−2
1,p

∫
Ω
(∇wn∇v + wnv)dx

+

∫
Ω
|∇wn|p−2∇wn · ∇vdx+

∫
Ω
|wn|p−2wnvdx

= κnf∞

∫
∂Ω

wp−2
n v + κn

∫
∂Ω

f(x, uκn)− f∞up−1
κn

∥uκn∥
p−2
1,p

vdσ.

(25)

Since {κn} is bounded in W 1,p(Ω), for a further subsequence, wn ⇀ w in P ⊂
W 1,p(Ω), wn → w in Lp(Ω) and by the trace embedding W 1,p(Ω) → Lp(∂Ω),
wn → w in Lp(∂Ω). Letting v = wn − w in (25), we get

(26)

∫
Ω
|∇wn|p−2∇wn · ∇(wn − w)dx+

∫
Ω
|wn|p−2wn(wn − w)dx = 0.

Thus by (S+) property, we have wn → w in W 1,p(Ω). Passing to the limit in
(25), we obtain by Lemma 2.7 that∫

Ω
|∇w|p−2∇w · ∇vdx+

∫
Ω
|w|p−2wvdx

= f∞

∫
∂Ω

wp−1vdσ ∀v ∈ W 1,p(Ω).

(27)

From (27) and the fact that ∥w∥1,p = 1, we get that f∞ = λ1, which contradicts
the assumption f∞ > λ1. Since κn → 1−, we can show that

(28) J ′
1(uκn) → 0 in W 1,p(Ω)∗, n → ∞.

In fact, for any v ∈ W 1,p(Ω), it follows from (17), Holder’s inequality, and
trace embedding W 1,p(Ω) → Lp(∂Ω) that∣∣∣∣∫

∂Ω
f(x, uκn)vdσ

∣∣∣∣ ≤ C1

∫
∂Ω

|uκn ||v|dσ + C2

∫
∂Ω

|uκn |p−1|v|dσ

≤ C7∥v∥1,p.
(29)
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Furthermore, (24) implies that

⟨J ′
1(uκn), v⟩+ (1− uκn)

∫
∂Ω

f(x, uκn)vdσ

= ⟨J ′
1(uκn), v⟩ = 0, v ∈ W 1,p(Ω).

(30)

Hence, J ′
1(uκn) → 0 in W 1,p(Ω)∗, as n → ∞. By Lemma 2.5, {uκn} has

a convergent subsequence. Without loss of generality, we may assume that
uκn → u as n → ∞. According to Lemma 2.5, (24) and

(31)

∣∣∣∣∫
∂Ω

F (x, uκn)vdσ

∣∣∣∣ ≤ C8,

we have

J1(u) = lim
n→∞

J1(uκn) = lim
n→∞

Jκn(uκn) ≥ c > 0,

J ′
1(u) = lim

n→∞
J ′
1(uκn) = 0.

(32)

The standard process shows that u is a positive solution to (Sp,2). The proof
is completed. □
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