POSITIVE SOLUTIONS FOR A $(p, 2)$-LAPLACIAN STEKLOV PROBLEM

ABDELMAJID BOUKHSAS, ABDELLAH ZEROUALI, OMAR CHAKRONE, and BELHADJ KARIM

Abstract

In this work, we study positive solutions of a Steklov problem driven by the ($p, 2$)-Laplacian operator by using the variational method. A sufficient condition for the existence of positive solutions is characterized by the eigenvalues of a linear eigenvalue problem and another nonlinear eigenvalue problem.

MSC 2010. 35J20, 35J62, 35J70, 35P05, 35P30.
Key words. ($p, 2$)-Laplacian, nonlinear boundary conditions.

1. INTRODUCTION

Let $\Omega \subseteq \mathbb{R}^{N}(N \geq 2)$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper we study the following nonlinear Steklov eigenvalue problem:

$$
\left(S_{p, 2}\right)\left\{\begin{aligned}
-\Delta_{p} u-\Delta u+|u|^{p-2} u+u & =0 & & \text { in } \Omega \\
\left.\left.\langle | \nabla u\right|^{p-2} \nabla u+\nabla u, \nu\right\rangle & =f(x, u) & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Here for any $p>2$ by Δ_{p} we denote the p-Laplacian differential operator defined by

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \text { for all } u \in W^{1, p}(\Omega)
$$

When $p=2$, we write $\Delta_{2}=\Delta$ (the standard Laplace differential operator). ν is the outward unit normal vector on $\partial \Omega,\langle.,$.$\rangle is the scalar product of \mathbb{R}^{N}$, while the reaction term $f: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function.

In problem $\left(S_{p, 2}\right)$, the differential operator $u \mapsto-\Delta_{p} u-\Delta u$ is nonhomogeneous. We mention that equations involving the sum of a p-Laplacian and a Laplacian (also known as ($p, 2$)-equations) arise in mathematical physics, see, for example the works of Benci et al. [2] (quantum physics), Cherfils and Il'yasov [6] (plasma physics) and Zhirkov 16] (homogenization of composites consisting of two different materials with distinct hardening exponents, double phase problems). Recently, in a series of papers, problem $\left(S_{p, 2}\right)$ has been investigated for $p>2$, under the boundary condition $u=0$. In 12 , the authors

The authors thank the referee for his helpful comments and suggestions.
studied the following Dirichlet problem

$$
\left(D_{p, 2}\right)\left\{\begin{aligned}
-\Delta_{p} u-\Delta u & =f(x, u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

They impose certain conditions on the reaction term $f(x, u)$ to make equation resonant at $\pm \infty$ and zero. Using variational methods and critical groups, they obtain existence and multiplicity results. In [8], the authors consider the case with a reaction term $f(x, u)$ which is superlinear in the positive direction (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the negative direction. They apply Morse theory and variational methods to establish the existence of at least three non-trivial smooth solutions. Using critical point theory, truncation and comparison techniques, and Morse theory, Papageorgiou and Rădulescu [11] proved multiplicity results for $\left(D_{p, 2}\right)$ for both $p>2$ and $p<2$.

A more general problem with a (p, q)-Laplacian equation under a Steklov boundary condition $(1<q<p<\infty)$, was studied in (3) 5, 14, 15). Elliptic equations involving differential operators of the form

$$
A u:=\operatorname{div}(D(u) \nabla u)=\Delta_{p} u+\Delta_{q} u
$$

where $D(u)=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)$, usually called (p, q)-Laplacian, occurs in many important concrete situations. For instance, this happens when one seeks stationary solutions to the reaction-diffusion system

$$
\begin{equation*}
u_{t}=A u+c(x, u), \tag{1}
\end{equation*}
$$

where $D(u)=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right)$. This system has a wide range of applications in physics and related sciences like chemical reaction design [1], biophysics 7 and plasma physics [13]. In such applications, the function u describes a concentration, the first term on the right-hand side of (1) corresponds to the diffusion with a diffusion coefficient $D(u)$; whereas the second one is the reaction and relates to source and loss processes. Typically, in chemical and biological applications, the reaction term $c(x ; u)$ has a polynomial form with respect to the concentration.

Now, we give our hypothesis on the reaction term $f(x, u)$:
$H(f)_{1} f: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with $f(x, t) \geq 0$ for any $x \in \partial \Omega, t>0$.
$H(f)_{2}$ For $f_{0}, f_{\infty}<\infty$, the limits

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{f(x, t)}{t}=f_{0}, \lim _{t \rightarrow \infty} \frac{f(x, t)}{t^{p-1}}=f_{\infty} \tag{2}
\end{equation*}
$$

exist uniformly for $x \in \partial \Omega$.
Remark 1.1. Since we are looking for positive solutions and the above hypotheses concerns the positive semiaxis $\mathbb{R}_{+}=[0,+\infty)$, without any loss of generality we assume that

$$
f(x, t)=0 \text { for a.e. } x \in \partial \Omega \text {, for all } t \leq 0 .
$$

The asymptotic behaviors of f near zero and infinity lead us to define

$$
\begin{align*}
& \mu_{1}=\inf \left\{\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) \mathrm{d} x: u \in H^{1}(\Omega), \int_{\partial \Omega}|u|^{2} \mathrm{~d} \sigma=1\right\} \tag{3}\\
& \lambda_{1}=\inf \left\{\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x: u \in W^{1, p}(\Omega), \int_{\partial \Omega}|u|^{p} \mathrm{~d} \sigma=1\right\} .
\end{align*}
$$

Throughout this paper, $\|u\|_{1, r}:=\left(\int_{\Omega}\left(|\nabla u|^{r}+|u|^{r}\right) \mathrm{d} x\right)^{1 / r}$ is the $W^{1, r}(\Omega)-$ norm, where $W^{1, r}(\Omega)^{*}$ denotes the dual space, and by $\langle.,$.$\rangle we denote the$ duality pairing between $W^{1, r}(\Omega)$ and $W^{1, r}(\Omega)^{*}$. The letters C_{1}, C_{2}, \ldots will denote various positive constants whose exact values are not essential to the analysis of the problem. Let $P=\left\{u \in W^{1, p}(\Omega): u(x) \geq 0\right.$, a.e $\left.\bar{\Omega}\right\}$ and $p^{*}=N p /(N-p)$ if $p<N$ or $p^{*}=\infty$ if $p \geq N$. We always assume $H(f)_{1}$ and $H(f)_{2}$ hold with $f_{0}<\mu_{1}$ and $f_{\infty}>\lambda_{1}$. Hence, for any given $\varepsilon>0$, there exist $C_{\varepsilon}>0$ such that

$$
\left|f(x, t)-f_{\infty} t^{p-1}\right| \leq \varepsilon t^{p-1}+C_{\varepsilon}, x \in \partial \Omega, t \geq 0
$$

which implies that

$$
\begin{equation*}
F(x, t) \geq \frac{1}{p}\left(\lambda_{1}-\varepsilon\right) t^{p}-C_{\varepsilon}, x \in \partial \Omega, t \geq 0 \tag{4}
\end{equation*}
$$

And there exists $q \in\left(p, p^{*}\right)$ such that

$$
\left|f(x, t)-f_{0}(1-\varepsilon) t\right| \leq C_{\varepsilon} t^{q-1}, x \in \partial \Omega, t \in \mathbb{R}
$$

Subsequently, we have that

$$
\begin{equation*}
F(x, t) \leq \frac{1}{2}(1-\varepsilon) \mu_{1} t^{2}-C_{\varepsilon} t^{q}, x \in \partial \Omega, t \in \mathbb{R} \tag{5}
\end{equation*}
$$

where $F(x, t)=\int_{0}^{t} f(x, s) \mathrm{d} s$.
The following function illustrates our main result
Example 1.2.

$$
f(x, t)= \begin{cases}\left(\frac{\mu_{1}}{2}+t \varepsilon(x)\right) t+2 \lambda_{1} t^{p-1} & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

where $\varepsilon: \partial \Omega \rightarrow \mathbb{R}$ is a measurable function.

2. PRELIMINARIES

In this section, we state some preliminary results which will be used to prove our main theorem in this paper. First, recall a theorem from 9 .

ThEOREM 2.1. Let $(E,\|\|$.$) be a Banach space and U \subset \mathbb{R}_{+}$an interval. Consider the family of C^{1} functionals on E,

$$
\begin{equation*}
J_{\kappa}(u)=S(u)-\kappa T(u), \kappa \in U \tag{6}
\end{equation*}
$$

with $J_{\kappa}(0)=0, \kappa \in U, T$ nonnegative and either $S(u) \rightarrow \infty$ or $T(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$. for any $\kappa \in U$, we set

$$
\begin{equation*}
\Gamma_{\kappa}=\left\{\gamma \in C([0,1], E): \gamma(0)=0, J_{\kappa}(\gamma(1))<0\right\} \tag{7}
\end{equation*}
$$

If for every $\kappa \in U$ the set Γ_{κ} is nonempty and

$$
\begin{equation*}
c_{\kappa}=\inf _{\gamma \in \Gamma_{\kappa}} \max _{t \in[0,1]} J_{\kappa}(\gamma(1))>0 \tag{8}
\end{equation*}
$$

then for almost every $\kappa \in U$ there exists a sequence $\left\{u_{n}^{\kappa}\right\} \subset E$ such that
(i) $\left\{u_{n}^{\kappa}\right\}$ is bounded;
(ii) $J_{\kappa}\left(\left\{u_{n}^{\kappa}\right\}\right) \rightarrow c_{\kappa}$ as $n \rightarrow \infty$;
(iii) $J_{\kappa}^{\prime}\left(\left\{u_{n}^{\kappa}\right\}\right) \rightarrow 0$ in the dual E^{*} as $n \rightarrow \infty$.

Next, we state the following inequality that will be used later.
Lemma 2.2 ($\mathbb{1 0}$, Lemma 4.2]). If $p \geq 2$, then

$$
|w|^{p}-|v|^{p}-p|v|^{p-2} v \cdot(w-v) \geq \frac{|w-v|^{p}}{2^{p-1}-1}
$$

for all points v and w in \mathbb{R}^{n}.
In the setting of Theorem 2.1 we have $E=W^{1, p}(\Omega), U=[\delta, 1]$

$$
\begin{align*}
S(u) & =\frac{1}{2}\|u\|_{1,2}^{2}+\frac{1}{p}\|u\|_{1, p}^{p}, T(u)=\int_{\partial \Omega} F(x, u) \mathrm{d} \sigma \tag{9}\\
J_{\kappa}(u) & =\frac{1}{2}\|u\|_{1,2}^{2}+\frac{1}{p}\|u\|_{1, p}^{p}-\kappa \int_{\partial \Omega} F(x, u) \mathrm{d} \sigma, u \in W^{1, p}(\Omega), \kappa \in U
\end{align*}
$$

It is easy to verify that

$$
\begin{align*}
\left\langle J_{\kappa}^{\prime}(u), v\right\rangle & =\int_{\Omega}(\nabla u \cdot \nabla v+u v) \mathrm{d} x+\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \cdot \nabla v+|u|^{p-2} u v\right) \mathrm{d} x \tag{10}\\
& -\kappa \int_{\partial \Omega} f(x, u) v \mathrm{~d} \sigma, \quad u \in W^{1, p}(\Omega), \kappa \in U
\end{align*}
$$

Firstly, we show that J_{κ} satisfies the conditions of Theorem 2.1 by proving several lemmas.

Lemma 2.3. $\Gamma_{\kappa} \neq \emptyset$ for any $\kappa \in U$.
Proof. Let $\phi_{1}>0$ be a λ_{1}-eigenfunction. For $t>0$, we have by (4) that

$$
\begin{aligned}
J_{\kappa}\left(t \phi_{1}\right) & =\frac{1}{2} t^{2}\left\|\phi_{1}\right\|_{1,2}^{2}+\frac{1}{p} t^{p}\left\|\phi_{1}\right\|_{1, p}^{p}-\kappa \int_{\partial \Omega} F\left(x, t \phi_{1}\right) \mathrm{d} \sigma \\
& \leq \frac{1}{2} t^{2}\left\|\phi_{1}\right\|_{1,2}^{2}+\frac{1}{p} t^{p} \lambda_{1}\left\|\phi_{1}\right\|_{L^{p}(\partial \Omega)}^{p}-\frac{1}{p}\left(\lambda_{1}-\varepsilon\right) \delta t^{p}\left\|\phi_{1}\right\|_{L^{p}(\partial \Omega)}^{p}+C_{1} \\
& =\frac{1}{2} t^{2}\left\|\phi_{1}\right\|_{1,2}^{2}+\frac{1}{p} t^{p} C_{2}\left\|\phi_{1}\right\|_{L^{p}(\partial \Omega)}^{p}+C_{1},
\end{aligned}
$$

where $C_{2}=\lambda_{1}(1-\delta)+\varepsilon \delta>0$. We can choose $t_{0}>0$ large enough so that $J_{\kappa}\left(t_{0} \phi_{1}\right)<0$, where t_{0} is independent of $\kappa \in U$. The proof is completed.

Lemma 2.4. There exists a constant $c>0$ such that $c_{\kappa} \geq c$ for any $\kappa \in U$.
Proof. For any $u \in W^{1, p}(\Omega)$, it follows from (5) that

$$
\begin{aligned}
J_{\kappa}(u) & =\frac{1}{2}\|u\|_{1,2}^{2}+\frac{1}{p}\|u\|_{1, p}^{p}-\kappa \int_{\partial \Omega} F(x, u) \mathrm{d} \sigma \\
& \geq \frac{1}{2}\|u\|_{1,2}^{2}+\frac{1}{p}\|u\|_{1, p}^{p}-\frac{1}{2}(1-\varepsilon) \mu_{1} \int_{\partial \Omega}|u|^{2} \mathrm{~d} \sigma-C_{\varepsilon} \int_{\partial \Omega}|u|^{q} \mathrm{~d} \sigma \\
& \geq \frac{\mu_{1}}{2}\|u\|_{L^{2}(\partial \Omega)}^{2}+\frac{1}{p}\|u\|_{1, p}^{p}-\frac{1}{2}(1-\varepsilon) \mu_{1}\|u\|_{L^{2}(\partial \Omega)}^{2}-C_{\varepsilon}\|u\|_{L^{q}(\partial \Omega)}^{q} \\
& \geq \frac{1}{p}\|u\|_{1, p}^{p}-C_{\varepsilon}\|u\|_{L^{q}(\partial \Omega)}^{q}
\end{aligned}
$$

By trace embedding $W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$, we conclude that there exists $\rho>0$ and $c>0$ such that $J_{\kappa}(u)>0$ for $\|u\| \in(0, \rho)$ and $J_{\kappa}(u) \geq c,\|u\|_{1, p}=\rho$. Fix $\kappa \in U$ and $\gamma \in \Gamma_{\kappa}$. By definition of Γ_{κ}, we have that $\|\gamma(1)\|>\rho$. Hence, there exists $t_{\gamma} \in(0,1)$ such that $\left\|\gamma\left(t_{\gamma}\right)\right\|=\rho$. So

$$
\begin{equation*}
c_{\kappa}=\inf _{\gamma \in \Gamma_{\kappa}} \max _{t \in[0,1]} J_{\kappa}(\gamma(t)) \geq \inf _{\gamma \in \Gamma_{\kappa}} J_{\kappa}\left(\gamma\left(t_{\gamma}\right)\right) \geq c . \tag{11}
\end{equation*}
$$

The proof is completed.
Lemma 2.5. For any $\kappa \in U$, if $\left\{u_{n}\right\}$ is bounded and $J_{\kappa}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W^{1, p}(\Omega)^{*}$ as $n \rightarrow \infty$, then $\left\{u_{n}\right\}$ admits a convergent subsequence.

Proof. Given $\kappa \in U$, assume that $\left\{u_{n}\right\}$ is bounded and $J_{\kappa}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W^{1, p}(\Omega)^{*}$ as $n \rightarrow \infty$. By extracting a subsequence, we may suppose that there exists $u \in W^{1, p}(\Omega)$ such that as $n \rightarrow \infty$
(12) $u_{n} \rightharpoonup u$ in $W^{1, p}(\Omega), u_{n} \rightarrow u$ in $L^{p}(\Omega), u_{n} \rightarrow u$ in $L^{s}(\partial \Omega), s \in\left[1, p^{*}\right)$.

Noting that

$$
\begin{align*}
& \left\langle J_{\kappa}^{\prime}\left(u_{n}\right)-J_{\kappa}^{\prime}(u), u_{n}-u\right\rangle \\
& =\left\langle J_{\kappa}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle-\left\langle J_{\kappa}^{\prime}(u), u_{n}-u\right\rangle \\
& =\int_{\Omega} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x+\int_{\Omega} u_{n}\left(u_{n}-u\right) \mathrm{d} x \\
& +\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& +\int_{\Omega}\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-u\right) \mathrm{d} x-\kappa \int_{\partial \Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) \mathrm{d} \sigma \tag{13}\\
& -\int_{\Omega} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x+\int_{\Omega} u\left(u_{n}-u\right) \mathrm{d} x \\
& +\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& -\int_{\Omega}|u|^{p-2} u\left(u_{n}-u\right) \mathrm{d} x+\kappa \int_{\partial \Omega} f(x, u)\left(u_{n}-u\right) \mathrm{d} \sigma
\end{align*}
$$

$$
\begin{aligned}
& =\int_{\Omega}\left(\left|\nabla\left(u_{n}-u\right)\right|^{2}+\left|u_{n}-u\right|^{2} \mathrm{~d} x\right. \\
& +\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& +\int_{\Omega}\left(\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right)\left(u_{n}-u\right) \mathrm{d} x-\kappa \int_{\partial \Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) \mathrm{d} \sigma \\
& +\kappa \int_{\partial \Omega} f(x, u)\left(u_{n}-u\right) \mathrm{d} \sigma
\end{aligned}
$$

and using the inequality in Lemma 2.2 we deduce the following inequality

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right) \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& \geq \frac{2}{p\left(2^{p-1}-1\right)} \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{p} \mathrm{~d} x \tag{14}
\end{align*}
$$

It follows from (13) and $\sqrt{14}$ that

$$
\begin{align*}
& \frac{2}{p\left(2^{p-1}-1\right)} \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{p} \mathrm{~d} x \leq\left\langle J_{\kappa}^{\prime}\left(u_{n}\right)-J_{\kappa}^{\prime}(u), u_{n}-u\right\rangle \\
& +\kappa \int_{\partial \Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) \mathrm{d} \sigma-\kappa \int_{\partial \Omega} f(x, u)\left(u_{n}-u\right) \mathrm{d} \sigma \tag{15}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left\langle J_{\kappa}^{\prime}\left(u_{n}\right)-J_{\kappa}^{\prime}(u), u_{n}-u\right\rangle \rightarrow 0, \text { as } n \rightarrow \infty \tag{16}
\end{equation*}
$$

It follows from $H(f)_{1}$ and $H(f)_{2}$ that there exists $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
f(x, t) \leq C_{1}|t|+C_{2}|t|^{p-1}, x \in \partial \Omega, t \in \mathbb{R} \tag{17}
\end{equation*}
$$

Hence, by Holder's inequality and trace embedding $W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$, we have

$$
\begin{align*}
& \left|\int_{\partial \Omega} f\left(x, u_{n}\right)\left(u_{n}-u\right) \mathrm{d} \sigma\right| \leq C_{1} \int_{\partial \Omega}\left|u_{n}\right|\left|u_{n}-u\right| \mathrm{d} \sigma \\
& \quad+C_{2} \int_{\partial \Omega}\left|u_{n}\right|^{p-1}\left|u_{n}-u\right| \mathrm{d} \sigma \\
& \leq C_{1}\left(\int_{\partial \Omega}\left|u_{n}\right|^{2} \mathrm{~d} \sigma\right)^{1 / 2}\left(\int_{\partial \Omega}\left|u_{n}-u\right|^{2} \mathrm{~d} \sigma\right)^{1 / 2} \tag{18}\\
& \quad+C_{2}\left(\int_{\partial \Omega}\left|u_{n}\right|^{p} \mathrm{~d} \sigma\right)^{(p-1) / p}\left(\int_{\partial \Omega}\left|u_{n}-u\right|^{p} \mathrm{~d} \sigma\right)^{1 / p} \\
& \leq C_{3}\left\|u_{n}-u\right\|_{L^{2}(\partial \Omega)}+C_{4}\left\|u_{n}-u\right\|_{L^{p}(\partial \Omega)} \rightarrow 0, \text { as } n \rightarrow \infty
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\left|\int_{\partial \Omega} f(x, u)\left(u_{n}-u\right) \mathrm{d} \sigma\right| \rightarrow 0, \text { as } n \rightarrow \infty . \tag{19}
\end{equation*}
$$

Now, using (16), (18) and (19) we deduce from (15) that

$$
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{p} \mathrm{~d} x \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Hence, $u_{n} \rightarrow u$ in $W^{1, p}(\Omega)$. The proof is completed.
Lemma 2.6. There exists a sequence $\left\{\kappa_{n}\right\} \subset U$ with $\kappa_{n} \rightarrow 1^{-}$as $n \rightarrow \infty$ and $\left\{u_{\kappa_{n}}\right\} \subset W^{1, p}(\Omega)$ such that $J_{\kappa_{n}}\left(u_{\kappa_{n}}\right)=c_{\kappa_{n}}, J_{\kappa_{n}}^{\prime}\left(u_{\kappa_{n}}\right)=0$.

Proof. We only need to show that for almost every $\kappa \in U$ there exists $u^{\kappa} \in W^{1, p}(\Omega)$ such that $J_{\kappa}\left(u^{\kappa}\right)=c_{\kappa}, J_{\kappa}^{\prime}\left(u^{\kappa}\right)=0$. By Theorem 2.1, for almost each $\kappa \in U$, there exists a bounded sequence $\left\{u_{n}^{\kappa}\right\} \subset W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
J_{\kappa}\left(u_{n}^{\kappa}\right) \rightarrow c_{\kappa}, J_{\kappa}^{\prime}\left(u_{n}^{\kappa}\right) \rightarrow 0, n \rightarrow \infty . \tag{20}
\end{equation*}
$$

By, Lemma 2.5, we may assume that $u_{n}^{\kappa} \rightarrow u^{\kappa}$ in $W^{1, p}(\Omega)$ as $n \rightarrow \infty$. Then the continuity of J_{κ} and J_{κ}^{\prime} implies that $J_{\kappa}\left(u^{\kappa}\right)=c_{\kappa}$, and $J_{\kappa}^{\prime}\left(u^{\kappa}\right)=0$. The proof is completed.

Lemma 2.7. Suppose $H(f)_{1}$ and $H(f)_{2}$ hold, then

$$
\begin{equation*}
\frac{L u-f_{\infty} K u}{\|u\|_{1, p}^{p-1}} \rightarrow 0, u \in P \tag{21}
\end{equation*}
$$

where $\langle L u, v\rangle=\int_{\partial \Omega} f(x, u) v \mathrm{~d} \sigma$ and $\langle K u, v\rangle=\int_{\Omega}|u|^{p-2} u v \mathrm{~d} x, u, v \in W^{1, p}(\Omega)$.
Proof. By $H(f)_{1}$ and $H(f)_{2}$ for every $\varepsilon>0$, there is a constant $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\left|f(x, t)-f_{\infty} t^{p-1}\right| \leq C_{\varepsilon}+\varepsilon t^{p-1}, x \in \partial \Omega, t \geq 0 \tag{22}
\end{equation*}
$$

For $\in P \backslash\{0\}$, letting $w=u /\|u\|_{1, p}$, by Holder's inequality and trace embed$\operatorname{ding} W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$, we have

$$
\begin{align*}
& \sup _{\|u\|_{1, p} \leq 1}\left|\left\langle\frac{L u-f_{\infty} K u}{\|u\|_{1, p}^{p-1}}, v\right\rangle\right| \leq \sup _{\|u\|_{1, p} \leq 1} \int_{\partial \Omega} \frac{f(x, u)-f_{\infty} u^{p-1}}{\|u\|_{1, p}^{p-1}}|v| \mathrm{d} \sigma \\
& \leq \sup _{\|u\|_{1, p} \leq 1} \int_{\partial \Omega}\left(C_{\varepsilon}\|u\|_{1, p}^{-(p-1)}|v|+\varepsilon w^{p-1}|v| \mathrm{d} \sigma\right. \tag{23}\\
& \leq C_{6}\|u\|_{1, p}^{-(p-1)}+\varepsilon C_{5},
\end{align*}
$$

where C_{5} is independent of ε. The proof is completed.

3. MAIN RESULTS

Our main result is the following theorem.
Theorem 3.1. Suppose that f satisfies $H(f)_{1}$ and $H(f)_{2}$ with $f_{0}<\mu_{1}$ and $f_{\infty}>\lambda_{1}$. Then $\left(S_{p, 2}\right)$ has a positive solution.

Proof. By Lemma 2.6, there exists a sequence $\left\{\kappa_{n}\right\} \subset U$ with $\kappa_{n} \rightarrow 1^{-}$as $n \rightarrow \infty$ and $\left\{u_{\kappa_{n}}\right\} \subset W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
J_{\kappa_{n}}\left(u_{\kappa_{n}}\right)=c_{\kappa_{n}}, J_{\kappa_{n}}^{\prime}\left(u_{\kappa_{n}}\right)=0 . \tag{24}
\end{equation*}
$$

By Lemma 2.4 and (24), we have $c_{\kappa_{n}} \geq c>0$ and $\left\langle J_{\kappa_{n}}^{\prime}\left(u_{\kappa_{n}}\right), u_{\kappa_{n}}^{-}\right\rangle=0$. Hence, $u_{\kappa_{n}} \in P \backslash\{0\}$. In the following, we first claim that $\left\{\kappa_{n}\right\}$ in $W^{1, p}(\Omega)$. Assume by contradiction that, for a subsequence, $\left\|u_{\kappa_{n}}\right\|_{1, p} \rightarrow \infty$. Put $w_{n}=\frac{u_{\kappa_{n}}}{\left\|u_{\kappa_{n}}\right\|_{1, p}}$. Hence we have, for $v \in W^{1, p}(\Omega)$,

$$
\begin{align*}
& \frac{1}{\left\|u_{\kappa_{n}}\right\|_{1, p}^{p-2}} \int_{\Omega}\left(\nabla w_{n} \nabla v+w_{n} v\right) \mathrm{d} x \\
& +\int_{\Omega}\left|\nabla w_{n}\right|^{p-2} \nabla w_{n} \cdot \nabla v \mathrm{~d} x+\int_{\Omega}\left|w_{n}\right|^{p-2} w_{n} v \mathrm{~d} x \tag{25}\\
& =\kappa_{n} f_{\infty} \int_{\partial \Omega} w_{n}^{p-2} v+\kappa_{n} \int_{\partial \Omega} \frac{f\left(x, u_{\kappa_{n}}\right)-f_{\infty} u_{\kappa_{n}}^{p-1}}{\|\left. u_{\kappa_{n}}\right|_{1, p} ^{p-2}} v \mathrm{~d} \sigma .
\end{align*}
$$

Since $\left\{\kappa_{n}\right\}$ is bounded in $W^{1, p}(\Omega)$, for a further subsequence, $w_{n} \rightharpoonup w$ in $P \subset$ $W^{1, p}(\Omega), w_{n} \rightarrow w$ in $L^{p}(\Omega)$ and by the trace embedding $W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$, $w_{n} \rightarrow w$ in $L^{p}(\partial \Omega)$. Letting $v=w_{n}-w$ in (25), we get

$$
\begin{equation*}
\int_{\Omega}\left|\nabla w_{n}\right|^{p-2} \nabla w_{n} \cdot \nabla\left(w_{n}-w\right) \mathrm{d} x+\int_{\Omega}\left|w_{n}\right|^{p-2} w_{n}\left(w_{n}-w\right) \mathrm{d} x=0 . \tag{26}
\end{equation*}
$$

Thus by (S_{+}) property, we have $w_{n} \rightarrow w$ in $W^{1, p}(\Omega)$. Passing to the limit in (25), we obtain by Lemma 2.7 that

$$
\begin{align*}
& \int_{\Omega}|\nabla w|^{p-2} \nabla w \cdot \nabla v \mathrm{~d} x+\int_{\Omega}|w|^{p-2} w v \mathrm{~d} x \\
& =f_{\infty} \int_{\partial \Omega} w^{p-1} v \mathrm{~d} \sigma \forall v \in W^{1, p}(\Omega) . \tag{27}
\end{align*}
$$

From (27) and the fact that $\|w\|_{1, p}=1$, we get that $f_{\infty}=\lambda_{1}$, which contradicts the assumption $f_{\infty}>\lambda_{1}$. Since $\kappa_{n} \rightarrow 1^{-}$, we can show that

$$
\begin{equation*}
J_{1}^{\prime}\left(u_{\kappa_{n}}\right) \rightarrow 0 \text { in } W^{1, p}(\Omega)^{*}, n \rightarrow \infty . \tag{28}
\end{equation*}
$$

In fact, for any $v \in W^{1, p}(\Omega)$, it follows from (17), Holder's inequality, and trace embedding $W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ that

$$
\begin{align*}
\left|\int_{\partial \Omega} f\left(x, u_{\kappa_{n}}\right) v \mathrm{~d} \sigma\right| & \leq C_{1} \int_{\partial \Omega}\left|u_{\kappa_{n}} \| v\right| \mathrm{d} \sigma+C_{2} \int_{\partial \Omega}\left|u_{\kappa_{n}}\right|^{p-1}|v| \mathrm{d} \sigma \tag{29}\\
& \leq C_{7}\|v\|_{1, p} .
\end{align*}
$$

Furthermore, (24) implies that

$$
\begin{align*}
& \left\langle J_{1}^{\prime}\left(u_{\kappa_{n}}\right), v\right\rangle+\left(1-u_{\kappa_{n}}\right) \int_{\partial \Omega} f\left(x, u_{\kappa_{n}}\right) v \mathrm{~d} \sigma \tag{30}\\
& =\left\langle J_{1}^{\prime}\left(u_{\kappa_{n}}\right), v\right\rangle=0, v \in W^{1, p}(\Omega) .
\end{align*}
$$

Hence, $J_{1}^{\prime}\left(u_{\kappa_{n}}\right) \rightarrow 0$ in $W^{1, p}(\Omega)^{*}$, as $n \rightarrow \infty$. By Lemma 2.5. $\left\{u_{\kappa_{n}}\right\}$ has a convergent subsequence. Without loss of generality, we may assume that $u_{\kappa_{n}} \rightarrow u$ as $n \rightarrow \infty$. According to Lemma 2.5, (24) and

$$
\begin{equation*}
\left|\int_{\partial \Omega} F\left(x, u_{\kappa_{n}}\right) v \mathrm{~d} \sigma\right| \leq C_{8}, \tag{31}
\end{equation*}
$$

we have

$$
\begin{align*}
& J_{1}(u)=\lim _{n \rightarrow \infty} J_{1}\left(u_{\kappa_{n}}\right)=\lim _{n \rightarrow \infty} J_{\kappa_{n}}\left(u_{\kappa_{n}}\right) \geq c>0, \\
& J_{1}^{\prime}(u)=\lim _{n \rightarrow \infty} J_{1}^{\prime}\left(u_{\kappa_{n}}\right)=0 . \tag{3}
\end{align*}
$$

The standard process shows that u is a positive solution to $\left(S_{p, 2}\right)$. The proof is completed.

REFERENCES

[1] R. Aris, Mathematical modelling techniques, Pitman, London, 1978.
[2] V. Benci, P. d'Avenia, D. Fortunato and L. Pisani, Solutions in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000), 297-324.
[3] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, Multiple solutions for a (p, q) Laplacian Steklov problem, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 357-368.
[4] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, On a positive solutions for (p, q)Laplacian Steklov problem with two parameters, Bol. Soc. Parana. Mat. (3), 40 (2022), 1-19.
[5] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, Steklov eigenvalue problems with indefinite weight for the (p, q)-Laplacian, to appear.
[6] L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with (p, q)-Laplacian, Comm. Pure Appl. Math., 4 (2005), 9-22.
[7] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, Vol. 28, Springer-Verlag, Berlin, 1979.
[8] L. Gasiński and N. S. Papageorgiou, Asymmetric ($p, 2$)-equations with double resonance, Calc. Var. Partial Differential Equations, 56 (2017), 1-23.
[9] L. Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z., 232 (1999), 651-664.
[10] P. Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
[11] N. S. Papageorgiou and V. D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393-430.
[12] N. S. Papageorgiou, V. D. Rădulescu and D.D. Repovs, Existence and multiplicity of solutions for resonant ($p, 2$)-equations, Adv. Nonlinear Stud., 18 (2018), 105-129.
[13] M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 4th edition, A Series of Modern Surveys in Mathematics, Vol. 34, Springer, Berlin, 2008.
[14] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, Resonant Steklov eigenvalue problem involving the ($p ; q$)-Laplacian, Afr. Mat., 30 (2019), 171-179.
[15] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, On a positive solution for $(p ; q)$ Laplace equation with nonlinear boundary conditions and indefinite weights, Bol. Soc. Parana. Mat. (3), 38 (2020), 219-233.
[16] V. V. E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv., 29 (1987), 33-66.

Received December 24, 2020
Accepted May 4, 2021

University Moulay Ismail of Meknes FST Errachidia
LMIMA Laboratory, ROLALI Group Errachidia, Morocco
E-mail: abdelmajidboukhsas@gmail.com
https://orcid.org/0000-0002-9317-8232
Regional Centre of Trades Education and Training
Department of Mathematics
Oujda, Morocco
E-mail: abdellahzerouali@yahoo.fr
https://orcid.org/0000-0001-9090-4094
University Mohammed First
Faculty of Sciences
Department of Mathematics
Oujda, Morocco
E-mail: chakrone@yahoo.fr
https://orcid.org/0000-0002-2208-4220
University Moulay Ismail of Meknes
FST Errachidia
Department of Mathematics
Errachidia, Morocco
E-mail: karembelf@gmail.com
https://orcid.org/0000-0002-7455-5434

