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ON MIDPOINT AND TRAPEZOID TYPE INEQUALITIES
FOR MULTIPLICATIVE INTEGRALS

SUNDAS KHAN and HÜSEYIN BUDAK

Abstract. The purpose of this paper is to establish some Hermite-Hadamard
type inequalities for multiplicative convex functions. First, we obtain two equal-
ity for ∗ differentiable functions. Then using these inequalities and multiplicative
convex functions, we establish some inequalities related to the right and left hand
side of Hermite-Hadamard inequality for multiplicative integrals.
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1. INTRODUCTION

Theory of convexity had played a significant role in many of mathematical
and engineering sciences and also provide a general and unified framework for
studying a wide classes of unrelated problems. Convexity in connection with
integral inequalities is an interesting field of research. The inequalities discov-
ered by C. Hermite and J. Hadamard for convex functions are considerable
significant in the literature (see, e.g., [6, 8], [15, p. 137]). These inequalities
state that if f : I → R is a convex function on the interval I of real numbers
and a, b ∈ I with a < b, then

(1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f (a) + f (b)

2
.

Both inequalities hold in the reversed direction if f is concave. We note that
Hadamard’s inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Over the last twenty
years, the numerous studies have focused on to obtain new bound for left hand
side and right and side of the inequality (1). For some examples, please refer
to ([2], [4]–[7], [9]–[14], [16]–[19]) and the references therein.
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2. MULTIPLICATIVE CALCULUS

2.1. MULTIPLICATIVE DERIVATIVES AND INTEGRALS

Recall multiplicative derivative which can be found in [3].

Definition 2.1. Let f : R → R+ be a positive function. The multiplicative
derivative of the function f is given by

d∗f

dt
(t) = f∗(t) = lim

h→0

(
f(t+ h)

f(t)

) 1
h

.

If f has positive values and is differentiable at t, then f∗ exists and the
relation between f∗ and ordinary derivative f ′ is as follows:

f∗(t) = e[ln f(t)]′ = e
f ′(t)
f(t)

Recall also that the concept of the multiplicative integral called ∗ integral

is denoted by
b∫
a
(f(x))dx which introduced by Bashirov et al. in [3]. While the

sum of the terms of product is used in the definition of a classical Riemann
integral of f on [a, b] , the product of terms raised to power is used in the
definition multiplicative integral of f on [a, b] .

The following properties of ∗ differentiable exist:

Theorem 2.2. Let f and g be ∗ differentiable functions. If c is arbitrary
constant, then functions cf, fg, f + g, f/g and fg are ∗ differentiable and

(i) (cf)∗ (t) = f∗(t).
(ii) (fg)∗ (t) = f∗(t)g∗(t).

(iii) (f + g)∗ (t) = f∗(t)
f(t)

f(t)+g(t) g∗(t)
g(t)

f(t)+g(t) .

(iv)
(
f
g

)∗
(t) = f∗(t)

g∗(t) .

(v) (fg)∗ (t) = f∗(t)g(t)f(t)g
′(t).

There is the following relation between Riemann integral and multiplicative
integral [3]:

Proposition 2.3. If f is Riemann integrable on [a, b] , then f is multiplica-
tive integrable on [a, b] and

b∫
a

(f(x))dx = e

b∫
a
ln(f(x))dx

.

Moreover, Bashirov et al [3] show that multiplicative integrable has the
following results and properties:

Proposition 2.4. If f is positive and Riemann integrable on [a, b], then
f is ∗integrable on [a, b] and
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(i)
b∫
a
((f(x))p)dx =

b∫
a
((f(x))dx)p,

(ii)
b∫
a
(f(x)g(x))dx =

b∫
a
(f(x))dx ·

b∫
a
(g(x))dx,

(iii)
b∫
a

(
f(x)
g(x)

)dx
=

b∫
a
(f(x))dx

b∫
a
(f(x))dx

,

(iv)
b∫
a
(f(x))dx =

c∫
a
(f(x))dx ·

b∫
c
(f(x))dx, a ≤ c ≤ b,

(v)
a∫
a
(f(x))dx = 1 and

b∫
a
(f(x))dx =

(
a∫
b

(f(x))dx
)−1

.

Theorem 2.5 (Multiplicative Integration by Parts). Let f : [a, b] → R be
∗ differentiable, let g : [a, b] → R be differentiable so the function fg is ∗

integrable. Then

b∫
a

(f∗(x)g(x))dx =
f(b)g(b)

f(a)g(a)
.

1
b∫
a
(f(x)g′(x))dx

.

2.2. HERMITE-HADAMARD INEQUALITY AND MULTIPLICATIVELY CONVEXITY

For the our main results we need the following definition.

Definition 2.6. A non-empty set K is said to be convex if for every a, b
∈ K we have

a+ µ(b− a) ∈ K, ∀µ ∈ [0, 1].

Definition 2.7. A function f is said to be convex on a set K, if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀t ∈ [0, 1].

Definition 2.8. A function f is said to be log or multiplicatively convex
function on set K, if

f(tx+ (1− t)y) ≤ [f(x)]t . [f(y)]1−t ,∀t ∈ [0, 1].

Proposition 2.9. If f and g are log (multiplicatively) convex functions,

then the functions fg and f
g are log (multiplicatively) convex functions.

The classical Hermite-Hadamard inequality for convex function given by
the inequality (1).

Hermite-Hadamard inequality for multiplicatively convex function is proved
by Ali et al. in [1] as follows:
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Theorem 2.10. Let f be a positive and multiplicatively convex function on
interval [a, b],then the following inequalities hold

(2) f

(
a+ b

2

)
≤

 b∫
a

(f(x))dx


1

b−a

≤ G(f(a), f(b)),

where G(., .) is a geometric mean.

The main purpose of this paper is to establish some inequalities connected
with the left and right part of (2).

3. MIDPOINT TYPE INEQUALITIES FOR MULTIPLICATIVE INTEGRALS

Lemma 3.1. Let f : [a, b] → R be ∗ differentiable, let g : [a, b] → R and
h : J ⊂ R → [a, b] be two differentiable functions. Then we have

b∫
a

(f∗(h(x))g(x)h
′(x))dx =

f(h(b))g(b)

f(h(a))g(a)
.

1
b∫
a
(f(h(x))g′(x))dx

.

Proof. The proof is obvious from the properties of multiplicative derivatives
and integrals. □

Before we prove our results, we give the following lemma.

Lemma 3.2. Let f : I0 ⊆ R → R+ be a ∗ differentiable mapping on I0,
a, b ∈ I0 with a < b. If f∗ is ∗ integrable on [a, b] , then we have(

b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

)
=


1
2∫

0

(
[f∗(at+ (1− t)b)]t

)dt
.

1∫
1
2

(
[f∗(at+ (1− t)b)](t−1)

)dt
b−a

.

Proof. By using the Lemma 3.1, we obtain
1
2∫

0

(
[f∗(at+ (1− t)b)]t

)dt
(b−a)

×

 1∫
1
2

(
[f∗(at+ (1− t)b)]t−1

)dt
(b−a)
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=

1
2∫

0

(
[f∗(at+ (1− t)b)]t(b−a)

)dt
.

1∫
1
2

(
[f∗(at+ (1− t)b)](t−1)(b−a)

)dt

=

(
f

(
a+ b

2

))− 1
2 1

1
2∫
0

(
[f(at+ (1− t)b)]−1

)dt . 1(
f
(
a+b
2

)) 1
2

× 1
1∫
1
2

(
[f(at+ (1− t)b)]−1

)dt
=

(
f

(
a+ b

2

))−1 1 1
2∫
0

(f(at+ (1− t)b))dt

−1

× 1 1∫
1
2

(f(at+ (1− t)b))dt

−1

=

1
2∫
0

(f(at+ (1− t)b))dt .
1∫
1
2

(f(at+ (1− t)b))dt

f
(
a+b
2

)

=

1∫
0

(f(at+ (1− t)b))dt

f
(
a+b
2

) =

(
b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

) .

This completes the proof. □

Now, using Lemma 3.2, we give the following theorems.

Theorem 3.3. Let f : I0 ⊂ R → R+ be a ∗ differentiable mapping on I0,
a, b ∈ I0 with a < b. If f is increasing on [a, b] and f∗ is multiplicatively
convex on [a, b], then we have∣∣∣∣∣∣∣∣∣∣∣

(
b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

)
∣∣∣∣∣∣∣∣∣∣∣
≤ (f∗(a)f∗(b))

b−a
8 .
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Proof. Using Lemma 3.2 and the multiplicative convexity of f∗, we have∣∣∣∣∣∣∣∣∣∣∣

(
b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

)
∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1
2∫

0

(
[f∗(at+ (1− t)b)]t

)dt

×
1∫

1
2

(
[f∗(at+ (1− t)b)](t−1)

)dt∣∣∣∣∣∣∣
b−a

≤

∣∣∣∣
1
2∫

0

(
[f∗(at+ (1− t)b)]t

)dt ∣∣∣∣∣∣∣∣
1∫

1
2

(
[f∗(at+ (1− t)b)](t−1)

)dt ∣∣∣∣

b−a

≤ exp

(b− a)

1
2∫

0

| ln f∗(at+ (1− t)b)t|dt


× exp

(b− a)

1∫
1
2

| ln f∗(at+ (1− t)b)(t−1)|dt



= exp

(b− a)

1
2∫

0

|t ln f∗(at+ (1− t)b)|dt


× exp

(b− a)

1∫
1
2

|(t− 1) ln f∗(at+ (1− t)b)|dt



= exp

(b− a)

1
2∫

0

t ln f∗(at+ (1− t)b)dt


× exp

(b− a)

1∫
1
2

(1− t) ln f∗(at+ (1− t)b)dt



≤ exp

(b− a)

1
2∫

0

t ln
(
f∗(a)tf∗(b)1−t

)
dt


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× exp

(b− a)

1∫
1
2

(1− t) ln
(
f∗(a)tf∗(b)1−t

)
dt



≤ exp

(b− a)

1
2∫

0

t(t ln f∗(a) + (1− t) ln f∗(b))dt


× exp

(b− a)

1∫
1
2

(1− t)(t ln f∗(a) + (1− t) ln f∗(b))dt


= (f∗(a)f∗(b))

b−a
8 ,

where we have used the facts that
∫ 1

2
0 t(1− t)dt =

∫ 1
1
2
(1− t)tdt = 1

12 ,
∫ 1

2
0 t2dt =

1
24 ,
∫ 1

1
2
(1− t)2dt = 1

24 . This completes the proof. □

Theorem 3.4. Let f : I0 ⊂ R → R+ be a ∗ differentiable mapping on I0,
a, b ∈ I0 with a < b. If f is increasing on [a, b] and (ln f∗)q , q > 1, is convex
on [a, b], then we have

∣∣∣∣∣∣∣∣∣∣∣

(
b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

)
∣∣∣∣∣∣∣∣∣∣∣
≤ (f∗(a)f∗(b))

b−a
4

(
4

p+1

) 1
p

,

where 1
p + 1

q = 1.

Proof. Using Lemma 3.2 and the Hölder’s integral inequality it follows that∣∣∣∣∣∣∣∣∣∣∣

(
b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

)
∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣
1
2∫

0

(
[f∗(at+ (1− t)b)]t

)dt

×
1∫

1
2

(
[f∗(at+ (1− t)b)](t−1)

)dt ∣∣∣∣

b−a

(3)
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≤

∣∣∣∣
1
2∫

0

(
[f∗(at+ (1− t)b)]t

)dt ∣∣∣∣
×
∣∣∣∣

1∫
1
2

(
[f∗(at+ (1− t)b)](t−1)

)dt ∣∣∣∣

b−a

≤

exp
(b− a)

1
2∫

0

| ln f∗(at+ (1− t)b)t|dt


× exp

(b− a)

1∫
1
2

| ln f∗(at+ (1− t)b)(t−1)|dt




= exp

(b− a)

1
2∫

0

(|t ln f∗(at+ (1− t)b)] |dt


× exp

(b− a)

1∫
1
2

(|(t− 1) ln f∗(at+ (1− t)b)] |dt



≤ exp

(b− a)


1
2∫

0

|t|pdt

 1
p

(∫ 1
2

0
| ln f∗(at+ (1− t)b))|qdt

)
1
q


× exp

(b− a)

 1∫
1
2

|t− 1|pdt

 1
p

(∫ 1

1
2

| ln f∗(at+ (1− t)b)|qdt

)
1
q

 ,

where 1
p + 1

q = 1. Using the convexity of (ln f∗)q, we obtain

∫ 1
2

0
(lnf∗(ta+ (1− t)b))q dt

≤
∫ 1

2

0
[t((lnf∗(a))q + (1− t) (ln f∗(b))q]dt

=
(ln f∗(a))q + 3(ln f∗(b))q

8
,

(4)



9 On midpoint and trapezoid type inequalities 103∫ 1

1
2

(ln f∗(ta+ (1− t)b))q dt

≤
∫ 1

1
2

[t(ln f∗(a))q + (1− t) (ln f∗(b))q]dt

=
3(ln f∗(b))q + (ln f∗(b))q

8
.

(5)

If we substitute the inequalities (4) and (5) in (3), then we have∣∣∣∣∣∣∣∣∣∣∣

(
b∫
a
(f(x)dx

) 1
b−a

f
(
a+b
2

)
∣∣∣∣∣∣∣∣∣∣∣

≤ exp

(
(b− a)

(
1

2p+1(p+ 1)

) 1
p
(
(ln f∗(a))q + 3(ln f∗(b))q

8

) 1
q

)

× exp

(
(b− a)

(
1

2p+1(p+ 1)

) 1
p
(
3 (ln f∗(a))q + (ln f∗(b))q

8

) 1
q

)

≤ exp

(
b− a

2
1+ 1

p

(
1

(p+ 1)

) 1
p
[(

(ln f∗(a))q + 3(ln f∗(b))q

8

) 1
q

+

(
(3 ln f∗(a))q + (ln f∗(b))q

8

) 1
q
])

.

Here, we use the facts that∫ 1
2

0
tpdt =

∫ 1

1
2

|1− t|pdt =
∫ 1

1
2

(1− t)pdt =
1

(p+ 1)2p+1
.

Now, let a1 = (ln f∗(a))q , b1 = 3(ln f∗(b))q, a2 = 3 (ln f∗(a))q and b2 =
(ln f∗(b))q. Using the facts that,

n∑
k=1

(ak + bk)
s ≤

n∑
k=1

ask +
n∑

k=1

bsk, 0 ≤ s < 1

and 1 + 3
1
q ≤ 4, we have(
(ln f∗(a))q + 3(ln f∗(b))q

8

)
1
q +

(
3 (ln f∗(a))q + (ln f∗(b))q

8

)
1
q

≤
(
1

8

)
1
q

(
1 + 3

1
q

)
[ln f∗(a) + ln f∗(b)] ≤ 4

(
1

8

)
1
q ln (f∗(a)f∗(b)) .

This completes the proof. □
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4. TRAPEZOID TYPE INEQUALITIES FOR MULTIPLICATIVE INTEGRALS

In this section we obtain some trapezoid type inequalities for multiplica-
tively convex functions. First we give the following lemma.

Lemma 4.1. Let f : I0 ⊆ R → R+ be a ∗ differentiable mapping on I0,
a, b ∈ I0 with a < b. If f∗ is ∗ integrable on [a, b] , then we have

√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

=

 1∫
0

(
[f∗(at+ (1− t)b)]

1
2
−t
)dtb−a

.

Proof. Using Lemma 3.1, we have

 1∫
0

(
[f∗(at+ (1− t)b)](

1
2
−t)
)dtb−a

=

1∫
0

(
[f∗(at+ (1− t)b)](

1
2
−t)(b−a)

)dt
=

(f(a))
1
2

(f(b))
−1
2

.
1∫ 1

0 (f(ta+ (1− t)b))dt

=

√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

.

This completes the proof. □

Theorem 4.2. Let f : I0 ⊂ R → R+ be a ∗ differentiable mapping on I0,
a, b ∈ I0 with a < b. If f is increasing on [a, b] and f∗ is multiplicatively
convex on [a, b], then we have

∣∣∣∣∣∣∣∣∣∣∣
√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

∣∣∣∣∣∣∣∣∣∣∣
≤ (f∗(a)f∗(b))

1
8 .
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Proof. Using Lemma 4.1, we have∣∣∣∣∣∣∣∣∣∣∣
√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣
1∫

0

(
[f∗(at+ (1− t)b)]

1
2
−t
)dt ∣∣∣∣

b−a

≤ exp

(b− a)

1∫
0

(| ln f∗(at+ (1− t)b)](
1
2
−t) |dt


= exp

(b− a)

1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ |ln f∗(at+ (1− t)b)| dt

 .

(6)

Since f∗ is multiplicatively convex, we get

1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ ln f∗(at+ (1− t)b)dt

≤
1∫

0

∣∣∣∣t− 1

2

∣∣∣∣ [(1− t) ln f∗(a) + t ln f∗(b)] dt

= ln f∗(a)

1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ (1− t)dt+ ln f∗(b)

1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ tdt
=

ln f∗(a) + ln f∗(b)

8
.

(7)

If we substitute the inequality (7) in (6), we obtain∣∣∣∣∣∣∣∣∣∣∣
√

f(a)f(b)(
b∫
a
(f(x)dx

) 1
b−a

∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(b− a)

1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ ln f∗(at+ (1− t)b)dt



≤ exp

(
(b− a)

ln f∗(a) + ln f∗(b)

8

)
= (f∗(a)f∗(b))

b−a
8 ,

which completes the proof. □

Theorem 4.3. Let f : I0 ⊂ R → R be a ∗ differentiable mapping on I0,
a, b ∈ I0 with a < b. If f is increasing on [a, b] and (ln f∗)q , q > 1, is convex
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on [a, b], then we have∣∣∣∣∣∣∣∣∣∣∣
√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

∣∣∣∣∣∣∣∣∣∣∣
≤ (f∗(a)f∗(b))

(b−a)( 1
2)

1+1
q
(

1
p+1

) 1
p

,

where 1
p + 1

q = 1.

Proof. Using Lemma 4.1 and the Hölder’s inequality it follows that∣∣∣∣∣∣∣∣∣∣∣
√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣
1∫

0

(
[f∗(at+ (1− t)b)]

1
2
−t
)dt ∣∣∣∣

b−a

≤ exp

(b− a)

1∫
0

| ln f∗(at+ (1− t)b)(
1
2
−t)|dt


= exp

(b− a)

1∫
0

∣∣∣∣(1

2
− t

)
ln f∗(at+ (1− t)b)

∣∣∣∣ dt


≤ exp

(b− a)

1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ | ln f∗(at+ (1− t)b)|dt



(8)

≤ exp

(b− a)

 1∫
0

∣∣∣∣t− 1

2

∣∣∣∣ pdt
 1

p

×
(∫ 1

0
(ln f∗(at+ (1− t)b))) qdt

)
1
q

)
.

(9)

Using the convexity of (ln f∗)q, we obtain∫ 1

0
(ln f∗(at+ (1− t)b)) qdt

≤
∫ 1

0
[t (ln f∗(a))q + (1− t) (ln f∗(b))q]dt

=
(ln f∗(a))q + (ln f∗(b))q

2
.

(10)
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Further we have

(11)

∫ 1

0

∣∣∣∣t− 1

2

∣∣∣∣p dt = 1

(p+ 1)2p

By combining (8)–(11), we get∣∣∣∣∣∣∣∣∣∣∣
√
f(a)f(b)(

b∫
a
(f(x)dx

) 1
b−a

∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(
b− a

2

(
1

p+ 1

)
1
p

(
(ln f∗(a))q + (ln f∗(b))q

2

)
1
q

)
≤ exp

(
(b− a)

(
1

2

)1+ 1
q
(

1

p+ 1

)
1
p (ln f∗(a)f∗(b))

)
.

Here we use the inequality cλ + dγ ≤ (c+ d)λ for c, d > 0 and λ > 1.
Thus, the proof is completed. □
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