WEAK OPENNESS AND WEAK CONTINUITY IN IDEAL TOPOLOGICAL SPACES

CHAWALIT BOONPOK

Abstract. Our purpose is to introduce the concepts of weakly *-open functions and weakly *-continuous functions. Moreover, some characterizations of weakly *-continuous functions and $\theta(\star)$ -continuous functions are investigated. In particular, the relationships between weakly *-continuous functions and $\theta(\star)$ -continuous functions and $\theta(\star)$ -continuous functions are established.

MSC 2010. 54C08, 54C10.

Key words. Weakly *-open function, weakly *-continuous function.

1. INTRODUCTION

In 1984, Rose [21] introduced the notion of weakly open functions. Rose and Janković [23] have defined the notion of weakly closed functions and investigated some of the fundamental properties of weakly open and weakly closed functions. Caldas and Navalagi [4] introduced the notions of weakly semi-open and weakly semi-closed functions as a new generalization of weakly open and weakly closed functions, respectively. Noiri et al. [17] introduced a new class of functions called weakly *b*-open functions which is a generalization of weakly semi-open functions and investigated some characterizations concerning weakly b-open functions. Ekici [7] introduced the notion of weakly BR-continuous functions and obtained some characterizations of weakly BRcontinuous functions and the relationships among weakly BR-continuous functions, strongly θ -b-continuous functions, weakly clopen functions and the other related functions. Caldas et al. [3] introduced the concept of weakly BR-closed functions and investigated some characterizations of weakly BR-closed functions. In 2011, Caldas et al. [2] introduced and studied a new class of functions by using the notions of b- θ -open sets and b- θ -closure operator called weakly BR-open functions. In [18], the present author introduced a new notion of weakly M-open functions as functions defined between sets satisfying some minimal conditions and obtained some characterizations of such functions.

The concept of weak continuity due to Levine [16] is one of the most important weak forms of continuity in topological spaces. Rose [22] has introduced

This research project was financially supported by Mahasarakham University.

DOI: 10.24193/mathcluj.2022.2.03

C. Boonpok

the notion of subweakly continuous functions and investigated the relationships between subweak continuity and weak continuity. Ekici et al. [8] established a new class of functions called λ -continuous functions which is weaker than λ -continuous functions and investigated some fundamental properties of weakly λ -continuous functions. Popa and Noiri [19] introduced the notion of weakly (τ, m) -continuous functions as functions from a topological space into a set satisfying some minimal conditions and investigated several characterizations of such functions. Moreover, the present author [20] introduced the concept of weakly *M*-continuous functions as functions from a set satisfying some minimal conditions into a set satisfying some minimal conditions and investigated some characterizations of weakly M-continuous functions. The notion of ideals in topological spaces has been studied by Kuratowski [15] and Vaidyanathaswamy [24]. Janković and Hamlett [14] investigated further properties of ideal topological spaces. Hatir and Noiri [13] have introduced the notion of semi- \mathscr{I} -open sets to obtain decomposition of continuity. In [10], the present author introduced the notions of weakly semi-*I*-open sets and weakly semi-*I*-continuous functions.

The paper is organized as follows. In Section 3, we introduce and study the notion of weakly \star -open functions. Section 4 is devoted to introducing and studying weakly \star -continuous functions and $\theta(\star)$ -continuous functions. Moreover, the relationships between weakly \star -continuous functions and $\theta(\star)$ continuous functions are discussed.

2. PRELIMINARIES

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated.

In a topological space (X, τ) , the closure and the interior of any subset A of X will denoted by Cl(A) and Int(A), respectively.

An ideal \mathscr{I} on a topological space (X, τ) is a nonempty collection of subsets of X satisfying the following properties:

(1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$;

(2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$.

A topological space (X, τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X, τ, \mathscr{I}) . For an ideal topological space (X, τ, \mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

 $A^{\star}(\mathscr{I}) = \{ x \in X \mid U \cap A \notin \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x \}.$

In case there is no chance for confusion, $A^{\star}(\mathscr{I})$ is simply written as A^{\star} .

In [15], A^* is called the local function of A with respect to \mathscr{I} and τ and $\operatorname{Cl}^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$. For any ideal topological space (X, τ, \mathscr{I}) , there exists a topology $\tau^*(\mathscr{I})$ finer than τ , generated by $\mathscr{B}(\mathscr{I}, \tau) = \{U - I_0 \mid U \in \tau \text{ and } I_0 \in \mathscr{I}\}$, but in general $\mathscr{B}(\mathscr{I},\tau)$ is not always a topology [14]. A subset A is said to be \star -closed [14] if $A^{\star} \subseteq A$. The complement of a \star -closed set is called \star -open. The interior of a subset A in $(X,\tau^{\star}(\mathscr{I}))$ is denoted by $\mathrm{Int}^{\star}(A)$.

DEFINITION 2.1 ([25]). Let A be a subset of an ideal topological space (X, τ, \mathscr{I}) . A point $x \in X$ is called a θ - \mathscr{I} -cluster point of A if $\operatorname{Cl}^*(U) \cap A \neq \emptyset$ for every $U \in \tau$ containing x. The set of all θ - \mathscr{I} -cluster points of A is called the θ - \mathscr{I} -closure of A and is denoted by $\operatorname{Cl}_{\theta_1}(A)$. A point $x \in X$ is called a θ - \mathscr{I} -interior point of A if $\operatorname{Cl}^*(U) \subseteq A$ for some $U \in \tau$ containing x. The set of all θ - \mathscr{I} -interior of A and is denoted by $\operatorname{Ll}_{\theta_1}(A)$.

LEMMA 2.2. For subsets A and B of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) $Cl_{\theta_1}(Cl_{\theta_1}(A)) = Cl_{\theta_1}(A).$
- (2) If $A \subseteq B$, then $Cl_{\theta_i}(A) \subseteq Cl_{\theta_i}(B)$.
- (3) $Cl_{\theta_1}(X-A) = X Int_{\theta_1}(A).$
- (4) $Int_{\theta_1}(X-A) = X Cl_{\theta_1}(A).$

DEFINITION 2.3. Let A be a subset of an ideal topological space (X, τ, \mathscr{I}) . A point $x \in X$ is called

- (i) a θ -*-cluster point of A if $Cl(U) \cap A \neq \emptyset$ for every *-open set U containing x,
- (ii) a θ -*-interior point of A if $Cl(U) \subseteq A$ for some *-open set U containing x.

The set of all θ -*-cluster points of A is called the θ -*-closure of A and is denoted by $*Cl_{\theta}(A)$. If $A = *Cl_{\theta}(A)$, then A is called θ -*-closed. The complement of a θ -*-closed set is said to be θ -*-open. The set of all θ -*interior points of A is called the θ -*-interior of A and is denoted by $*Int_{\theta}(A)$.

LEMMA 2.4. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties are hold:

- (1) If A is open, then $Cl^{\star}(A) = \star Cl_{\theta}(A)$.
- (2) $\star Cl_{\theta}(A)$ is \star -closed.

Proof. (1) In general, $\operatorname{Cl}^*(A) \subseteq \operatorname{*Cl}_{\theta}(A)$ holds. Suppose that $x \notin \operatorname{Cl}^*(A)$. Then, there exists a \star -open set U containing x such that $A \cap U = \emptyset$; hence $A \cap \operatorname{Cl}(U) = \emptyset$ since A is open. Thus, $x \notin \operatorname{*Cl}_{\theta}(A)$ and hence $\operatorname{*Cl}_{\theta}(A) \subseteq \operatorname{Cl}^*(A)$. This shows that $\operatorname{Cl}^*(A) = \operatorname{*Cl}_{\theta}(A)$.

(2) Let $x \in X - \star \operatorname{Cl}_{\theta}(A)$. Then $x \notin \star \operatorname{Cl}_{\theta}(A)$. There exists a \star -open set U_x containing x such that $\operatorname{Cl}(U_x) \cap A = \emptyset$. Thus, $\star \operatorname{Cl}_{\theta}(A) \cap U_x = \emptyset$ and hence $x \in U_x \subseteq X - \star \operatorname{Cl}_{\theta}(A)$. Thus, $X - \star \operatorname{Cl}_{\theta}(A) = \bigcup_{x \in X - \star \operatorname{Cl}_{\theta}(A)} U_x$ is \star -open. This shows that $\star \operatorname{Cl}_{\theta}(A)$ is \star -closed.

3. CHARACTERIZATIONS OF WEAKLY *****-OPEN FUNCTIONS

In this section, we introduce the concept of weakly \star -open functions and investigate some characterizations of weakly *-open functions.

DEFINITION 3.1. A function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{I})$ is said to be *weakly* *-open if $f(U) \subseteq \operatorname{Int}^{\star}(f(\operatorname{Cl}^{\star}(U)))$ for each $U \in \tau$.

THEOREM 3.2. For a function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following properties are equivalent:

- (1) f is weakly \star -open;
- (2) $f(Int_{\theta_1}(A)) \subseteq Int^{\star}(f(A))$ for every subset A of X;
- (3) $Int_{\theta_{l}}(f^{-1}(B)) \subseteq f^{-1}(Int^{*}(B))$ for every subset B of Y; (4) $f^{-1}(Cl^{*}(B)) \subseteq Cl_{\theta_{l}}(f^{-1}(B))$ for every subset B of Y;
- (5) for each $x \in X$ and each open set U of X containing x, there exists an open set V of Y containing f(x) such that $V \subseteq f(Cl^{\star}(U))$.

Proof. (1) \Rightarrow (2): Let A be any subset of X and $x \in Int_{\theta_i}(A)$. Then, there exists $U \in \tau$ such that $x \in U \subseteq \operatorname{Cl}^{\star}(U) \subseteq A$ and hence $f(x) \in f(U) \subseteq$ $f(\mathrm{Cl}^{\star}(U)) \subseteq f(A)$. Since f is weakly \star -open, $f(U) \subseteq \mathrm{Int}^{\star}(f(\mathrm{Cl}^{\star}(U))) \subseteq$ $\operatorname{Int}^{\star}(f(A))$ and $x \in f^{-1}(\operatorname{Int}^{\star}(f(A)))$. Thus, $\operatorname{Int}_{\theta_2}(A) \subseteq f^{-1}(\operatorname{Int}^{\star}(f(A)))$ and $f(\operatorname{Int}_{\theta_i}(A)) \subseteq \operatorname{Int}^{\star}(f(A)).$

(2) \Rightarrow (3): Let B be any subset of Y. By (2), we have $f(\operatorname{Int}_{\theta_2}(f^{-1}(B))) \subset$ $\operatorname{Int}^{\star}(f(f^{-1}(B))) \subseteq \operatorname{Int}^{\star}(B)$. Thus, $\operatorname{Int}_{\theta_l}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{Int}^{\star}(B))$.

 $(3) \Rightarrow (4)$: Let B be any subset of Y. By (3),

$$X - \operatorname{Cl}_{\theta_{l}}(f^{-1}(B)) = \operatorname{Int}_{\theta_{l}}(X - f^{-1}(B))$$
$$= \operatorname{Int}_{\theta_{l}}(f^{-1}(Y - B))$$
$$\subseteq f^{-1}(\operatorname{Int}^{\star}(Y - B))$$
$$= f^{-1}(Y - \operatorname{Cl}^{\star}(B)) = X - f^{-1}(\operatorname{Cl}^{\star}(B))$$

and hence $f^{-1}(\operatorname{Cl}^{\star}(B)) \subset \operatorname{Cl}_{\theta_{1}}(f^{-1}(B)).$

 $(4) \Rightarrow (5)$: Let $x \in X$ and $U \in \tau$ containing x. By (4), we have

$$f^{-1}(\operatorname{Cl}^{\star}(Y - \operatorname{Cl}^{\star}(U))) \subseteq \operatorname{Cl}_{\theta_{i}}(f^{-1}(Y - \operatorname{Cl}^{\star}(U)))$$

Since $f^{-1}(Cl^{*}(Y - Cl^{*}(U))) = X - f^{-1}(Int^{*}(f(Cl^{*}(U))))$ and $\operatorname{Cl}_{\theta_{i}}(f^{-1}(Y - f(\operatorname{Cl}^{\star}(U)))) = \operatorname{Cl}_{\theta_{i}}(X - f^{-1}(f(\operatorname{Cl}^{\star}(U))))$ $\subseteq \operatorname{Cl}_{\theta_1}(X - \operatorname{Cl}^{\star}(U))$ $= X - \operatorname{Int}_{\theta i}(\operatorname{Cl}^{\star}(U)) \subseteq X - U,$

 $X - f^{-1}(\operatorname{Int}^{\star}(f(\operatorname{Cl}^{\star}(U)))) \subset X - U$. Thus, $U \subset f^{-1}(\operatorname{Int}^{\star}(f(\operatorname{Cl}^{\star}(U))))$ and hence $f(U) \subseteq \text{Int}^{\star}(f(\text{Cl}^{\star}(U)))$. Since $f(x) \in \text{Int}^{\star}(f(\text{Cl}^{\star}(U)))$, there exists a *-open set V of Y such that $f(x) \in V \subseteq f(Cl^*(U))$.

177

 $(5) \Rightarrow (1)$: Let $U \in \tau$ and $x \in U$. By (5), there exists a \star -open set V of Y containing f(x) such that $V \subseteq f(\operatorname{Cl}^{\star}(U))$. Hence, we have

$$f(x) \in V \subseteq \operatorname{Int}^{\star}(f(\operatorname{Cl}^{\star}(U)))$$

for each $x \in U$. Consequently, we obtain $f(U) \subseteq \text{Int}^*(f(\text{Cl}^*(U)))$. This shows that f is weakly \star -open.

DEFINITION 3.3 ([6]). A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be \star -dense if $\operatorname{Cl}^{\star}(A) = X$.

DEFINITION 3.4 ([9]). An ideal topological space (X, τ, \mathscr{I}) is said to be *-hyperconnected if V is *-dense for every nonempty open set V of X.

THEOREM 3.5. Let (X, τ, \mathscr{I}) be a \star -hyperconnected space. Then a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is weakly \star -open if and only if f(X) is \star -open in (Y, σ, \mathscr{J}) .

Proof. Let f be weakly *-open. Since $X \in \tau$, $f(X) \subseteq \operatorname{Int}^*(f(\operatorname{Cl}^*(X))) =$ Int*(f(X)) and hence $f(X) \subseteq \operatorname{Int}^*(f(X))$. Thus, f(X) is *-open in (Y, σ, \mathscr{J}) . Conversely, suppose that f(X) is *-open in (Y, σ, \mathscr{J}) . Let $U \in \tau$. Then $f(U) \subseteq f(X) = \operatorname{Int}^*(f(X)) = \operatorname{Int}^*(f(\operatorname{Cl}^*(U)))$. Consequently, we obtain $f(U) \subseteq \operatorname{Int}^*(f(\operatorname{Cl}^*(U)))$. This shows that f is weakly *-open. \Box

4. ON WEAKLY *****-CONTINUOUS FUNCTIONS

In this section, we introduce the concepts of weakly *-continuous functions and $\theta(\star)$ -continuous functions. Some characterizations of weakly \star -continuous functions and $\theta(\star)$ -continuous functions are investigated. Moreover, the relationships between weakly \star -continuous functions and $\theta(\star)$ -continuous functions are discussed.

DEFINITION 4.1. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is said to be *weakly* *-continuous at $x \in X$ if for each *-open set V of Y containing f(x), there exists a *-open set U of X containing x such that $f(U) \subseteq \operatorname{Cl}(V)$. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is said to be *weakly* *-continuous if it has that property at each point $x \in X$.

THEOREM 4.2. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is weakly \star -continuous at $x \in X$ if and only if for each \star -open set V of Y containing $f(x), x \in$ $Int^{\star}(f^{-1}(Cl(V))).$

Proof. Let f be weakly *-continuous at $x \in X$ and V be any *-open set of Y containing f(x). Then, there exists a *-open set U of X containing x such that $f(U) \subseteq \operatorname{Cl}(V)$. Thus, $x \in U \subseteq f^{-1}(\operatorname{Cl}(V))$ and hence $x \in \operatorname{Int}^*(f^{-1}(\operatorname{Cl}(V)))$.

Conversely, let $x \in X$ and V be any \star -open set of Y containing f(x). By the hypothesis, we have $x \in \text{Int}^*(f^{-1}(\text{Cl}(V)))$. There exists a \star -open set U of

C. Boonpok

X such that $x \in U \subseteq f^{-1}(\operatorname{Cl}(V))$; hence $f(U) \subseteq \operatorname{Cl}(V)$. This shows that f is weakly \star -continuous at x.

THEOREM 4.3. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is weakly \star -continuous if and only if $f^{-1}(V) \subseteq Int^{\star}(f^{-1}(Cl(V)))$ for every \star -open set V of Y.

Proof. Let V be any *-open set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Since f is weakly *-continuous at x, by Theorem 4.2, $x \in \text{Int}^*(f^{-1}(\text{Cl}(V)))$ and hence $f^{-1}(V) \subseteq \text{Int}^*(f^{-1}(\text{Cl}(V)))$.

Conversely, let $x \in X$ and V be any \star -open set of Y containing f(x). Then $x \in f^{-1}(V) \subseteq \operatorname{Int}^{\star}(f^{-1}(\operatorname{Cl}(V)))$ and hence $x \in \operatorname{Int}^{\star}(f^{-1}(\operatorname{Cl}(V)))$. By Theorem 4.2, f is weakly \star -continuous at x. This shows that f is weakly \star -continuous.

THEOREM 4.4. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following properties are equivalent:

- (1) f is weakly \star -continuous;
- (2) $f(Cl^{\star}(A)) \subseteq \star Cl_{\theta}(f(A))$ for every subset A of X;

(3) $Cl^{\star}(f^{-1}(B)) \subseteq f^{-1}(\star Cl_{\theta}(B))$ for every subset B of Y;

(4) $Cl^{\star}(f^{-1}(V)) \subseteq f^{-1}(Cl^{\star}(V))$ for every open set V of Y.

Proof. (1) \Rightarrow (2): Let A be any subset of X. Suppose that $x \in \operatorname{Cl}^*(A)$ and G be any \star -open set of Y containing f(x). Since f is weakly \star -continuous, there exists a \star -open set U of X containing x such that $f(U) \subseteq \operatorname{Cl}(G)$. Since $x \in \operatorname{Cl}^*(A)$, we have $U \cap A \neq \emptyset$. It follows that $\emptyset \neq f(U) \cap f(A) \subseteq \operatorname{Cl}(G) \cap f(A)$. Thus, $\operatorname{Cl}(G) \cap f(A) \neq \emptyset$ and $f(x) \in \operatorname{*Cl}_{\theta}(f(A))$. This shows that $f(\operatorname{Cl}^*(A)) \subseteq \operatorname{*Cl}_{\theta}(f(A))$.

 $(2) \Rightarrow (3)$: Let B be any subset of Y. By (2),

$$f(\operatorname{Cl}^{\star}(f^{-1}(B))) \subseteq \operatorname{*Cl}_{\theta}(f(f^{-1}(B))) \subseteq \operatorname{*Cl}_{\theta}(B)$$

and hence $\operatorname{Cl}^{\star}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{\star}\operatorname{Cl}_{\theta}(B)).$

(3) \Rightarrow (4): Let V be any open set of Y. By Lemma 2.4, $\operatorname{Cl}^{\star}(V) = \operatorname{*Cl}_{\theta}(V)$. Thus, the proof is obvious.

(4) \Rightarrow (1): Let $x \in X$ and V be any \star -open set of Y containing f(x). Since $V \cap (Y - \operatorname{Cl}(V)) = \emptyset$,

 $f(x) \notin \operatorname{Cl}^{\star}(Y - \operatorname{Cl}(V))$ and hence $x \notin f^{-1}(\operatorname{Cl}^{\star}(Y - \operatorname{Cl}(V)))$. By (4), we have $x \notin \operatorname{Cl}^{\star}(f^{-1}(Y - \operatorname{Cl}(V)))$. Therefore, there exists a \star -open set U of X containing x such that $U \cap f^{-1}(Y - \operatorname{Cl}(V)) = \emptyset$; hence $f(U) \cap (Y - \operatorname{Cl}(V)) = \emptyset$. This implies that $f(U) \subseteq \operatorname{Cl}(V)$. Thus, f is weakly \star -continuous.

THEOREM 4.5. For a function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following properties are equivalent:

- (1) f is weakly \star -continuous;

- (2) $f^{-1}(V) \subseteq Int^{*}(f^{-1}(Cl(V)))$ for every \star -open set V of Y; (3) $Cl^{*}(f^{-1}(Int(F))) \subseteq f^{-1}(F)$ for every \star -closed set F of Y; (4) $Cl^{*}(f^{-1}(Int(Cl^{*}(B)))) \subseteq f^{-1}(Cl^{*}(B))$ for every subset B of Y;
- (5) $f^{-1}(Int^{\star}(B)) \subseteq Int^{\star}(f^{-1}(Cl(Int^{\star}(B))))$ for every subset B of Y.

Proof. $(1) \Rightarrow (2)$: This follows from Theorem 4.3.

 $(2) \Rightarrow (3)$: Let F be any *-closed set of Y. Then Y - F is *-open in Y and by (2),

$$\begin{aligned} X - f^{-1}(F) &= f^{-1}(Y - F) \subseteq \operatorname{Int}^{\star}(f^{-1}(\operatorname{Cl}(Y - F))) \\ &= \operatorname{Int}^{\star}(f^{-1}(Y - \operatorname{Int}(F))) \\ &= X - \operatorname{Cl}^{\star}(f^{-1}(\operatorname{Int}(F))). \end{aligned}$$

Thus, $\operatorname{Cl}^{\star}(f^{-1}(\operatorname{Int}(F))) \subseteq f^{-1}(F)$.

 $(3) \Rightarrow (4)$: Let B be any subset of Y. Since $Cl^{\star}(B)$ is \star -closed and by (3), $\operatorname{Cl}^{\star}(f^{-1}(\operatorname{Int}(\operatorname{Cl}^{\star}(B)))) \subset f^{-1}(\operatorname{Cl}^{\star}(B)).$

$$\begin{aligned} (4) \Rightarrow (5): \text{ Let } B \text{ be any subset of } Y. \text{ By } (4), \\ f^{-1}(\text{Int}^{\star}(B)) &= X - f^{-1}(\text{Cl}^{\star}(Y - B)) \\ &\subseteq X - \text{Cl}^{\star}(f^{-1}(\text{Int}(\text{Cl}^{\star}(Y - B)))) \\ &= \text{Int}^{\star}(f^{-1}(\text{Cl}(\text{Int}^{\star}(B)))). \end{aligned}$$

Thus, we get the result.

(5) \Rightarrow (1): Let V be any *-open set of Y. By (5), we have $f^{-1}(V) =$ $f^{-1}(\operatorname{Int}^{\star}(V)) \subseteq \operatorname{Int}^{\star}(f^{-1}(\operatorname{Cl}(\operatorname{Int}^{\star}(V)))) = \operatorname{Int}^{\star}(f^{-1}(\operatorname{Cl}(V)))$. Thus, by Theorem 4.3, f is weakly \star -continuous. \square

DEFINITION 4.6. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be:

- (1) \mathscr{I} -R closed [1] if $A = \operatorname{Cl}^{\star}(\operatorname{Int}(A));$
- (2) pre- \mathscr{I} -open [5] if $A \subseteq Int(Cl^{\star}(A))$;
- (3) semi- \mathscr{I} -open [12] if $A \subseteq \operatorname{Cl}^{\star}(\operatorname{Int}(A));$
- (4) strong β - \mathscr{I} -open [11] if $A \subset \operatorname{Cl}^{\star}(\operatorname{Int}(\operatorname{Cl}^{\star}(A)))$.

THEOREM 4.7. For a function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following properties are equivalent:

- (1) f is weakly \star -continuous;
- (2) $Cl^{\star}(f^{-1}(Int(F))) \subseteq f^{-1}(F)$ for every \mathscr{J} -R closed set F of Y;

- (3) $Cl^{\star}(f^{-1}(Int(Cl^{\star}(V)))) \subseteq f^{-1}(Cl^{\star}(V))$ for every strong β - \mathscr{J} -open set V of Y;
- (4) $Cl^{\star}(f^{-1}(Int(Cl^{\star}(V)))) \subseteq f^{-1}(Cl^{\star}(V))$ for every semi- \mathscr{J} -open set V of Y.

Proof. (1) \Rightarrow (2): Let F be any \mathscr{J} -R closed set of Y. Then $\operatorname{Int}(F)$ is open, by Theorem 4.4, $\operatorname{Cl}^*(f^{-1}(\operatorname{Int}(F))) \subseteq f^{-1}(\operatorname{Cl}^*(\operatorname{Int}(F)))$. Since F is \mathscr{J} -R closed, we have $\operatorname{Cl}^*(f^{-1}(\operatorname{Int}(F))) \subseteq f^{-1}(F)$.

 $(2) \Rightarrow (3)$: Let V be any strong β - \mathscr{J} -open set of Y. Then $\operatorname{Cl}^{\star}(V) = \operatorname{Cl}^{\star}(\operatorname{Int}(\operatorname{Cl}^{\star}(V)))$ and hence $\operatorname{Cl}^{\star}(V)$ is \mathscr{J} -R closed. By (2),

$$\operatorname{Cl}^{\star}(f^{-1}(\operatorname{Int}(\operatorname{Cl}^{\star}(V)))) \subseteq f^{-1}(\operatorname{Cl}^{\star}(V)).$$

 $(3) \Rightarrow (4)$: The proof is obvious.

 $(4) \Rightarrow (1)$: Let V be any open set of Y. Then V is strong β - \mathscr{J} -open and by (4), we have $\operatorname{Cl}^{\star}(f^{-1}(V)) \subseteq \operatorname{Cl}^{\star}(f^{-1}(\operatorname{Int}(\operatorname{Cl}^{\star}(V)))) \subseteq f^{-1}(\operatorname{Cl}^{\star}(V))$. Hence, by Theorem 4.4, f is weakly \star -continuous.

THEOREM 4.8. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following properties are equivalent:

- (1) f is weakly \star -continuous;
- (2) $Cl^{\star}(f^{-1}(Int(Cl^{\star}(V)))) \subseteq f^{-1}(Cl^{\star}(V))$ for every pre- \mathscr{J} -open set V of Y;
- (3) $Cl^{\star}(f^{-1}(V)) \subseteq f^{-1}(Cl^{\star}(V))$ for every pre- \mathscr{J} -open set V of Y;
- (4) $Cl^{\star}(f^{-1}(V)) \subseteq f^{-1}(Cl^{\star}(V))$ for every open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any pre- \mathscr{J} -open set of Y. Then $\operatorname{Cl}^{\star}(V) = \operatorname{Cl}^{\star}(\operatorname{Int}(\operatorname{Cl}^{\star}(V)))$ and hence $\operatorname{Cl}^{\star}(V)$ is \mathscr{J} -R closed. By Theorem 4.7,

$$\operatorname{Cl}^{\star}(f^{-1}(\operatorname{Int}(\operatorname{Cl}^{\star}(V)))) \subseteq f^{-1}(\operatorname{Cl}^{\star}(V)).$$

 $(2) \Rightarrow (3)$: Let V be any pre- \mathscr{J} -open set of Y. Then $V \subseteq \text{Int}(\text{Cl}^{\star}(V))$ and by (2), $\text{Cl}^{\star}(f^{-1}(V)) \subseteq \text{Cl}^{\star}(f^{-1}(\text{Int}(\text{Cl}^{\star}(V)))) \subseteq f^{-1}(\text{Cl}^{\star}(V))$.

 $(3) \Rightarrow (4)$: The proof is obvious.

 $(4) \Rightarrow (1)$: It follows from Theorem 4.4.

DEFINITION 4.9. An ideal topological space (X, τ, \mathscr{I}) is called \star -Hausdorff (resp. \star -Urysohn) if for each distinct points $x, y \in X$, there exist \star -open sets U and V containing x and y, respectively, such that $U \cap V = \emptyset$ (resp. $\operatorname{Cl}(U) \cap \operatorname{Cl}(V) = \emptyset$).

THEOREM 4.10. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is a weakly *-continuous injection and (Y, σ, \mathscr{J}) is *-Urysohn, then (X, τ, \mathscr{I}) is *-Hausdorff.

Proof. Let x, y be any distinct points of X. Then $f(x) \neq f(y)$. Since (Y, σ, \mathscr{J}) is \star -Urysohn, there exist \star -open sets U and V of Y containing f(x) and f(y), respectively, such that $\operatorname{Cl}(U) \cap \operatorname{Cl}(V) = \emptyset$. Since f is weakly \star -continuous, there exist \star -open sets G and W of X containing x and y, respectively, such that $f(G) \subseteq \operatorname{Cl}(U)$ and $f(W) \subseteq \operatorname{Cl}(V)$. This implies that $G \cap W = \emptyset$. Thus, (X, τ, \mathscr{I}) is \star -Hausdorff. \Box

DEFINITION 4.11. A subset K of an ideal topological space (X, τ, \mathscr{I}) is said to be $\mathscr{I}(\star)$ -closed (resp. \star -compact) relative to (X, τ, \mathscr{I}) if for each cover $\{V_{\gamma} \mid \gamma \in \Gamma\}$ of K by \star -open sets of X, there exists finite subset Γ_0 of Γ such that $K \subseteq \cup \{\operatorname{Cl}(V_{\gamma}) \mid \gamma \in \Gamma_0\}$ (resp. $K \subseteq \cup \{V_{\gamma} \mid \gamma \in \Gamma\}$). If X is $\mathscr{I}(\star)$ -closed (resp. \star -compact) relative to (X, τ, \mathscr{I}) , then (X, τ, \mathscr{I}) is said to be $\mathscr{I}(\star)$ -closed (resp. \star -compact).

THEOREM 4.12. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is a weakly \star -continuous function and K is \star -compact relative to (X, τ, \mathscr{I}) , then f(K) is $\mathscr{J}(\star)$ -closed relative to (Y, σ, \mathscr{J}) .

Proof. Let K be *-compact relative to (X, τ, \mathscr{I}) . Let $\{V_{\gamma} \mid \gamma \in \Gamma\}$ be any cover of f(K) by *-open sets of (Y, σ, \mathscr{J}) . For each $x \in K$, there exists $\gamma(x) \in \Gamma$ such that $f(x) \in V_{\gamma(x)}$. Since f is weakly *-continuous, there exists a *-open set U(x) containing x such that $f(U(x)) \subseteq \operatorname{Cl}(V_{\gamma(x)})$. The family $\{U(x) \mid x \in K\}$ is a cover of K by *-open sets of X. Since K is *-compact relative to (X, τ, \mathscr{I}) , there exist a finite number of points, say, $x_1, x_2, ..., x_n$ in K such that $K \subseteq \cup \{U(x_k) \mid x_k \in K, 1 \leq k \leq n\}$. Thus,

$$f(K) \subseteq \cup \{ f(U(x_k)) \mid x_k \in K, 1 \le k \le n \}$$
$$\subseteq \cup \{ \operatorname{Cl}(V_{\gamma(x_k)}) \mid x_k \in K, 1 \le k \le n \}.$$

This shows that f(K) is $\mathscr{J}(\star)$ -closed relative to (Y, σ, \mathscr{J}) .

COROLLARY 4.13. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is a weakly \star -continuous surjection and (X, τ, \mathscr{I}) is \star -compact, then (Y, σ, \mathscr{J}) is $\mathscr{J}(\star)$ -closed.

DEFINITION 4.14. A function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is said to be $\theta(\star)$ continuous at $x \in X$ if for each \star -open set V of Y containing f(x), there exists a \star -open set U of X containing x such that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V)$. A function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is said to be $\theta(\star)$ -continuous if it has that property at each point $x \in X$.

REMARK 4.15. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following implication holds:

 $\theta(\star)$ -continuity \Rightarrow weak \star -continuity.

The converse of the implication is not true in general. We give an example for the implication as follows.

EXAMPLE 4.16. Let $X = \{a, b, c\}$ with a topology $\tau = \{\emptyset, \{a\}, X\}$ and an ideal $\mathscr{I} = \{\emptyset, \{b\}\}$. Let $Y = \{1, 2, 3\}$ with a topology

$$\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, Y\}$$

and an ideal $\mathscr{J} = \{\emptyset\}$. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is defined as follows: f(a) = 1 and f(b) = f(c) = 3. Then f is weakly \star -continuous but f is not $\theta(\star)$ -continuous.

THEOREM 4.17. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is $\theta(\star)$ -continuous at $x \in X$ if and only if for each \star -open set V of Y containing $f(x), x \in \star Int_{\theta}(f^{-1}(Cl(V)))$.

Proof. Let f be $\theta(\star)$ -continuous at $x \in X$ and V be any \star -open set of Y containing f(x). Then, there exists a \star -open set U of X containing x such that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V)$. Thus, $x \in U \subseteq \operatorname{Cl}(U) \subseteq f^{-1}(\operatorname{Cl}(V))$ and hence $x \in \star \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$.

Conversely, let V be any \star -open set of Y containing f(x). Then, by the hypothesis we have $x \in \star \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$. There exists a \star -open set U of X such that $x \in U \subseteq \operatorname{Cl}(U) \subseteq f^{-1}(\operatorname{Cl}(V))$; hence $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V)$. This shows that f is $\theta(\star)$ -continuous at $x \in X$.

THEOREM 4.18. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is $\theta(\star)$ -continuous if and only if $f^{-1}(V) \subseteq \star Int_{\theta}(f^{-1}(Cl(V)))$ for every \star -open set V of Y.

Proof. Let V be any *-open set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Since f is $\theta(\star)$ -continuous at x, by Theorem 4.17 we have $x \in \star \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$ and hence $f^{-1}(V) \subseteq \star \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$.

Conversely, let $x \in X$ and V be any \star -open set of Y containing f(x). Then $x \in f^{-1}(V) \subseteq \star \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$ and hence $x \in \star \operatorname{Int}_{\theta}(f^{-1}(\operatorname{Cl}(V)))$. Thus, by Theorem 4.17, f is $\theta(\star)$ -continuous.

THEOREM 4.19. For a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$, the following properties are equivalent:

- (1) f is $\theta(\star)$ -continuous;
- (2) $f(\star Cl_{\theta}(A)) \subseteq \star Cl_{\theta}(f(A))$ for every subset A of X;
- (3) $\star Cl_{\theta}(f^{-1}(B)) \subseteq f^{-1}(\star Cl_{\theta}(B))$ for every subset B of Y.

Proof. (1) ⇒ (2): Let *A* be any subset of *X*. Let $x \in *Cl_{\theta}(A)$ and *G* be any *-open set of *Y* containing f(x). Since *f* is $\theta(*)$ -continuous, there exists a *-open set *U* of *X* containing *x* such that $f(Cl(U)) \subseteq Cl(G)$. Since $x \in *Cl_{\theta}(A)$, we have $Cl(U) \cap A \neq \emptyset$. It follows that $\emptyset \neq f(Cl(U)) \cap f(A) \subseteq Cl(G) \cap f(A)$. Hence, $Cl(G) \cap f(A) \neq \emptyset$ and $f(x) \in *Cl_{\theta}(f(A))$. This shows that $f(*Cl_{\theta}(A)) \subseteq *Cl_{\theta}(f(A))$.

 $(3) \Rightarrow (1)$: Let $x \in X$ and V be any \star -open set of Y containing f(x). Since

 $\operatorname{Cl}(V) \cap (Y - \operatorname{Cl}(V)) = \emptyset,$

 $f(x) \notin *\operatorname{Cl}_{\theta}(Y - \operatorname{Cl}(V))$ and hence $x \notin f^{-1}(*\operatorname{Cl}_{\theta}(Y - \operatorname{Cl}(V)))$. By (3), we have $x \notin *\operatorname{Cl}_{\theta}(f^{-1}(Y - \operatorname{Cl}(V)))$. There exists a *-open set U of X containing x such that $\operatorname{Cl}(U) \cap f^{-1}(Y - \operatorname{Cl}(V)) = \emptyset$; hence $f(\operatorname{Cl}(U)) \cap (Y - \operatorname{Cl}(V)) = \emptyset$. This shows that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(V)$. Thus, f is $\theta(*)$ -continuous.

THEOREM 4.20. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is $\theta(\star)$ -continuous if and only if $\star Cl_{\theta}(f^{-1}(V)) \subseteq f^{-1}(\star Cl_{\theta}(V))$ for every \star -open set V of Y.

Proof. This is obvious from Theorem 4.19.

Conversely, let V be any \star -open set of Y containing f(x). Since

 $\operatorname{Cl}^{\star}(V) \cap (Y - \operatorname{Cl}^{\star}(V)) = \emptyset,$

 $f(x) \notin *\operatorname{Cl}_{\theta}(Y - \operatorname{Cl}^{*}(V))$ and hence $x \notin f^{-1}(*\operatorname{Cl}_{\theta}(Y - \operatorname{Cl}^{*}(V)))$. By the hypothesis, $x \notin *\operatorname{Cl}_{\theta}(f^{-1}(Y - \operatorname{Cl}^{*}(V)))$ and there exists a *-open set U of X containing x such that $\operatorname{Cl}(U) \cap f^{-1}(Y - \operatorname{Cl}^{*}(V)) = \emptyset$. This shows that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}^{*}(V) \subseteq \operatorname{Cl}(V)$. Therefore, f is $\theta(*)$ -continuous.

THEOREM 4.21. If (X, τ, \mathscr{I}) is an ideal topological space and for any distinct points $x_1, x_2 \in X$, there exists a function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ such that

- (1) (Y, σ, \mathscr{J}) is \star -Urysohn,
- (2) $f(x_1) \neq f(x_2)$ and
- (3) f is $\theta(\star)$ -continuous at x_1 and x_2 , then (X, τ, \mathscr{I}) is \star -Urysohn.

Proof. Let x_1, x_2 be any distinct points of X. Then, by the hypothesis there exists a function $f: (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ which satisfies the three conditions. Now let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$.

Since (Y, σ, \mathscr{J}) is *-Urysohn, there exist *-open sets $V_i, i = 1, 2$ such that $y_i \in V_i$ and $\operatorname{Cl}(V_1) \cap \operatorname{Cl}(V_2) = \emptyset$. Since f is $\theta(\star)$ -continuous at x_i , there exists a \star -open set U_i containing x such that $f(\operatorname{Cl}(U_i)) \subseteq \operatorname{Cl}(V_i)$ for i = 1, 2. This implies that $\operatorname{Cl}(U_1) \cap \operatorname{Cl}(U_2) = \emptyset$. Thus, (X, τ, \mathscr{I}) is \star -Urysohn.

COROLLARY 4.22. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is a $\theta(\star)$ -continuous injection and (Y, σ, \mathscr{J}) is \star -Urysohn, (X, τ, \mathscr{I}) is \star -Urysohn.

DEFINITION 4.23. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is said to have a strongly $\theta(\star)$ -closed graph if for each $(x, y) \in (X \times Y) - G(f)$, there exist a \star -open set U of X containing x and a \star -open set V of Y containing y such that $[\operatorname{Cl}(U) \times \operatorname{Cl}(V)] \cap G(f) = \emptyset$.

LEMMA 4.24. A function $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ has a strongly $\theta(\star)$ closed graph if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist a \star -open set U of X containing x and a \star -open set V of Y containing y such that $f(Cl(U)) \cap Cl(V) = \emptyset$.

THEOREM 4.25. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is a $\theta(\star)$ -continuous function and (Y, σ, \mathscr{J}) is \star -Urysohn, then G(f) is strongly $\theta(\star)$ -closed.

Proof. Suppose that $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since (Y, σ, \mathscr{J}) is \star -Urysohn, there exist \star -open sets V and W of Y containing y and f(x), respectively, such that $\operatorname{Cl}(V) \cap \operatorname{Cl}(W) = \emptyset$.

Since f is $\theta(\star)$ -continuous, there exists a \star -open set U of X containing x such that $f(\operatorname{Cl}(U)) \subseteq \operatorname{Cl}(W)$. This implies that $f(\operatorname{Cl}(U)) \cap \operatorname{Cl}(V) = \emptyset$ and by Lemma 4.24, G(f) is strongly $\theta(\star)$ -closed.

THEOREM 4.26. If $f : (X, \tau, \mathscr{I}) \to (Y, \sigma, \mathscr{J})$ is an injective $\theta(\star)$ -continuous function with a strongly $\theta(\star)$ -closed graph, then (X, τ, \mathscr{I}) is \star -Urysohn.

Proof. Let x and y be any distinct points of X. Then, since f is injective, we have $f(x) \neq f(y)$. Thus, $(x, f(y)) \in (X \times Y) - G(f)$. Since G(f) is strongly $\theta(\star)$ -closed, by Lemma 4.24 there exist a \star -open set U of X containing x and a \star -open set V of Y containing f(y) such that $f(\operatorname{Cl}(U)) \cap \operatorname{Cl}(V) = \emptyset$.

Since f is $\theta(\star)$ -continuous, there exists a \star -open set W of X containing y such that $f(\operatorname{Cl}(W)) \subseteq \operatorname{Cl}(V)$. Therefore, we have $f(\operatorname{Cl}(U)) \cap f(\operatorname{Cl}(W)) = \emptyset$ and hence $\operatorname{Cl}(U) \cap \operatorname{Cl}(W) = \emptyset$. This shows that (X, τ, \mathscr{I}) is \star -Urysohn. \Box

REFERENCES

- [1] A. Açikgöz and Ş. Yüksel, Some new sets and decompositions of A_{I-R} -continuity, α -*I*-continuity, continuity via idealization, Acta Math. Hungar., **114** (2007), 79–89.
- [2] M. Caldas, E. Ekici, S. Jafari and R. M. Latif, On weakly BR-open functions and their characterizations in topological spaces, Demonstr. Math., 44 (2011), 159–168.
- [3] M. Caldas, E. Ekici, S. Jafari and S. P. Moshokoa, On weakly BR-closed functions between topological spaces, Math. Commun., 14 (2009), 67–73.
- [4] M. Caldas and G. Navalagi, On weak forms of semi-open and semi-closed functions, Missouri J. Math. Sci., 18 (2006), 165–178.
- [5] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXiv:9901017, 1999.
- [6] J. Dontchev, M. Ganster and D. Rose, *Ideal resolvability*, Topology Appl., 93 (1999), 1–16.
- [7] E. Ekici, Generalization of weakly clopen and strongly θ-b-continuous functions, Chaos Solitons Fractals, 38 (2008), 79–88.
- [8] E. Ekici, S. Jafari, M. Caldas and T. Noiri, Weakly λ-continuous functions, Novi Sad J. Math., 38 (2008), 47–56.
- [9] E. Ekici and T. Noiri, *-hyperconnected ideal topological spaces, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.), 58 (2012), 121–129.
- [10] E. Hatir and S. Jafari, On weakly semi-\$\mathcal{J}\$-open sets and another decomposition of continuity via ideals, Sarajevo J. Math., 2 (2006), 107–114.

- [11] E. Hatir, A. Keskin and T. Noiri, On a new decomposition of continuity via idealization, JP J. Geom. Topol., 3 (2003), 53–64.
- [12] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341–349.
- [13] E. Hatir and T. Noiri, On semi-I-open sets and semi-I-continuous functions, Acta Math. Hungar., 107 (2005), 345–353.
- [14] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [15] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [16] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68 (1961), 44–46.
- [17] T. Noiri, A. Al-Omari and Mohd. Salmi Md. Noorani, Weakly b-open functions, Math. Balkanica (N.S.), 23 (2009), 1–13.
- [18] T. Noiri and V. Popa, A unified theory of weakly open functions, Missouri J. Math. Sci., 18 (2006), 179–196.
- [19] V. Popa and T. Noiri, On weakly (τ, m) -continuous functions, Rend. Circ. Mat. Palermo (2), **51** (2002), 295–316.
- [20] V. Popa and T. Noiri, A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51 (2002), 439–464.
- [21] D. A. Rose, Weak openness and almost openness, Int. J. Math. Math. Sci., 7 (1984), 35–40.
- [22] D. A. Rose, Weak continuity and almost continuity, Int. J. Math. Math. Sci., 7 (1984), 311–318.
- [23] D. A. Rose and D. S. Janković, Weakly closed functions and Hausdorff spaces, Math. Nachr., 130 (1987), 105–110.
- [24] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci. Sect. A, 20 (1944), 51–61.
- [25] Ş. Yüksel, T. H. Simsekler, Z. G. Ergul and T. Noiri, Strongly θ-pre-*I*-continuous functions, Sci. Stud. Res. Ser. Math. Inform., **20** (2010), 111–126.

Received March 15, 2021 Accepted May 4, 2021 Mahasarakham University Faculty of Science Department of Mathematics Mathematics and Applied Mathematics Research Unit Maha Sarakham, 44150, Thailand E-mail: chawalit.b@msu.ac.th https://orcid.org/0000-0002-4094-727X