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ON FLAT EPIMORPHISMS OF RINGS
AND POINTWISE LOCALIZATIONS

ABOLFAZL TARIZADEH

Abstract. In this paper all rings are commutative. We prove some new results
on flat epimorphisms of rings and pointwise localizations. Especially among
them, it is proved that a ringR is an absolutely flat (von-Neumann regular) ring if

and only if it is isomorphic to the pointwise localization R(−1)R, or equivalently,
each R-algebra is R-flat. For a given minimal prime ideal p of a ring R, the
surjectivity of the canonical map R → Rp is characterized. Finally, we give
a new proof to the fact that in a flat epimorphism of rings, the contraction-
extension of an ideal equals the same ideal.
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1. INTRODUCTION AND PRELIMINARIES

In this paper, all rings are commutative. Let φ : R → S be a morphism of
rings and J an ideal of S. Then it is easy to see that the contraction and then
extension of J under φ is contained in J , i.e., Jce ⊆ J , see [2, Proposition
1.17]. In this paper, in Theorem 2.5, we give a new proof to the fact that if φ
is a flat epimorphism of rings, then the equality holds.

Absolutely flat rings play a major role throughout this paper. We give two
new characterizations for absolutely flat rings. The first one states that a given
ring R is absolutely flat if and only if each R-algebra is R-flat, see Theorem
2.2. The second characterization states that a ring R is absolutely flat if and
only if it is canonically isomorphic to the pointwise localization R(−1)R, see
Theorem 3.13.

By an epimorphism of rings φ : R → S we mean it is an epimorphism in
the category of commutative rings. It is important to notice that surjective
ring maps are special cases of epimorphisms. As an example, the canonical
ring map Z → Q is an epimorphism of rings which is not surjective. It is well
known that a morphism of rings R→ S is an epimorphism if and only if in the
ring S⊗RS, s⊗1 = 1⊗s for all s ∈ S. It is also well known that any faithfully
flat epimorphism of rings is an isomorphism. In particular, an epimorphism

The author would like to give sincere thanks to the referee for very careful reading of the
paper.

DOI: 10.24193/mathcluj.2022.1.14



130 A. Tarizadeh 2

of rings with source a field is an isomorphism if and only if the target is a
nonzero ring. We refer the interested reader to [3, Tag 04VM], [4], [5], [7], [9],
[10] and [11] for a comprehensive discussion of epimorphisms of commutative
rings.

By a flat epimorphism of rings we mean a ring map which is both a flat
ring map and an epimorphism of rings. If S is a multiplicative subset of a
ring R, then the canonical ring map R → S−1R is a typical example of flat
epimorphisms of rings.

For a given ring R, the quotient ring R/N is denoted by Rred where N is the
nil-radical of R. For any ring map φ : R→ S the induced map Rred → Sred is
denoted by φred.

We shall freely use the above facts in this paper.

2. ABSOLUTELY FLAT RINGS AND EPIMORPHISMS OF RINGS

Recall that a ring R is said to be an absolutely flat ring if each R-module
is R-flat. It is well known that a ring R is absolutely flat if and only if it is
von-Neumann regular ring (i.e., each r ∈ R can be written as r = r2s for some
s ∈ R). In the following result we give a new and quite elementary proof for
this well known fact.

Theorem 2.1. Let R be a ring. Then R is an absolutely flat ring if and
only if each r ∈ R can be written as r = r2s for some s ∈ R.

Proof. If R is an absolutely flat ring then R/I is R-flat where I = (r). Then
by [13, Remark 2.2], I = I2 and so r = r2s for some s ∈ R. To prove the
reverse implication, it will be enough to show that for each R-module M and
for each ideal I of R, then the canonical map I ⊗RM →M which sends each

pure tensor a⊗m of I ⊗RM into am is injective. Assume
n∑
i=1

aimi = 0 where

ai ∈ I and mi ∈ M for all i. By hypothesis, each ai = ria
2
i for some ri ∈ R.

For i = 1, 2 we have ai = aib
′ where b′ = r1a1 + r2a2 − r1r2a1a2 ∈ I. Thus by

induction on n, we may find some b ∈ I such that ai = aib for all i = 1, . . . , n.

It follows that
n∑
i=1

ai ⊗ mi = b ⊗ (
n∑
i=1

aimi) = 0. Hence, the above map is

injective. □

In the following result we provide a new characterization for absolutely flat
rings.

Theorem 2.2. Let R be a ring. Then R is absolutely flat if and only if each
R-algebra is R-flat.

Proof. The implication “⇒” is clear. Conversely, let M be a R-module.
Then consider the ring S = R×M whose the addition and multiplication are
defined as (r,m) + (r′,m′) = (r + r′,m+m′) and (r,m).(r′,m′) = (rr′, rm′ +
r′m), respectively. Clearly S is a commutative ring whose identity element is
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(1, 0) and the map φ : R→ S given by r ⇝ (r, 0) is a morphism of rings, (this
construction is due to Nagata and in the literature, the ring S is called the
“idealization” or the trivial extension of R by M). The R-module structure
induced via φ on S is the same as the usual R-module structure on the direct
sum R ⊕M . By hypothesis, φ is a flat morphism. Thus S = R ⊕M is a flat
R-module. It it well known that the direct sum of a family of R-modules is
R-flat if and only if each factor is R-flat. Hence, M is a flat R-module. □

Lemma 2.3. Let S and T be two multiplicative subsets of a ring R. Then
S−1R ⊗R T

−1R = 0 if and only if there exist f ∈ S and g ∈ T such that
fg = 0.

Proof. It is proved exactly like [1, Lemma 3.1]. □

Theorem 2.4. Let p be a minimal prime ideal of a ring R. Then the
canonical map π : R → Rp is surjective if and only if the canonical map
Rm → Rp is surjective for all m ∈ Max(R) ∩ V (p).

Proof. The implication “⇒” is clear, since the map π factors as:

R // Rm
// Rp.

To see the converse, it suffices to show that the induced map πm : Rm → (Rp)m
is surjective for all m ∈ Max(R). If p ⊆ m, then (Rp)m ≃ Rp. Thus by the
hypothesis, πm is surjective. But if p ⊈ m, then choose f ∈ p \ m. Clearly
pRp is the nil-radical of Rp. So there exists some g ∈ R \ p such that fg is
nilpotent. Then by Lemma 2.3 or by [1, Lemma 3.1], (Rp)m ≃ Rp ⊗R Rm = 0.
Hence, πm is surjective. □

Theorem 2.5. Let φ : R → S be a flat epimorphism of rings. Then the
following statements hold:

(i) If q is a prime ideal of S, then the induced map φq : Rp → Sq is an
isomorphism of rings where p = φ−1(q).

(ii) If J is an ideal of S, then Jce = J .
(iii) The induced map φ∗ : Spec(S) → Spec(R) is a homeomorphism onto

its image.
(iv) If R is a Noetherian ring, then S is as well.
(v) If R is an Artinian ring, then S is as well.

Proof. (i) See [12, Lemma 2.1].
(ii) Clearly IS ⊆ J where I := φ−1(J). To see the reverse inclusion, we

have S/J ∼= S/J ⊗R S as S-modules. On the other hand, since S is flat over

R, thus from the exact sequence 0 // R/I
φ // S/J we obtain the fol-

lowing exact sequence 0 // R/I ⊗R S
φ⊗1S // S/J ⊗R S . Furthermore, the



132 A. Tarizadeh 4

following diagram is commutative:

R/I ⊗R S
φ⊗1S //

��

S/J ⊗R S

��
S/IS // S/J

therefore S/IS → S/J is injective. Thus, J ⊆ IS.
(iii) By (ii), the function φ∗ is a closed map onto its image.
(iv) Take an arbitrary ideal J of S, then I = φ−1(J) = (a1, ..., an) is a

finitely generated ideal, since R is a noetherian ring. By (ii), J = IS =(
φ(a1), ..., φ(an)

)
. Hence, S is a Noetherian ring.

(v) Using (ii), then every descending chain of ideals of S stabilizes. □

Let φ : R → S be a morphism of rings and let J be the kernel of the
canonical ring map S ⊗R S → S given by s⊗ s′ ⇝ ss′. Then it is well known
that J/J2 as S-module is canonically isomorphic to ΩR(S), the module of
Kähler differentials of S over R, (it is also denoted by ΩS/R). In particular, J
is an idempotent ideal if and only if ΩR(S) = 0. Then we provide a new proof
to the following well known result.

Theorem 2.6. A ring map φ : R → S is an epimorphism of rings if and
only if the following three conditions hold.

(i) The induced map φ∗ : Spec(S) → Spec(R) is injective.
(ii) If q is a prime ideal of S, then the induced map κ(p) → κ(q) is an

isomorphism where p = φ−1(q).
(iii) The kernel of the canonical ring map p : S ⊗R S → S is a finitely

generated and idempotent ideal.

Proof. Assume φ : R → S is an epimorphism of rings. To prove (i), it will
be enough to show that for each prime ideal p of R, then (φ∗)−1(p) has at
most one element. It is well known that the fiber (φ∗)−1(p) is homeomorphic
to Spec

(
S ⊗R κ(p)

)
. On the other hand, the base change κ(p) → κ(p) ⊗R S

is an epimorphism of rings. Hence, κ(p) ⊗R S is a field whenever it is a non-
zero ring. Therefore, (φ∗)−1(p) has at most one element. To prove (ii), let q
be a prime ideal of S laying over p, i.e., φ−1(q) = p. Consider the following
commutative diagram of rings:

R
φ=epic //

��

S

epic
��

κ(p) // κ(q).

The composition R // κ(p) // κ(q) is an epimorphism hence the in-

duced ring map κ(p) → κ(q) is also an epimorphism (in fact it is an iso-
morphism). The statement (iii) is obvious, since φ is an epimorphism if and
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only if p is an isomorphism. To prove the reverse implication we act as fol-
lows. Let T be a reduced ring and let f, g : S → T be two ring maps such
that f ◦ φ = g ◦ φ. We claim that f = g. We have φ∗ ◦ f∗ = (f ◦ φ)∗ =
(g ◦ φ)∗ = φ∗ ◦ g∗. Therefore f∗ = g∗, since φ∗ is injective. If P is a prime
ideal of T , then setting q := f−1(P), also setting p := φ−1(q). Denote by
φ̃ :

∏
P∈Spec(T )

κ(p) →
∏

P∈Spec(T )
κ(q) the ring map induced via φ : R → S.

By the hypothesis (ii), φ̃ is an isomorphism. Similarly above, denote by

f̃ , g̃ : S′ =
∏

P∈Spec(T )
κ(q) → T ′ =

∏
P∈Spec(T )

κ(P ) the ring maps induced by

f and g, respectively. From f ◦φ = g ◦φ we conclude that f̃ ◦ φ̃ = g̃ ◦ φ̃. Thus
f̃ = g̃, since φ̃ is an isomorphism. The following diagram is commutative:

S
f,g //

ρ
��

T

ρ′

��
S′ f̃ ,g̃ // T ′

i.e. f̃ ◦ ρ = ρ′ ◦ f and g̃ ◦ ρ = ρ′ ◦ g. Thus ρ′ ◦ f = ρ′ ◦ g. Since T is reduced,
therefore ρ′ is injective and so f = g. This establishes the claim. Now to
conclude the assertion, since i1 ◦ φ = i2 ◦ φ therefore η ◦ i1 ◦ φ = η ◦ i2 ◦ φ
where i1, i2 : S → S ⊗R S and η : S ⊗R S → (S ⊗R S)red are the canonical
maps. By applying what we have just proved for a morphism with target a
reduced ring, we conclude that η ◦ i1 = η ◦ i2. Therefore for each s ∈ S,
s ⊗ 1 − 1 ⊗ s is nilpotent. By the hypothesis (iii), J = Ker(p) is generated
by a finite number of nilpotent elements of the form s ⊗ 1 − 1 ⊗ s. Hence, J
is a nilpotent ideal. Thus J = 0, since it is idempotent. Therefore, φ is an
epimorphism of rings. □

3. POINTWISE RINGS WITH APPLICATIONS

In this section we study the theory of pointwise localizations and some of
its applications. This theory was originally introduced and studied during the
Séminaire Samuel [9].

If R is an absolutely flat ring, then by Theorem 2.1, each element a ∈ R can
be written as a = a2b for some b ∈ R. This leads us to the following definition.

Definition 3.1. Let R be a ring and let a ∈ R. If there is an element b ∈ R
such that a = a2b and b = b2a, then b is said to be a pointwise inverse of a.

Lemma 3.2. Let a, b ∈ R. Then b is a pointwise inverse of a if and only if
a ∈ Ra2. Moreover, if b is a pointwise inverse of a then there is an idempotent
element e ∈ R such that (e+ a)(e+ b) = 1. Finally, the pointwise inverse, if
it exists, is unique.

Proof. Suppose a ∈ Ra2. We have a = ra2 for some r ∈ R. Let b = r2a.
Then b is a pointwise inverse of a. Clearly e = 1−ab is an idempotent element
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and (e+ a)(e+ b) = 1. Let c ∈ R be another pointwise inverse of a. We have
b = ab2 = (ac)(ab2) = a2c2b = ac2 = c. □

The pointwise inverse of a ∈ R, if it exists, is usually denoted by a(−1). The
pointwise inverse has appeared in the literature also under other names, e.g.
outer inverse or 2-inverse.

Lemma 3.3. Let φ : R→ S be a ring map. Suppose a, b ∈ R have pointwise
inverses in R. Then the pointwise inverses of φ(a) and ab exist. Moreover

φ(a)(−1) = φ(a(−1)) and (ab)(−1) = a(−1)b(−1).

Proof. It is an easy exercise. □

The following result establishes the universal property of the poinwise rings.

Proposition 3.4. Let R be a ring and let S be a subset of R. Then there
exist a ring S(−1)R and a canonical ring map η : R → S(−1)R such that
for each s ∈ S, the pointwise inverse of η(s) in S(−1)R exists and the pair

(S(−1)R, η) satisfies in the following universal property: if there is a ring map
φ : R→ R′ such that for each s ∈ S the pointwise inverse of φ(s) in R′ exists

then there is a unique ring map ψ : S(−1)R→ R′ such that φ = ψ ◦ η.

Proof. Consider the polynomial ring A = R[xs : s ∈ S] and let S(−1)R =
A/I where the ideal I is generated by elements of the form sx2s−xs and s2xs−s
with s ∈ S. Let η : R → S(−1)R be the canonical ring map. For each s ∈ S,
the element xs + I is the pointwise inverse of η(s) = s + I. Let φ : R → R′

be a ring map such that for each s ∈ S, the pointwise inverse of φ(s) exists
in R′. By the universal property of the polynomial rings, there is a (unique)

homomorphism of R-algebras φ̃ : R[xs : s ∈ S] → R′ such that xs ⇝ φ(s)(−1)

for all s ∈ S. We have φ̃(I) = 0. Denote by ψ : S(−1)R → R′ the ring map
induced by φ̃. Clearly ψ is the unique ring homomorphism such that φ = ψ◦η.
Because suppose there is another such ring map ψ′ : S(−1)R → R′. Then we

have ψ(xs+ I) = φ̃(xs) = φ(s)(−1) = ψ′(η(s))(−1)
= ψ′(η(s)(−1)

)
= ψ′(xs+ I)

for all s ∈ S. Therefore ψ = ψ′. □

We call S(−1)R the pointwise localization of R with respect to S.

Proposition 3.5. Let R be a ring and let S be a subset of R. Then the
following statements hold:

(i) The canonical ring map η : R→ S(−1)R is an epimorphism.

(ii) The map η∗ : Spec
(
S(−1)R

)
→ Spec(R) is bijective.

(iii) For each s ∈ S, then (η∗)−1
(
V (s)

)
is a clopen (both open and closed)

subset of Spec
(
S(−1)R

)
.

(iv) The ring S(−1)R is nonzero if and only if R is as well.
(v) Ker(η) ⊆ N where N is the nil-radical of R.

Proof. (i) It follows from Proposition 3.4.
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(ii) By Theorem 2.6, the map η∗ is injective. To see surjectivity, let p be
a prime ideal of R and consider the canonical ring map π : R → κ(p). The
image of every element of R under π has a pointwise inverse in κ(p). Thus,

by Proposition 3.4, there is a (unique) ring map ψ : S(−1)R→ κ(p) such that
π = ψ ◦ η. Then p = η∗(q) where q = ψ−1(0).

(iii) We have (η∗)−1
(
V (s)

)
= V

(
η(s)

)
. Moreover, we have V

(
η(s)

)
= D

(
1−

η(s)η(s)(−1)
)
.

(iv) and (v) These are immediate consequences of (ii). □

Lemma 3.6. Let φ : R→ S be an epimorphism of rings where S is a nonzero
ring with trivial idempotents. Suppose φ(r) has a pointwise inverse in S for all
r ∈ R. Then A := Im(φ) is an integral domain and S is its field of fractions.

Proof. Suppose φ(r)φ(r′) = 0 for some elements r, r′ ∈ R. If φ(r) ̸= 0

then φ(r)φ(r)(−1) = 1 since φ(r)φ(r)(−1) is an idempotent element. Therefore
A is an integral domain. Let K be the field of fractions of A. Since every
non-zero element of A is invertible in S therefore by the universal property of
the localization, there is a (unique) ring map ψ : K → S such that i = ψ ◦ j
where i : A → S and j : A → K are the canonical injections. The map
φ factors as φ = i ◦ φ′ where φ′ : R → A is the ring map induced by φ.
Since φ is an epimorphism thus i and so ψ are epimorphisms. Hence, ψ is an
isomorphism. □

Theorem 3.7. Let R be a ring and let η : R→ R′ = R(−1)R be the canonical
ring map. Then the following statements hold:

(i) If q is a prime ideal of R′, then R′
q is canonically isomorphic to κ(p)

where p = η−1(q).

(ii) The ring R(−1)R is absolutely flat.

Proof. (i) For each prime ideal q of R(−1)R, the map:

R
η // R(−1)R // R′

q

satisfies all of the hypotheses of Lemma 3.6. Therefore R′
q is a field. Now

consider the following commutative diagram:

Rp
ηq=epic //

��

R′
q

≃
��

κ(p) // κ(q)

where p = η∗(q). The ring map κ(p) → κ(q) is an isomorphism, since it is an
epimorphism.

(ii) It is deduced from (i) and the fact that the absolutely flatness is a local
property. □



136 A. Tarizadeh 8

By Proposition 3.4 and Theorem 3.7, the assignment R ⇝ R(−1)R is a
covariant functor form the category of commutative rings into the category of
absolutely flat rings.

Lemma 3.8. Let φ : R→ S be a ring map, let M and N be S-modules and
consider the canonical map η : M ⊗R N → M ⊗S N which maps each pure
tensor m⊗R n into m⊗S n. Then Ker(η) is generated by elements of the form
sm⊗R n−m⊗R sn with s ∈ S \ Im(φ), m ∈M and n ∈ N . In particular, if
φ is an epimorphism of rings then η is an isomorphism.

Proof. Let K be the R-submodule of M ⊗RN generated by elements of the
form sm ⊗R n −m ⊗R sn with s ∈ S \ Im(φ), m ∈ M and n ∈ N . Clearly
K ⊆ Ker(η). Consider the map η : P = M ⊗R N/K → M ⊗S N induced
by η. We have Ker(η) = Ker(η)/K. The scalar multiplication S × P → P
which is defined on pure tensors by s.(m ⊗R n + K) = sm ⊗R n + K is
actually well-defined and puts a S-module structure over P . By the universal
property of the tensor products, the S-bilinesr map M × N → P defined by
(m,n) ⇝ m ⊗R n + K induces a (unique) S-homomorphism M ⊗S N → P
which maps each pure tensor m⊗S n into m⊗R n+K. This implies that η is
bijective. Therefore Ker(η) = K. □

Lemma 3.9. Let φ : R → S be a flat ring map which has a factorization

R
ψ // A

φ′
// S such that φ′ is an injective ring map and ψ is an epimor-

phism of rings. Then φ′ is a flat ring map.

Proof. For each A-module M , the canonical map ηM :M ⊗R S →M ⊗A S
which maps each pure tensorm⊗Rs intom⊗As is injective because in A⊗RA-
module M ⊗R S we have am⊗R s = (a⊗R 1A).(m⊗R s) = (1A ⊗R a).(m⊗R

s) = m ⊗R a.s then apply Lemma 3.8. In fact, it is bijective. Now suppose

0 // N
f // M is an exact sequence of A-modules. The following diagram

is commutative:

N ⊗R S
f⊗R1 //

ηN
��

M ⊗R S

ηM
��

N ⊗A S
f⊗A1 // M ⊗A S

and the map f ⊗R 1 is injective since S is flat over R. Therefore f ⊗A 1
is injective as well. Hence, S is a flat module over A, i.e., φ′ is a flat ring
map. □

Lemma 3.10. Let φ : R→ S be a flat epimorphism of rings. Then for each
prime p of R we have either pS = S or the canonical ring map Rp → T−1S
given by r/s⇝ φ(r)/φ(s) is an isomorphism where T = φ(R \ p).

Proof. Suppose pS ̸= S for some prime p. The canonical map Rp → T−1S
is a flat epimorphism because flat morphisms and epics are stable under base
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change and composition (recall that the ring T−1S is canonically isomorphic
to Sp). It is also faithfully flat since pS ̸= S. Hence, it is an isomorphism. □

It is worth mentioning that the converse of Lemma 3.10 also holds.
Theorems 3.11 and 3.12 are well known, we provide new proofs for them.

Theorem 3.11. Let φ : R → S be a flat epimorphism of rings. If φred is
surjective, then φ is as well.

Proof. The map φ factors as R
π // R/Ker(φ)

φ′
// S where π is the

canonical ring map and φ′ is induced by φ. We have Im(φ) = Im(φ′), φ′ is
an epimorphism and φ′

red is surjective. Moreover, by Lemma 3.9, φ′ is flat.
Therefore, without loss of generality, we may assume that φ is injective. It
follows that φred is an isomorphism and so φ∗ : Spec(S) → Spec(R) is bijective.
Therefore pS ̸= S for all primes p of R and so by Lemma 3.10, the canonical
map Rp → Sp is bijective. It follows that S/φ(R) ⊗R Rp = 0 for all primes
p. □

Theorem 3.12. Let φ : R → S be an epimorphism of rings such that R is
absolutely flat. Then φ is surjective.

Proof. The map φ factors as R
π // R/Ker(φ)

φ′
// S where π is the

canonical ring map and φ′ is the injective ring map induced by φ. The quotient
ring R/Ker(φ) is absolutely flat. Moreover, Im(φ) = Im(φ′) and yet φ′ is an
epimorphism. Hence, without loss of generality, we may assume that φ is
injective. In this case, φ is a faithfully flat morphism. Because, suppose
S ⊗RM = 0 for some R-module M . From the following short exact sequence
of R-modules

0 // R
φ // S

π // S/R // 0

we obtain the following long exact sequence of R-modules ... //

TorR1 (S/R,M) // R⊗RM
φ⊗1M // S ⊗RM

π⊗1M// S/R⊗RM // 0 .

But TorR1 (S/R,M) = 0 since S/R is R-flat, see [8, Theorem 7.2]. Thus
M ≃ R ⊗R M = 0. Therefore φ is a faithfully flat epimorphism and so it is
an isomorphism. This means that, in our factorization φ = φ′ ◦ π, φ′ is an
isomorphism. Therefore the original φ is surjective. □

Theorem 3.13. Let R be a ring. Then R is an absolutely flat ring if and
only if the canonical ring map η : R→ R(−1)R is an isomorphism.

Proof. Suppose R is absolutely flat. Then, by Theorem 3.12, η is surjective.
Pick a ∈ Ker(η). By Theorem 2.1, there exists some b ∈ R such that a = ba2.
It follows that a = bn−1an for all n ⩾ 1. But a is a nilpotent element,
see Proposition 3.5. Therefore a = 0. The reverse implication follows from
Theorem 3.7. □
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