POSITIVE SOLUTIONS FOR A (p, 2)-LAPLACIAN STEKLOV PROBLEM

ABDELMAJID BOUKHSAS, ABDELLAH ZEROUALI, OMAR CHAKRONE, and BELHADJ KARIM

Abstract. In this work, we study positive solutions of a Steklov problem driven by the (p, 2)-Laplacian operator by using the variational method. A sufficient condition for the existence of positive solutions is characterized by the eigenvalues of a linear eigenvalue problem and another nonlinear eigenvalue problem.

MSC 2010. 35J20, 35J62, 35J70, 35P05, 35P30.

Key words. (p, 2)-Laplacian, nonlinear boundary conditions.

1. INTRODUCTION

Let $\Omega \subseteq \mathbb{R}^N$ $(N \ge 2)$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper we study the following nonlinear Steklov eigenvalue problem:

$$(S_{p,2}) \begin{cases} -\Delta_p u - \Delta u + |u|^{p-2}u + u &= 0 & \text{in } \Omega, \\ \langle |\nabla u|^{p-2} \nabla u + \nabla u, \nu \rangle &= f(x,u) & \text{on } \partial \Omega. \end{cases}$$

Here for any p > 2 by Δ_p we denote the *p*-Laplacian differential operator defined by

$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u)$$
 for all $u \in W^{1,p}(\Omega)$.

When p = 2, we write $\Delta_2 = \Delta$ (the standard Laplace differential operator). ν is the outward unit normal vector on $\partial\Omega$, $\langle ., . \rangle$ is the scalar product of \mathbb{R}^N , while the reaction term $f : \partial\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function.

In problem $(S_{p,2})$, the differential operator $u \mapsto -\Delta_p u - \Delta u$ is nonhomogeneous. We mention that equations involving the sum of a *p*-Laplacian and a Laplacian (also known as (p, 2)-equations) arise in mathematical physics, see, for example the works of Benci et al. [2] (quantum physics), Cherfils and Il'yasov [6] (plasma physics) and Zhirkov [16] (homogenization of composites consisting of two different materials with distinct hardening exponents, double phase problems). Recently, in a series of papers, problem $(S_{p,2})$ has been investigated for p > 2, under the boundary condition u = 0. In [12], the authors

The authors thank the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2022.2.05

studied the following Dirichlet problem

$$(D_{p,2}) \begin{cases} -\Delta_p u - \Delta u &= f(x,u) & \text{in } \Omega, \\ u &= 0 & \text{on } \partial\Omega. \end{cases}$$

They impose certain conditions on the reaction term f(x, u) to make equation resonant at $\pm \infty$ and zero. Using variational methods and critical groups, they obtain existence and multiplicity results. In [8], the authors consider the case with a reaction term f(x, u) which is superlinear in the positive direction (without satisfying the Ambrosetti-Rabinowitz condition) and sublinear resonant in the negative direction. They apply Morse theory and variational methods to establish the existence of at least three non-trivial smooth solutions. Using critical point theory, truncation and comparison techniques, and Morse theory, Papageorgiou and Rădulescu [11] proved multiplicity results for $(D_{p,2})$ for both p > 2 and p < 2.

A more general problem with a (p,q)-Laplacian equation under a Steklov boundary condition $(1 < q < p < \infty)$, was studied in [3–5, 14, 15]. Elliptic equations involving differential operators of the form

$$Au := \operatorname{div}(D(u)\nabla u) = \Delta_p u + \Delta_q u,$$

where $D(u) = (|\nabla u|^{p-2} + |\nabla u|^{q-2})$, usually called (p, q)-Laplacian, occurs in many important concrete situations. For instance, this happens when one seeks stationary solutions to the reaction-diffusion system

(1)
$$u_t = Au + c(x, u),$$

where $D(u) = (|\nabla u|^{p-2} + |\nabla u|^{q-2})$. This system has a wide range of applications in physics and related sciences like chemical reaction design [1], biophysics [7] and plasma physics [13]. In such applications, the function u describes a concentration, the first term on the right-hand side of (1) corresponds to the diffusion with a diffusion coefficient D(u); whereas the second one is the reaction and relates to source and loss processes. Typically, in chemical and biological applications, the reaction term c(x; u) has a polynomial form with respect to the concentration.

Now, we give our hypothesis on the reaction term f(x, u):

 $H(f)_1 \ f: \partial \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function with $f(x,t) \ge 0$ for any $x \in \partial \Omega, t > 0$.

 $H(f)_2$ For $f_0, f_\infty < \infty$, the limits

(2)
$$\lim_{t \to 0^+} \frac{f(x,t)}{t} = f_0, \ \lim_{t \to \infty} \frac{f(x,t)}{t^{p-1}} = f_{\infty},$$

exist uniformly for $x \in \partial \Omega$.

REMARK 1.1. Since we are looking for positive solutions and the above hypotheses concerns the positive semiaxis $\mathbb{R}_+ = [0, +\infty)$, without any loss of generality we assume that

$$f(x,t) = 0$$
 for a.e. $x \in \partial \Omega$, for all $t \leq 0$.

The asymptotic behaviors of f near zero and infinity lead us to define

(3)

$$\mu_{1} = \inf \left\{ \int_{\Omega} (|\nabla u|^{2} + u^{2}) \mathrm{d}x : u \in H^{1}(\Omega), \int_{\partial \Omega} |u|^{2} \mathrm{d}\sigma = 1 \right\},$$

$$\lambda_{1} = \inf \left\{ \int_{\Omega} (|\nabla u|^{p} + |u|^{p}) \mathrm{d}x : u \in W^{1,p}(\Omega), \int_{\partial \Omega} |u|^{p} \mathrm{d}\sigma = 1 \right\}.$$

Throughout this paper, $||u||_{1,r} := \left(\int_{\Omega} (|\nabla u|^r + |u|^r) \mathrm{d}x\right)^{1/r}$ is the $W^{1,r}(\Omega)$ -

norm, where $W^{1,r}(\Omega)^*$ denotes the dual space, and by $\langle .,. \rangle$ we denote the duality pairing between $W^{1,r}(\Omega)$ and $W^{1,r}(\Omega)^*$. The letters $C_1, C_2, ...$ will denote various positive constants whose exact values are not essential to the analysis of the problem. Let $P = \{u \in W^{1,p}(\Omega) : u(x) \ge 0, \text{ a.e. } \overline{\Omega}\}$ and $p^* = Np/(N-p)$ if p < N or $p^* = \infty$ if $p \ge N$. We always assume $H(f)_1$ and $H(f)_2$ hold with $f_0 < \mu_1$ and $f_\infty > \lambda_1$. Hence, for any given $\varepsilon > 0$, there exist $C_{\varepsilon} > 0$ such that

$$|f(x,t) - f_{\infty}t^{p-1}| \le \varepsilon t^{p-1} + C_{\varepsilon}, \ x \in \partial\Omega, t \ge 0,$$

which implies that

(4)
$$F(x,t) \ge \frac{1}{p} (\lambda_1 - \varepsilon) t^p - C_{\varepsilon}, \ x \in \partial\Omega, t \ge 0.$$

And there exists $q \in (p, p^*)$ such that

$$|f(x,t) - f_0(1-\varepsilon)t| \le C_{\varepsilon}t^{q-1}, \ x \in \partial\Omega, t \in \mathbb{R}.$$

Subsequently, we have that

(5)
$$F(x,t) \leq \frac{1}{2}(1-\varepsilon)\mu_1 t^2 - C_{\varepsilon} t^q, \ x \in \partial\Omega, t \in \mathbb{R},$$

where $F(x,t) = \int_0^t f(x,s) ds$.

The following function illustrates our main result

EXAMPLE 1.2.

$$f(x,t) = \begin{cases} \left(\frac{\mu_1}{2} + t\varepsilon(x)\right)t + 2\lambda_1 t^{p-1} & \text{if } t \ge 0, \\ 0 & \text{if } t < 0, \end{cases}$$

where $\varepsilon : \partial \Omega \to \mathbb{R}$ is a measurable function.

2. PRELIMINARIES

In this section, we state some preliminary results which will be used to prove our main theorem in this paper. First, recall a theorem from [9].

THEOREM 2.1. Let $(E, \|.\|)$ be a Banach space and $U \subset \mathbb{R}_+$ an interval. Consider the family of C^1 functionals on E,

(6)
$$J_{\kappa}(u) = S(u) - \kappa T(u), \ \kappa \in U,$$

with $J_{\kappa}(0) = 0, \ \kappa \in U, T$ nonnegative and either $S(u) \to \infty$ or $T(u) \to \infty$ as $||u|| \to \infty$. for any $\kappa \in U$, we set

(7)
$$\Gamma_{\kappa} = \{ \gamma \in C([0,1], E) : \gamma(0) = 0, J_{\kappa}(\gamma(1)) < 0 \}.$$

If for every $\kappa \in U$ the set Γ_{κ} is nonempty and

(8)
$$c_{\kappa} = \inf_{\gamma \in \Gamma_{\kappa}} \max_{t \in [0,1]} J_{\kappa}(\gamma(1)) > 0,$$

then for almost every $\kappa \in U$ there exists a sequence $\{u_n^\kappa\} \subset E$ such that

- (i) $\{u_n^\kappa\}$ is bounded;
- (ii) $J_{\kappa}(\{u_n^{\kappa}\}) \to c_{\kappa} \text{ as } n \to \infty;$ (iii) $J'_{\kappa}(\{u_n^{\kappa}\}) \to 0 \text{ in the dual } E^* \text{ as } n \to \infty.$

Next, we state the following inequality that will be used later.

LEMMA 2.2 ([10, Lemma 4.2]). If $p \ge 2$, then

$$|w|^{p} - |v|^{p} - p|v|^{p-2}v.(w-v) \ge \frac{|w-v|^{p}}{2^{p-1}-1}$$

for all points v and w in \mathbb{R}^n .

In the setting of Theorem 2.1 we have $E = W^{1,p}(\Omega), U = [\delta, 1]$

(9)

$$S(u) = \frac{1}{2} \|u\|_{1,2}^{2} + \frac{1}{p} \|u\|_{1,p}^{p}, \ T(u) = \int_{\partial\Omega} F(x,u) d\sigma,$$

$$J_{\kappa}(u) = \frac{1}{2} \|u\|_{1,2}^{2} + \frac{1}{p} \|u\|_{1,p}^{p} - \kappa \int_{\partial\Omega} F(x,u) d\sigma, \ u \in W^{1,p}(\Omega), \kappa \in U.$$

It is easy to verify that

(10)
$$\langle J_{\kappa}'(u), v \rangle = \int_{\Omega} (\nabla u \cdot \nabla v + uv) dx + \int_{\Omega} (|\nabla u|^{p-2} \nabla u \cdot \nabla v + |u|^{p-2} uv) dx \\ - \kappa \int_{\partial \Omega} f(x, u) v d\sigma, \quad u \in W^{1, p}(\Omega), \kappa \in U.$$

Firstly, we show that J_{κ} satisfies the conditions of Theorem 2.1 by proving several lemmas.

LEMMA 2.3. $\Gamma_{\kappa} \neq \emptyset$ for any $\kappa \in U$.

Proof. Let $\phi_1 > 0$ be a λ_1 -eigenfunction. For t > 0, we have by (4) that

$$J_{\kappa}(t\phi_{1}) = \frac{1}{2}t^{2} \|\phi_{1}\|_{1,2}^{2} + \frac{1}{p}t^{p} \|\phi_{1}\|_{1,p}^{p} - \kappa \int_{\partial\Omega} F(x, t\phi_{1}) d\sigma$$

$$\leq \frac{1}{2}t^{2} \|\phi_{1}\|_{1,2}^{2} + \frac{1}{p}t^{p}\lambda_{1} \|\phi_{1}\|_{L^{p}(\partial\Omega)}^{p} - \frac{1}{p}(\lambda_{1} - \varepsilon)\delta t^{p} \|\phi_{1}\|_{L^{p}(\partial\Omega)}^{p} + C_{1}$$

$$= \frac{1}{2}t^{2} \|\phi_{1}\|_{1,2}^{2} + \frac{1}{p}t^{p}C_{2} \|\phi_{1}\|_{L^{p}(\partial\Omega)}^{p} + C_{1},$$

where $C_2 = \lambda_1(1-\delta) + \varepsilon \delta > 0$. We can choose $t_0 > 0$ large enough so that $J_{\kappa}(t_0\phi_1) < 0$, where t_0 is independent of $\kappa \in U$. The proof is completed. LEMMA 2.4. There exists a constant c > 0 such that $c_{\kappa} \ge c$ for any $\kappa \in U$. Proof. For any $u \in W^{1,p}(\Omega)$, it follows from (5) that

$$\begin{aligned} J_{\kappa}(u) &= \frac{1}{2} \|u\|_{1,2}^{2} + \frac{1}{p} \|u\|_{1,p}^{p} - \kappa \int_{\partial\Omega} F(x,u) \mathrm{d}\sigma \\ &\geq \frac{1}{2} \|u\|_{1,2}^{2} + \frac{1}{p} \|u\|_{1,p}^{p} - \frac{1}{2} (1-\varepsilon) \mu_{1} \int_{\partial\Omega} |u|^{2} \mathrm{d}\sigma - C_{\varepsilon} \int_{\partial\Omega} |u|^{q} \mathrm{d}\sigma \\ &\geq \frac{\mu_{1}}{2} \|u\|_{L^{2}(\partial\Omega)}^{2} + \frac{1}{p} \|u\|_{1,p}^{p} - \frac{1}{2} (1-\varepsilon) \mu_{1} \|u\|_{L^{2}(\partial\Omega)}^{2} - C_{\varepsilon} \|u\|_{L^{q}(\partial\Omega)}^{q} \\ &\geq \frac{1}{p} \|u\|_{1,p}^{p} - C_{\varepsilon} \|u\|_{L^{q}(\partial\Omega)}^{q}. \end{aligned}$$

By trace embedding $W^{1,p}(\Omega) \to L^p(\partial\Omega)$, we conclude that there exists $\rho > 0$ and c > 0 such that $J_{\kappa}(u) > 0$ for $||u|| \in (0, \rho)$ and $J_{\kappa}(u) \ge c$, $||u||_{1,p} = \rho$. Fix $\kappa \in U$ and $\gamma \in \Gamma_{\kappa}$. By definition of Γ_{κ} , we have that $||\gamma(1)|| > \rho$. Hence, there exists $t_{\gamma} \in (0, 1)$ such that $||\gamma(t_{\gamma})|| = \rho$. So

(11)
$$c_{\kappa} = \inf_{\gamma \in \Gamma_{\kappa}} \max_{t \in [0,1]} J_{\kappa}(\gamma(t)) \ge \inf_{\gamma \in \Gamma_{\kappa}} J_{\kappa}(\gamma(t_{\gamma})) \ge c$$

The proof is completed.

LEMMA 2.5. For any $\kappa \in U$, if $\{u_n\}$ is bounded and $J'_{\kappa}(u_n) \to 0$ in $W^{1,p}(\Omega)^*$ as $n \to \infty$, then $\{u_n\}$ admits a convergent subsequence.

Proof. Given $\kappa \in U$, assume that $\{u_n\}$ is bounded and $J'_{\kappa}(u_n) \to 0$ in $W^{1,p}(\Omega)^*$ as $n \to \infty$. By extracting a subsequence, we may suppose that there exists $u \in W^{1,p}(\Omega)$ such that as $n \to \infty$

(12) $u_n \rightharpoonup u$ in $W^{1,p}(\Omega), u_n \rightarrow u$ in $L^p(\Omega), u_n \rightarrow u$ in $L^s(\partial\Omega), s \in [1, p^*).$

Noting that

(13)

$$\begin{aligned} \langle J'_{\kappa}(u_n) - J'_{\kappa}(u), u_n - u \rangle \\ &= \langle J'_{\kappa}(u_n), u_n - u \rangle - \langle J'_{\kappa}(u), u_n - u \rangle \\ &= \int_{\Omega} \nabla u_n \cdot \nabla (u_n - u) dx + \int_{\Omega} u_n (u_n - u) dx \\ &+ \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla (u_n - u) dx \\ &+ \int_{\Omega} |u_n|^{p-2} u_n (u_n - u) dx - \kappa \int_{\partial \Omega} f(x, u_n) (u_n - u) d\sigma \\ &- \int_{\Omega} \nabla u \cdot \nabla (u_n - u) dx + \int_{\Omega} u(u_n - u) dx \\ &+ \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla (u_n - u) dx \\ &+ \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla (u_n - u) dx \\ &- \int_{\Omega} |u|^{p-2} u(u_n - u) dx + \kappa \int_{\partial \Omega} f(x, u) (u_n - u) d\sigma \end{aligned}$$

$$= \int_{\Omega} (|\nabla(u_n - u)|^2 + |u_n - u|^2 dx)$$
$$+ \int_{\Omega} (|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u) \cdot \nabla(u_n - u) dx$$
$$+ \int_{\Omega} (|u_n|^{p-2} u_n - |u|^{p-2} u)(u_n - u) dx - \kappa \int_{\partial\Omega} f(x, u_n)(u_n - u) d\sigma$$
$$+ \kappa \int_{\partial\Omega} f(x, u)(u_n - u) d\sigma$$

and using the inequality in Lemma 2.2 we deduce the following inequality

(14)
$$\int_{\Omega} (|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u) \cdot \nabla (u_n - u) \mathrm{d}x$$
$$\geq \frac{2}{p(2^{p-1} - 1)} \int_{\Omega} |\nabla (u_n - u)|^p \mathrm{d}x.$$

It follows from (13) and (14) that

(15)
$$\frac{2}{p(2^{p-1}-1)} \int_{\Omega} |\nabla(u_n-u)|^p dx \le \langle J'_{\kappa}(u_n) - J'_{\kappa}(u), u_n - u \rangle + \kappa \int_{\partial\Omega} f(x, u_n)(u_n - u) d\sigma - \kappa \int_{\partial\Omega} f(x, u)(u_n - u) d\sigma.$$

Note that

(16)
$$\langle J'_{\kappa}(u_n) - J'_{\kappa}(u), u_n - u \rangle \to 0, \text{ as } n \to \infty.$$

It follows from $H(f)_1$ and $H(f)_2$ that there exists $C_1, C_2 > 0$ such that

(17)
$$f(x,t) \le C_1 |t| + C_2 |t|^{p-1}, \ x \in \partial\Omega, t \in \mathbb{R}.$$

Hence, by Holder's inequality and trace embedding $W^{1,p}(\Omega) \to L^p(\partial \Omega)$, we have

$$\begin{aligned} \left| \int_{\partial\Omega} f(x,u_n)(u_n-u) \mathrm{d}\sigma \right| &\leq C_1 \int_{\partial\Omega} |u_n| |u_n-u| \mathrm{d}\sigma \\ &+ C_2 \int_{\partial\Omega} |u_n|^{p-1} |u_n-u| \mathrm{d}\sigma \end{aligned}$$

$$(18) \qquad \leq C_1 \bigg(\int_{\partial\Omega} |u_n|^2 \mathrm{d}\sigma \bigg)^{1/2} \bigg(\int_{\partial\Omega} |u_n-u|^2 \mathrm{d}\sigma \bigg)^{1/2} \\ &+ C_2 \bigg(\int_{\partial\Omega} |u_n|^p \mathrm{d}\sigma \bigg)^{(p-1)/p} \bigg(\int_{\partial\Omega} |u_n-u|^p \mathrm{d}\sigma \bigg)^{1/p} \\ &\leq C_3 ||u_n-u||_{L^2(\partial\Omega)} + C_4 ||u_n-u||_{L^p(\partial\Omega)} \to 0, \text{ as } n \to \infty. \end{aligned}$$

Similarly, we have

(19)
$$\left| \int_{\partial\Omega} f(x,u)(u_n-u) \mathrm{d}\sigma \right| \to 0, \text{ as } n \to \infty.$$

Now, using (16), (18) and (19) we deduce from (15) that

$$\int_{\Omega} |\nabla (u_n - u)|^p \mathrm{d}x \to 0, \text{ as } n \to \infty.$$

Hence, $u_n \to u$ in $W^{1,p}(\Omega)$. The proof is completed.

LEMMA 2.6. There exists a sequence $\{\kappa_n\} \subset U$ with $\kappa_n \to 1^-$ as $n \to \infty$ and $\{u_{\kappa_n}\} \subset W^{1,p}(\Omega)$ such that $J_{\kappa_n}(u_{\kappa_n}) = c_{\kappa_n}, J'_{\kappa_n}(u_{\kappa_n}) = 0.$

Proof. We only need to show that for almost every $\kappa \in U$ there exists $u^{\kappa} \in W^{1,p}(\Omega)$ such that $J_{\kappa}(u^{\kappa}) = c_{\kappa}, J'_{\kappa}(u^{\kappa}) = 0$. By Theorem 2.1, for almost each $\kappa \in U$, there exists a bounded sequence $\{u_n^{\kappa}\} \subset W^{1,p}(\Omega)$ such that

(20)
$$J_{\kappa}(u_n^{\kappa}) \to c_{\kappa}, \ J_{\kappa}'(u_n^{\kappa}) \to 0, \ n \to \infty.$$

By, Lemma 2.5, we may assume that $u_n^{\kappa} \to u^{\kappa}$ in $W^{1,p}(\Omega)$ as $n \to \infty$. Then the continuity of J_{κ} and J'_{κ} implies that $J_{\kappa}(u^{\kappa}) = c_{\kappa}$, and $J'_{\kappa}(u^{\kappa}) = 0$. The proof is completed.

LEMMA 2.7. Suppose $H(f)_1$ and $H(f)_2$ hold, then

(21)
$$\frac{Lu - f_{\infty}Ku}{\|u\|_{1,n}^{p-1}} \to 0, \ u \in P,$$

where $\langle Lu, v \rangle = \int_{\partial\Omega} f(x, u) v \mathrm{d}\sigma$ and $\langle Ku, v \rangle = \int_{\Omega} |u|^{p-2} u v \mathrm{d}x, \ u, v \in W^{1,p}(\Omega).$

Proof. By $H(f)_1$ and $H(f)_2$ for every $\varepsilon > 0$, there is a constant $C_{\varepsilon} > 0$ such that

(22)
$$|f(x,t) - f_{\infty}t^{p-1}| \le C_{\varepsilon} + \varepsilon t^{p-1}, \ x \in \partial\Omega, \ t \ge 0.$$

For $\in P \setminus \{0\}$, letting $w = u/||u||_{1,p}$, by Holder's inequality and trace embedding $W^{1,p}(\Omega) \to L^p(\partial\Omega)$, we have

(23)

$$\sup_{\|u\|_{1,p} \leq 1} \left| \left\langle \frac{Lu - f_{\infty} Ku}{\|u\|_{1,p}^{p-1}}, v \right\rangle \right| \leq \sup_{\|u\|_{1,p} \leq 1} \int_{\partial\Omega} \frac{f(x,u) - f_{\infty} u^{p-1}}{\|u\|_{1,p}^{p-1}} |v| d\sigma$$

$$\leq \sup_{\|u\|_{1,p} \leq 1} \int_{\partial\Omega} (C_{\varepsilon} \|u\|_{1,p}^{-(p-1)} |v| + \varepsilon w^{p-1} |v| d\sigma$$

$$\leq C_{6} \|u\|_{1,p}^{-(p-1)} + \varepsilon C_{5},$$

where C_5 is independent of ε . The proof is completed.

3. MAIN RESULTS

Our main result is the following theorem.

THEOREM 3.1. Suppose that f satisfies $H(f)_1$ and $H(f)_2$ with $f_0 < \mu_1$ and $f_{\infty} > \lambda_1$. Then $(S_{p,2})$ has a positive solution.

Proof. By Lemma 2.6, there exists a sequence $\{\kappa_n\} \subset U$ with $\kappa_n \to 1^-$ as $n \to \infty$ and $\{u_{\kappa_n}\} \subset W^{1,p}(\Omega)$ such that

(24)
$$J_{\kappa_n}(u_{\kappa_n}) = c_{\kappa_n}, \ J'_{\kappa_n}(u_{\kappa_n}) = 0.$$

By Lemma 2.4 and (24), we have $c_{\kappa_n} \geq c > 0$ and $\langle J'_{\kappa_n}(u_{\kappa_n}), u^-_{\kappa_n} \rangle = 0$. Hence, $u_{\kappa_n} \in P \setminus \{0\}$. In the following, we first claim that $\{\kappa_n\}$ in $W^{1,p}(\Omega)$. Assume by contradiction that, for a subsequence, $\|u_{\kappa_n}\|_{1,p} \to \infty$. Put $w_n = \frac{u_{\kappa_n}}{\|u_{\kappa_n}\|_{1,p}}$. Hence we have, for $v \in W^{1,p}(\Omega)$,

(25)
$$\frac{1}{\|u_{\kappa_n}\|_{1,p}^{p-2}} \int_{\Omega} (\nabla w_n \nabla v + w_n v) dx$$
$$+ \int_{\Omega} |\nabla w_n|^{p-2} \nabla w_n \cdot \nabla v dx + \int_{\Omega} |w_n|^{p-2} w_n v dx$$
$$= \kappa_n f_{\infty} \int_{\partial \Omega} w_n^{p-2} v + \kappa_n \int_{\partial \Omega} \frac{f(x, u_{\kappa_n}) - f_{\infty} u_{\kappa_n}^{p-1}}{\|u_{\kappa_n}\|_{1,p}^{p-2}} v d\sigma.$$

Since $\{\kappa_n\}$ is bounded in $W^{1,p}(\Omega)$, for a further subsequence, $w_n \to w$ in $P \subset W^{1,p}(\Omega)$, $w_n \to w$ in $L^p(\Omega)$ and by the trace embedding $W^{1,p}(\Omega) \to L^p(\partial\Omega)$, $w_n \to w$ in $L^p(\partial\Omega)$. Letting $v = w_n - w$ in (25), we get

(26)
$$\int_{\Omega} |\nabla w_n|^{p-2} \nabla w_n \cdot \nabla (w_n - w) \mathrm{d}x + \int_{\Omega} |w_n|^{p-2} w_n (w_n - w) \mathrm{d}x = 0.$$

Thus by (S_+) property, we have $w_n \to w$ in $W^{1,p}(\Omega)$. Passing to the limit in (25), we obtain by Lemma 2.7 that

(27)
$$\int_{\Omega} |\nabla w|^{p-2} \nabla w \cdot \nabla v dx + \int_{\Omega} |w|^{p-2} w v dx$$
$$= f_{\infty} \int_{\partial \Omega} w^{p-1} v d\sigma \ \forall v \in W^{1,p}(\Omega).$$

From (27) and the fact that $||w||_{1,p} = 1$, we get that $f_{\infty} = \lambda_1$, which contradicts the assumption $f_{\infty} > \lambda_1$. Since $\kappa_n \to 1^-$, we can show that

(28)
$$J'_1(u_{\kappa_n}) \to 0 \text{ in } W^{1,p}(\Omega)^*, \ n \to \infty.$$

In fact, for any $v \in W^{1,p}(\Omega)$, it follows from (17), Holder's inequality, and trace embedding $W^{1,p}(\Omega) \to L^p(\partial\Omega)$ that

(29)
$$\left| \int_{\partial\Omega} f(x, u_{\kappa_n}) v \mathrm{d}\sigma \right| \leq C_1 \int_{\partial\Omega} |u_{\kappa_n}| |v| \mathrm{d}\sigma + C_2 \int_{\partial\Omega} |u_{\kappa_n}|^{p-1} |v| \mathrm{d}\sigma \\ \leq C_7 ||v||_{1,p}.$$

Furthermore, (24) implies that

(30)
$$\langle J'_1(u_{\kappa_n}), v \rangle + (1 - u_{\kappa_n}) \int_{\partial \Omega} f(x, u_{\kappa_n}) v \mathrm{d}\sigma$$
$$= \langle J'_1(u_{\kappa_n}), v \rangle = 0, \ v \in W^{1,p}(\Omega).$$

Hence, $J'_1(u_{\kappa_n}) \to 0$ in $W^{1,p}(\Omega)^*$, as $n \to \infty$. By Lemma 2.5, $\{u_{\kappa_n}\}$ has a convergent subsequence. Without loss of generality, we may assume that $u_{\kappa_n} \to u$ as $n \to \infty$. According to Lemma 2.5, (24) and

(31)
$$\left| \int_{\partial \Omega} F(x, u_{\kappa_n}) v \mathrm{d}\sigma \right| \le C_8,$$

we have

(32)
$$J_1(u) = \lim_{n \to \infty} J_1(u_{\kappa_n}) = \lim_{n \to \infty} J_{\kappa_n}(u_{\kappa_n}) \ge c > 0,$$
$$J_1'(u) = \lim_{n \to \infty} J_1'(u_{\kappa_n}) = 0.$$

The standard process shows that u is a positive solution to $(S_{p,2})$. The proof is completed.

REFERENCES

- [1] R. Aris, Mathematical modelling techniques, Pitman, London, 1978.
- [2] V. Benci, P. d'Avenia, D. Fortunato and L. Pisani, Solutions in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000), 297–324.
- [3] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, Multiple solutions for a (p,q)-Laplacian Steklov problem, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 357–368.
- [4] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, On a positive solutions for (p,q)-Laplacian Steklov problem with two parameters, Bol. Soc. Parana. Mat. (3), 40 (2022), 1–19.
- [5] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, Steklov eigenvalue problems with indefinite weight for the (p,q)-Laplacian, to appear.
- [6] L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with (p,q)-Laplacian, Comm. Pure Appl. Math., 4 (2005), 9–22.
- [7] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, Vol. 28, Springer-Verlag, Berlin, 1979.
- [8] L. Gasiński and N. S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var. Partial Differential Equations, 56 (2017), 1–23.
- [9] L. Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z., 232 (1999), 651–664.
- [10] P. Lindqvist, On the equation $div(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc., **109** (1990), 157–164.
- [11] N. S. Papageorgiou and V. D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393–430.
- [12] N. S. Papageorgiou, V. D. Rădulescu and D.D. Repovs, Existence and multiplicity of solutions for resonant (p,2)-equations, Adv. Nonlinear Stud., 18 (2018), 105–129.

- [13] M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 4th edition, A Series of Modern Surveys in Mathematics, Vol. 34, Springer, Berlin, 2008.
- [14] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, Resonant Steklov eigenvalue problem involving the (p; q)-Laplacian, Afr. Mat., 30 (2019), 171–179.
- [15] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, On a positive solution for (p; q)-Laplace equation with nonlinear boundary conditions and indefinite weights, Bol. Soc. Parana. Mat. (3), 38 (2020), 219–233.
- [16] V. V. E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv., 29 (1987), 33–66.

Received December 24, 2020 Accepted May 4, 2021 University Moulay Ismail of Meknes FST Errachidia LMIMA Laboratory, ROLALI Group Errachidia, Morocco E-mail: abdelmajidboukhsas@gmail.com https://orcid.org/0000-0002-9317-8232

Regional Centre of Trades Education and Training Department of Mathematics Oujda, Morocco E-mail: abdellahzerouali@yahoo.fr https://orcid.org/0000-0001-9090-4094

University Mohammed First Faculty of Sciences Department of Mathematics Oujda, Morocco E-mail: chakrone@yahoo.fr https://orcid.org/0000-0002-2208-4220

University Moulay Ismail of Meknes FST Errachidia Department of Mathematics Errachidia, Morocco E-mail: karembelf@gmail.com https://orcid.org/0000-0002-7455-5434