TOUCH POINTS IN IDEAL ČECH CLOSURE SPACES

AHMAD AL-OMARI, RIYADH GARGOURI, and TAKASHI NOIRI

Abstract. Let (X, f, \mathcal{I}) be a Čech closure space with an ideal \mathcal{I} . For a subset A of X, the set $\tilde{f}(A)$ of so-called a Čech touch points is defined as follows: $\tilde{f}(A) = \{x \in X : A \cap N \notin \mathcal{I} \text{ for every } N \in \mathcal{N}(x)\}$. We investigate the properties of touch points and construct a topology on X from the touch points. Moreover, in an ideal Čech closure space (X, f, \mathcal{I}) , we define f-compatibility with the ideal \mathcal{I} and obtain several characterizations of the compatibility.

MSC 2010. 54A05.

Key words. Čech closure operator, ideal Čech closure space, f-compatible with an ideal.

1. INTRODUCTION

An ideal \mathcal{I} on a space X is a non-empty collection of subsets of X which satisfies the following properties:

- (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$.
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) (see [9, 10]). Several characterizations of the ideal structure were provided in [1-6].

First we recall several definitions. An operator $f : \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ defined on the power set, $\mathcal{P}(X)$, of a set X satisfying the axioms:

 (C_1) : $f(\emptyset) = \emptyset;$

 (C_2) : $A \subseteq f(A)$ for every $A \subseteq X$;

 (C_3) : $f(A \cup B) = f(A) \cup f(B)$ for all $A, B \in \mathcal{P}(X)$.

is called a Čech closure operator ([7, 8]) and the pair (X, f) is a Čech closure space. A subset A of X is said to be closed in (X, f) if f(A) = A holds, and it is said to be open if its complement is closed.

The interior operator $f^* : \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ is defined by means of the closure operator in the usual way: $f^*(A) = X - f(X - A)$.

The authors are highly grateful to the editor and the referees for their valuable comments and suggestions for improving this paper.

Let (X, f, \mathcal{I}) be a Čech closure space with an ideal \mathcal{I} . For a subset A of X, the set $\tilde{f}(A)$ of so-called touch points is defined as follows:

$$f(A) = \{ x \in X : A \cap N \notin \mathcal{I} \text{ for every } N \in \mathcal{N}(x) \}.$$

We investigate the properties of touch points and construct a topology on X from the touch points. Moreover, in an ideal Čech closure space (X, f, \mathcal{I}) , we define f-compatibility with the ideal \mathcal{I} and obtain several characterizations of the compatibility.

2. PRELIMINARIES

REMARK 2.1. Let (X, f) be a Čech closure space.

(1) $f^*(\emptyset) = \emptyset$. (2) $f^*(X) = X$. (3) $f^*(A) \subseteq A$ for every $A \subseteq X$. (4) $f^*(A \cap B) = f^*(A) \cap f^*(B)$ for all $A, B \in \mathcal{P}(X)$.

A subset N is a neighborhood of a point x (respectively, subset A) in X if $x \in f^*(N)$ (respectively, $A \subseteq f^*(N)$) holds. The collection of all neighborhoods of x will be denoted by \mathcal{N}_x or $\mathcal{N}(x)$.

In (X, f), a point $x \in f(A)$ if and only if for each neighborhood N of x, $N \cap A \neq \emptyset$ holds.

DEFINITION 2.2 ([11]). Let f and f^* be the be closure function and its dual function on X. Then the neighborhood function $\mathcal{N} : X \to \mathcal{P}(\mathcal{P}(X))$ and the convergent function $\mathcal{N}^* : X \to \mathcal{P}(\mathcal{P}(X))$ assign to each $x \in X$ the collections

$$\mathcal{N}(x) = \{ N \in \mathcal{P}(X) : x \in f^*(N) \}$$
$$\mathcal{N}^*(x) = \{ Q \in \mathcal{P}(X) : x \in f(Q) \}$$

of its neighborhoods and convergents, respectively.

LEMMA 2.3. Let (X, f) be a Čech closure space. Then the following properties hold

- (1) $Q \in \mathcal{N}^*(x)$ if and only if $X Q \notin \mathcal{N}(x)$.
- (2) $x \in f(A)$ if and only if $X A \notin \mathcal{N}(x)$.
- (3) $x \in f^*(A)$ if and only if $X A \notin \mathcal{N}^*(x)$.

LEMMA 2.4. Let (X, f) be a Čech closure space, then

- (1) $X \in \mathcal{N}(x)$ for every $x \in X$.
- (2) $\emptyset \notin \mathcal{N}(x)$ for every $x \in X$.
- (3) If $N \in \mathcal{N}(x)$, then $x \in f^*(N) \subseteq N$.
- (4) If $N, M \in \mathcal{N}(x)$, then we have $N \cap M \in \mathcal{N}(x)$.
- (5) If $N \cup M \in \mathcal{N}^*(x)$, then we have $N \in \mathcal{N}^*(x)$ or $M \in \mathcal{N}^*(x)$.

Proof. (1): For every $x \in X$, $x \in X = f^*(X)$ and $X \in \mathcal{N}(x)$ for every $x \in X$.

(2): Suppose that $\emptyset \in \mathcal{N}(x)$ for some $x \in X$, then $x \in f^*(\emptyset)$. This is contrary to $f^*(\emptyset) = \emptyset$. Hence $\emptyset \notin \mathcal{N}(x)$.

(3): Let $N \in \mathcal{N}(x)$, then by Remark 2.1 (3) $x \in f^*(N) \subset N$ and $x \in N$.

(4): If $M, N \in \mathcal{N}(x)$, then $x \in f^*(M)$ and $x \in f^*(N)$ and hence $x \in f^*(M) \cap f^*(N) = f^*(M \cap N)$. Therefore we have $N \cap M \in \mathcal{N}(x)$.

(5): If $M \cup N \in \mathcal{N}^*(x)$, then $x \in f(M \cup N) = f(M) \cup f(N)$. Hence $x \in f(M)$ or $x \in f(N)$ and $M \in \mathcal{N}^*(x)$ or $N \in \mathcal{N}^*(x)$.

3. TOUCH POINTS

In Sections 3 and 4, an ideal Cech closure space is briefly called an ideal Čech space.

DEFINITION 3.1. Let (X, f, \mathcal{I}) be an ideal Cech space. For a subset A of X, we define the following set:

 $\widetilde{f}(A) = \{ x \in X : A \cap N \notin \mathcal{I} \text{ for every } N \in \mathcal{N}(x) \}.$

 $\widetilde{f}(A)$ is called the set of touch points of A with respect to \mathcal{I} and f.

LEMMA 3.2. Let (X, f, \mathcal{I}) and (X, g, \mathcal{J}) be ideal Čech spaces, where \mathcal{I} and \mathcal{J} are ideals on X, and let A and B be subsets of X. Then the following properties hold:

- (1) If $A \subseteq B$, then $\tilde{f}(A) \subseteq \tilde{f}(B)$.
- (2) If $\mathcal{I} \subseteq \mathcal{J}$, then $\widetilde{f}(A) \supseteq \widetilde{g}(A)$.
- (3) $\widetilde{f}(A) = f(\widetilde{f}(A)) \subseteq f(A)$.
- (4) If $A \subseteq \widetilde{f}(A)$, then $\widetilde{f}(A) = f(\widetilde{f}(A)) = f(A)$.
- (5) If $A \in \mathcal{I}$, then $f(A) = \emptyset$.

Proof. (1) Suppose that $x \notin \tilde{f}(B)$. Then there exists $N \in \mathcal{N}(x)$ such that $N \cap B \in \mathcal{I}$. Since $N \cap A \subseteq N \cap B$, $N \cap A \in \mathcal{I}$. Hence $x \notin \tilde{f}(A)$. Thus $X \setminus \tilde{f}(B) \subseteq X \setminus \tilde{f}(A)$ or $\tilde{f}(A) \subseteq \tilde{f}(B)$.

(2) Suppose that $x \in \tilde{g}(A)$. For every $N \in \mathcal{N}(x)$, we have $N \cap A \notin \mathcal{J}$. Since $\mathcal{I} \subseteq \mathcal{J}, N \cap A \notin \mathcal{I}$ and $x \in \tilde{f}(A)$. Therefore, $\tilde{f}(A) \supseteq \tilde{g}(A)$.

(3) We have $f(A) \subseteq f(f(A))$ in general. Let $x \in f(f(A))$. Then $f(A) \cap N \neq \emptyset$ for every $N \in \mathcal{N}(x)$. Therefore, there exists some $y \in \tilde{f}(A) \cap N$ and $N \in \mathcal{N}(y)$. Since $y \in \tilde{f}(A)$, $A \cap N \notin \mathcal{I}$ and hence $x \in \tilde{f}(A)$. Hence we have $f(\tilde{f}(A)) \subseteq \tilde{f}(A)$ and hence $\tilde{f}(A) = f(\tilde{f}(A))$.

Again, let $x \in \tilde{f}(A) = f(\tilde{f}(A))$, then $N \cap A \notin \mathcal{I}$ for every $N \in \mathcal{N}(x)$. This implies $N \cap A \neq \emptyset$ for every $N \in \mathcal{N}(x)$. Therefore, $x \in f(A)$. This shows that $\tilde{f}(A) = f(\tilde{f}(A)) \subseteq f(A)$.

(4) For any subset A of X, by (3) we have $\widetilde{f}(A) = f(\widetilde{f}(A)) \subseteq f(A)$. Since $A \subseteq \widetilde{f}(A), f(A) \subseteq f(\widetilde{f}(A))$ and hence $\widetilde{f}(A) = f(\widetilde{f}(A)) = f(A)$.

(5) Suppose that $x \in f(A)$. Then for any $N \in \mathcal{N}(x)$, $N \cap A \notin \mathcal{I}$. But since $A \in \mathcal{I}$, $N \cap A \in \mathcal{I}$ for any $N \in \mathcal{N}(x)$. This is a contradiction. Hence $\widetilde{f}(A) = \emptyset$.

LEMMA 3.3. Let (X, f, \mathcal{I}) be an ideal Čech space and $x \in X$. If $N \in \mathcal{N}(x)$, then $N \cap \widetilde{f}(A) = N \cap \widetilde{f}(N \cap A) \subseteq \widetilde{f}(N \cap A)$ for any subset A of X.

Proof. Suppose that $N \in \mathcal{N}(x)$ and $x \in N \cap \widetilde{f}(A)$. Then $x \in N$ and $x \in \widetilde{f}(A)$. Let $V \in \mathcal{N}(x)$. Then by Lemma 2.4, $V \cap N \in \mathcal{N}(x)$ and $V \cap (N \cap A) = (V \cap N) \cap A \notin \mathcal{I}$. This shows that $x \in \widetilde{f}(N \cap A)$ and hence we obtain $N \cap \widetilde{f}(A) \subseteq \widetilde{f}(N \cap A)$. Moreover, $N \cap \widetilde{f}(A) \subseteq N \cap \widetilde{f}(N \cap A)$ and by Lemma 3.2, $\widetilde{f}(N \cap A) \subseteq \widetilde{f}(A) = \widetilde{f}(A)$ and $N \cap \widetilde{f}(N \cap A) \subseteq N \cap \widetilde{f}(A)$. Therefore, $N \cap \widetilde{f}(A) = N \cap \widetilde{f}(N \cap A)$.

THEOREM 3.4. Let (X, f, \mathcal{I}) be an ideal Čech space and A, B any subsets of X. Then the following properties hold:

- (1) $f(\emptyset) = \emptyset$.
- (2) $\widetilde{f}(\widetilde{f}(A)) \subseteq \widetilde{f}(A)$.
- (3) $\widetilde{f}(A) \cup \widetilde{f}(B) = \widetilde{f}(A \cup B).$

Proof. (1) The proof is obvious.

(2) Let $x \in \widetilde{f}(\widetilde{f}(A))$. Then for every $N \in \mathcal{N}(x)$, $N \cap \widetilde{f}(A) \notin \mathcal{I}$ and hence $N \cap \widetilde{f}(A) \neq \emptyset$. Let $y \in N \cap \widetilde{f}(A)$. Then $N \in \mathcal{N}(y)$ and $y \in \widetilde{f}(A)$. Hence we have $N \cap A \notin \mathcal{I}$ and $x \in \widetilde{f}(A)$. This shows that $\widetilde{f}(\widetilde{f}(A)) \subseteq \widetilde{f}(A)$.

(3) It follows from Lemma 3.2, that $\widetilde{f}(A \cup B) \supseteq \widetilde{f}(A) \cup \widetilde{f}(B)$. To prove the reverse inclusion, let $x \in \widetilde{f}(A \cup B)$, then for every $U \in \mathcal{N}(x)$, $U \cap (A \cup B) = (U \cap A) \cup (U \cap B) \notin \mathcal{I}$. Hence $U \cap A \notin \mathcal{I}$ or $U \cap B \notin \mathcal{I}$ and hence $x \in \widetilde{f}(A)$ or $x \in \widetilde{f}(B)$. Therefore, $x \in \widetilde{f}(A) \cup \widetilde{f}(B)$ and $\widetilde{f}(A \cup B) \subseteq \widetilde{f}(A) \cup \widetilde{f}(B)$. Hence we obtain $\widetilde{f}(A) \cup \widetilde{f}(B) = \widetilde{f}(A \cup B)$.

THEOREM 3.5. Let (X, f, \mathcal{I}) be an ideal Čech space, let A, B be subsets of X and let $cl(A) = \tilde{f}(A) \cup A$. Then

- (1) $cl(\emptyset) = \emptyset$.
- (2) $A \subseteq cl(A)$.
- (3) $cl(A \cup B) = cl(A) \cup cl(B).$
- (4) cl(A) = cl(cl(A)).

Proof. By Theorem 3.4, we obtain

- (1) $cl(\emptyset) = \widetilde{f}(\emptyset) \cup \emptyset = \emptyset.$
- (2) $A \subseteq A \cup \tilde{f}(A) = cl(A)$.

$$(3) cl(A \cup B) = \tilde{f}(A \cup B) \cup (A \cup B) = (\tilde{f}(A) \cup \tilde{f}(B)) \cup (A \cup B) = cl(A) \cup Cl(B).$$

$$(4) cl(cl(A)) = cl[\tilde{f}(A) \cup A] = \tilde{f}(\tilde{f}(A) \cup A) \cup (\tilde{f}(A) \cup A) = (\tilde{f}(\tilde{f}(A))) \cup \tilde{f}(A) \cup (\tilde{f}(A) \cup A) = \tilde{f}(A) \cup A = cl(A).$$

By Theorem 3.5, we obtain that $cl(A) = A \cup f(A)$ is a Kuratowski closure operator. We will denote by τ_{cl} the topology generated by cl, that is,

$$\tau_{cl} = \{ U \subseteq X : cl(X - U) = X - U \}.$$

THEOREM 3.6. Let (X, f, \mathcal{I}) be an ideal Čech space. Then $\beta(f, \mathcal{I}) = \{V - I : V \in \mathcal{N}(x), I \in \mathcal{I}, x \in X\}$ is a basis for τ_{cl} .

Proof. Let (X, f, \mathcal{I}) be an ideal Čech space. It is obvious that A is τ_{cl} -closed if and only if $\tilde{f}(A) \subseteq A$. Now we have $U \in \tau_{cl}$ if and only if $\tilde{f}(X-U) \subseteq X-U$ if and only if $U \subseteq X - \tilde{f}(X-U)$.

At first, we shall show that every member of $\beta(f, \mathcal{I})$ is an open set in τ_{cl} . Let $V - I \in \beta(f, \mathcal{I})$, where $V \in \mathcal{N}(x)$ and $I \in \mathcal{I}$. For each $x \in V - I$, $x \in V$ and $V \cap (X - (V - I)) \subseteq I \in \mathcal{I}$. Hence, $x \notin \tilde{f}(X - (V - I))$, and hence $V - I \subseteq X - \tilde{f}(X - (V - I))$. Therefore, by the fact above, $V - I \in \tau_{cl}$.

Now, let $U \in \tau_{cl}$. By the fact above $x \in U$ implies that $x \notin \tilde{f}(X - U)$. This implies that there exists $V \in \mathcal{N}(x)$ such that $V \cap (X - U) \in \mathcal{I}$. Now let $I = V \cap (X - U)$ and we have $x \in V - I \subseteq U$, $I \in \mathcal{I}$.

Now we need only show that β is closed under finite intersection. Let $A, B \in \beta$, then A = H - I and B = K - J, where H, K are in $\mathcal{N}(x)$ and $I, J \in \mathcal{I}$. Now, we have

$$(H - I) \cap (K - J) = (H \cap (X - I)) \cap (K \cap (X - J))$$

= $(H \cap K) \cap ((X - I) \cap (X - J))$
= $(H \cap K) \cap (X - (I \cup J))$
= $(H \cap K) - (I \cup J).$

Since $I \cup J \in \mathcal{I}$ and $H \cap K \in \mathcal{N}(x)$, $A \cap B \in \beta$. Therefore β is closed under finite intersection. Thus $\beta = \{V - I : V \in \mathcal{N}(x), I \in \mathcal{I}\}$ is a basis for τ_{cl} . \Box

We set $i(A) = \bigcup \{ U : U \subseteq A, U \in \mathcal{N}(x) \text{ for every } x \in X \}.$

THEOREM 3.7. Let (X, f, \mathcal{I}) be an ideal Čech space and $x \in X$, then the following properties are equivalent:

- (1) $\mathcal{N}(x) \cap \mathcal{I} = \emptyset;$
- (2) If $I \in \mathcal{I}$, then $i(I) = \emptyset$;
- (3) For every $N \in \mathcal{N}(x), N \subseteq f(N)$;
- (4) $X = \tilde{f}(X).$

Proof. (1) \Rightarrow (2): Let $\mathcal{N}(x) \cap \mathcal{I} = \{\emptyset\}$ and $I \in \mathcal{I}$. Suppose that $x \in i(I)$. Then there exists $N \in \mathcal{N}(x)$ such that $x \in N \subseteq I$. Since $I \in \mathcal{I}$ we have $\emptyset \neq \{x\} \subseteq N \in \mathcal{N}(x) \cap \mathcal{I}$. This contradicts $\mathcal{N}(x) \cap \mathcal{I} = \{\emptyset\}$. Therefore, $i(I) = \{\emptyset\}$.

 $(2) \Rightarrow (3)$: Let $x \in N$. Assume $x \notin \tilde{f}(N)$. Then there exists $M \in \mathcal{N}(x)$ such that $N \cap M \in \mathcal{I}$. By (2), $x \in N \cap M = i(N \cap M) = \{\emptyset\}$. Hence $x \in \tilde{f}(N)$ and $N \subseteq \tilde{f}(N)$.

(3) \Rightarrow (4): Since $X \in \mathcal{N}(x)$, then $X = \tilde{f}(X)$.

 $(4) \Rightarrow (1): X = \tilde{f}(X) = \{x \in X : N \cap X = N \notin \mathcal{I} \text{ for each } N \in \mathcal{N}(x)\}.$ Hence $\mathcal{N}(x) \cap \mathcal{I} = \{\emptyset\}.$

LEMMA 3.8. Let (X, f, \mathcal{I}) be an ideal Cech space and A, B be subsets of X. Then $\tilde{f}(A) - \tilde{f}(B) = \tilde{f}(A - B) - \tilde{f}(B)$.

Proof. We have by Theorem 3.4 $\widetilde{f}(A) = \widetilde{f}[(A-B) \cup (A \cap B)] = \widetilde{f}(A-B) \cup \widetilde{f}(A \cap B) \subseteq \widetilde{f}(A-B) \cup \widetilde{f}(B)$. Thus $\widetilde{f}(A) - \widetilde{f}(B) \subseteq \widetilde{f}(A-B) - \widetilde{f}(B)$. By Lemma 3.2, $\widetilde{f}(A-B) \subseteq \widetilde{f}(A) = \widetilde{f}(A)$ and hence $\widetilde{f}(A-B) - \widetilde{f}(B) \subseteq \widetilde{f}(A) - \widetilde{f}(B)$. Hence $\widetilde{f}(A) - \widetilde{f}(B) = \widetilde{f}(A-B) - \widetilde{f}(B)$.

COROLLARY 3.9. Let (X, f, \mathcal{I}) be an ideal Čech space and let A, B be subsets of X with $B \in \mathcal{I}$. Then $\tilde{f}(A \cup B) = \tilde{f}(A) = \tilde{f}(A - B)$.

Proof. Since $B \in \mathcal{I}$, by Lemma 3.2 $\tilde{f}(B) = \emptyset$. By Lemma 3.8, $\tilde{f}(A) = \tilde{f}(A - B)$ and by Theorem 3.4, $\tilde{f}(A \cup B) = \tilde{f}(A) \cup \tilde{f}(B) = \tilde{f}(A)$

4. f-compatible in ideal čech space

DEFINITION 4.1. Let (X, f, \mathcal{I}) be an ideal Čech space. We say f is fcompatible with the ideal \mathcal{I} , denoted $f \cong \mathcal{I}$, if the following holds for every $A \subseteq X$: For every $x \in A$ and $U \in \mathcal{N}(x)$, if $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

THEOREM 4.2. Let (X, f, \mathcal{I}) be an ideal Cech space and $x \in X$, the following properties are equivalent:

- (1) $f \cong \mathcal{I};$
- (2) If a subset A of X has a cover of $U \in \mathcal{N}(x)$ each of whose intersection with A is in \mathcal{I} , then $A \in \mathcal{I}$;
- (3) For every $A \subseteq X$, $A \cap \widetilde{f}(A) = \emptyset$ implies that $A \in \mathcal{I}$;
- (4) For every $A \subseteq X$, $A f(A) \in \mathcal{I}$;
- (5) For every $A \subseteq X$, if A contains no nonempty subset B with $B \subseteq f(B)$, then $A \in \mathcal{I}$.

Proof. $(1) \Rightarrow (2)$: The proof is obvious.

 $(2) \Rightarrow (3)$: Let $A \subseteq X$ and $x \in A$. Then $x \notin \tilde{f}(A)$ and there exists $V_x \in \mathcal{N}(x)$ such that $V_x \cap A \in \mathcal{I}$. Therefore, we have $A \subseteq \cup \{V_x : x \in A\}$ and by $(2) A \in \mathcal{I}$.

 $(3) \Rightarrow (4): \text{ For any } A \subseteq X, A - \widetilde{f}(A) \subseteq A \text{ and } (A - \widetilde{f}(A)) \cap \widetilde{f}(A - \widetilde{f}(A)) \subseteq (A - \widetilde{f}(A)) \cap \widetilde{f}(A) = \emptyset. \text{ By } (3), A - \widetilde{f}(A) \in \mathcal{I}.$

 $(4) \Rightarrow (5)$: By (4), for every $A \subseteq X$, $A - \tilde{f}(A) \in \mathcal{I}$. Let $A - \tilde{f}(A) = J \in \mathcal{I}$, then $A = J \cup (A \cap \tilde{f}(A))$ and by Theorem 3.4 (3) and Lemma 3.2, $\tilde{f}(A) = \tilde{f}(J) \cup \tilde{f}(A \cap \tilde{f}(A)) = \tilde{f}(A \cap \tilde{f}(A))$. Therefore, we have $A \cap \tilde{f}(A) = A \cap \tilde{f}(A \cap \tilde{f}(A)) \subseteq \tilde{f}(A \cap \tilde{f}(A))$ and $A \cap \tilde{f}(A) \subseteq A$. By the assumption $A \cap \tilde{f}(A) = \emptyset$ and hence $A = A - \tilde{f}(A) \in \mathcal{I}$.

(5) \Rightarrow (1): Let $A \subseteq X$ and assume that for every $x \in A$, there exists $U \in \mathcal{N}(x)$ such that $U \cap A \in \mathcal{I}$. Then $A \cap \widetilde{f}(A) = \emptyset$. Since

$$(A - \widetilde{f}(A)) \cap \widetilde{f}(A - \widetilde{f}(A)) \subseteq (A - \widetilde{f}(A)) \cap \widetilde{f}(A) = \emptyset,$$

 $A - \widetilde{f}(A)$ contains no nonempty subset B with $B \subseteq \widetilde{f}(B)$. By (5), $A - \widetilde{f}(A) \in \mathcal{I}$ and hence $A = A \cap (X - \widetilde{f}(A)) = A - \widetilde{f}(A) \in \mathcal{I}$. \Box

THEOREM 4.3. Let (X, f, \mathcal{I}) be an ideal Čech space., then the following properties are equivalent:

- (1) $f \cong \mathcal{I};$
- (2) For every τ_{cl} -closed subset $A, A \tilde{f}(A) \in \mathcal{I}$.

Proof. $(1) \Rightarrow (2)$: It is clear by Theorem 4.2.

(2) \Rightarrow (1): Let $A \subseteq X$ and assume that for every $x \in A$, there exists $U \in \mathcal{N}(x)$, such that $U \cap A \in \mathcal{I}$. Then $A \cap \tilde{f}(A) = \emptyset$. Since $cl(A) = A \cup \tilde{f}(A)$ is τ_{cl} -closed, we have $(A \cup \tilde{f}(A)) - \tilde{f}(A \cup \tilde{f}(A)) \in \mathcal{I}$.

Moreover,

$$(A \cup \tilde{f}(A)) - \tilde{f}(A \cup \tilde{f}(A)) = (A \cup \tilde{f}(A)) - (\tilde{f}(A) \cup \tilde{f}(\tilde{f}(A)))$$

= $(A \cup \tilde{f}(A)) - \tilde{f}(A)$
= $A.$

Therefore $A \in \mathcal{I}$.

THEOREM 4.4. Let (X, f, \mathcal{I}) be an ideal Čech space. If f is f-compatible with \mathcal{I} , then the following equivalent properties hold:

- (1) For every $A \subseteq X$, $A \cap \tilde{f}(A) = \emptyset$ implies that $\tilde{f}(A) = \emptyset$;
- (2) For every $A \subseteq X$, $\tilde{f}(A \tilde{f}(A)) = \emptyset$;
- (3) For every $A \subseteq X$, $\widetilde{f}(A \cap \widetilde{f}(A)) = \widetilde{f}(A)$.

Proof. First, we show that (1) holds if f is f-compatible with \mathcal{I} . Let A be any subset of X and $A \cap \tilde{f}(A) = \emptyset$. By Theorem 4.2, $A \in \mathcal{I}$ and by Lemma 3.2 (5), $\tilde{f}(A) = \emptyset$.

(1) \Rightarrow (2): Assume that for every $A \subseteq X$, $A \cap \tilde{f}(A) = \emptyset$ implies that $\tilde{f}(A) = \emptyset$. Let $B = A - \tilde{f}(A)$, then

$$B \cap \widetilde{f}(B) = (A - \widetilde{f}(A)) \cap \widetilde{f}(A - \widetilde{f}(A))$$

= $(A \cap (X - \widetilde{f}(A))) \cap \widetilde{f}(A \cap (X - \widetilde{f}(A)))$
 $\subseteq \left(A \cap (X - \widetilde{f}(A))\right) \cap \left(\widetilde{f}(A) \cap \widetilde{f}(X - \widetilde{f}(A))\right) = \emptyset.$

By (1), we have $\widetilde{f}(B) = \emptyset$. Hence $\widetilde{f}(A - \widetilde{f}(A)) = \emptyset$.

(2)
$$\Rightarrow$$
 (3): Assume for every $A \subseteq X$, $f(A - f(A)) = \emptyset$.

$$A = (A - \tilde{f}(A)) \cup (A \cap \tilde{f}(A))$$
$$\tilde{f}(A) = \tilde{f}\left((A - \tilde{f}(A)) \cup (A \cap \tilde{f}(A))\right)$$
$$= \tilde{f}(A - \tilde{f}(A)) \cup \tilde{f}(A \cap \tilde{f}(A))$$
$$= \tilde{f}(A \cap \tilde{f}(A)).$$

(3) \Rightarrow (1): Let $A \subseteq X$ such that $A \cap \tilde{f}(A) = \emptyset$. Then by the assumption, $\tilde{f}(A \cap \tilde{f}(A)) = \tilde{f}(A)$. This implies that $\emptyset = \tilde{f}(\emptyset) = \tilde{f}(A \cap \tilde{f}(A)) = \tilde{f}(A)$. \Box

COROLLARY 4.5. Let (X, f, \mathcal{I}) be an ideal Čech space. If f is f-compatible with \mathcal{I} , then $\tilde{f}()$ is an idempotent operator i.e. $\tilde{f}(A) = \tilde{f}(\tilde{f}(A))$ for any subset A of X.

Proof. By Theorems 4.4 and 3.4, we obtain

$$\widetilde{f}(A) = \widetilde{f}(A \cap \widetilde{f}(A)) \subseteq \widetilde{f}(A) \cap \widetilde{f}(\widetilde{f}(A)) = \widetilde{f}(\widetilde{f}(A))$$

and by Theorem 3.4, we have $\tilde{f}(A) = \tilde{f}(\tilde{f}(A))$ for any subset A of X.

REFERENCES

- A. Al-Omari and T. Noiri, Weakly Φ-continuous functions in grill topological spaces, Hacet. J. Math. Stat., 41 (2012), 785–793.
- [2] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math., 43 (2013), 139–149.
- [3] A. Al-Omari and T. Noiri, On w-I_g-closed sets in weak structure spaces due to Császár with ideals, Mathematica, 57 (80) (2015), 3–9.
- [4] A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, Mathematica, 58 (81) (2016), 3–13.
- [5] A. Al-Omari and T. Noiri, Operators in Minimal Spaces with Hereditary Classes, Mathematica, 61 (84) (2019), 101–110.
- [6] H. Al-Saadi and A. Al-Omari, Some operators in ideal topological spaces, Missouri J. Math. Sci., 30 (2018), 59–71.

- [7] D. Andrijević, M. Jelić and M. Mršević, Some properties of hyperspaces of Čech closure spaces, Filomat, 24 (2010), 53–61.
- [8] D. Andrijević, M. Jelić and M. Mršević, On function space topologies in the setting of Čech closure spaces, Topology Appl., 158 (2011), 1390–1395.
- [9] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [10] K. Kuratowski, Topology. I. Metric spaces, complete spaces, Monografie Matematyczne, Vol. 3, PWN - Panstwowe Wydawnictwo Naukowe, Warszawa, 1933.
- [11] B. M. R. Stadler and P. F. Stadler, Basic properties of closure spaces.

Received May 1, 2021 Accepted November 23, 2021 Al al-Bayt University Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq, 25113, Jordan E-mail: omarimutah1@yahoo.com https://orcid.org/0000-0002-6696-1301

Sfax University I.S.I. M.S, Department of Mathematics Tunisia E-mail: tn_riadh_71@yahoo.com https://orcid.org/0000-0002-9642-7337

2949-1 Shiokita-cho Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142 Japan E-mail: t.noiri@nifty.com https://orcid.org/0000-0002-0862-5297