MATHEMATICA, 64 (87), N $^{\circ}$ 1, 2022, pp. 83–94

SOME (Λ, b) -TYPE MAPPINGS IN TOPOLOGICAL SPACES

JIARUL HOQUE and SHYAMAPADA MODAK

Abstract. In this paper, the authors introduce and study (Λ, b) -continuous, (Λ, b) -irresolute and quasi- (Λ, b) -irresolute mappings. Some characterizations and several properties concerning aforesaid mappings are obtained. The authors also introduce (Λ, b) -compactness and (Λ, b) -connectedness. It is proved that (Λ, b) -compactness (resp. (Λ, b) -connectedness) is preserved under (Λ, b) -irresolute mappings. The paper also touches the topics frontier points, Dirichlet's function, filter and algebraic structure of some functions.

MSC 2010. 54C08, 54D05, 54D30.

Key words. Λ_b -set, (Λ, b) -closed set, (Λ, b) -open set, b-continuous function, b-irresolute function.

1. INTRODUCTION

Maki [12] introduced the notion of Λ -sets and Andrijević [1] introduced the *b*-open sets in topological spaces. In [4], Caldas et al. defined and investigated Λ_b -sets using *b*-open sets. Via Λ_b -sets and *b*-closed sets, Boonpok [2] introduced (Λ, b) -closed sets and investigated several properties in topological spaces. In this paper, we introduce concepts of (Λ, b) -continuous, (Λ, b) irresolute, quasi- (Λ, b) -irresolute mappings and study several behaviours and characterizations. We also introduce (Λ, b) -compactness and (Λ, b) -connectedness and relate them with (Λ, b) -continuous, (Λ, b) -irresolute mappings. We show that (Λ, b) -irresolute image of (Λ, b) -compact (resp. (Λ, b) -connected) space is (Λ, b) -compact (resp. (Λ, b) -connected).

2. PRELIMINARIES

Throughout this paper, by (X, τ) , (Y, σ) and (Z, η) (or simply X, Y and Z) we mean topological spaces in which, unless explicitly mentioned, any kind of separation axioms are not considered. From now, by space we understood topological space. For $A \subseteq X$, Int(A), Cl(A) and $X \setminus A$ are used to denote interior, closure and complement of A respectively. For $x \in X$, $\tau(x)$ stands for the collection of all open sets containing x.

A subset A of a space X is called b-open [1] or γ -open [9] if $A \subseteq \operatorname{Cl}(\operatorname{Int}(A)) \cup$ Int(Cl(A)). Complement of a b-open set is called b-closed. The b-closure (resp.

The authors thank the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2022.1.10

b-interior) of A, denoted by $b\operatorname{Cl}(A)$ [1] or $\operatorname{Cl}_b(A)$ [3] (resp. $b\operatorname{Int}(A)$ [1] or $\operatorname{Int}_b(A)$ [3]), is the smallest (resp. largest) b-closed (resp. b-open) set containing (resp. contained in) A. The family of all b-open (resp. b-closed) sets in X is denoted as $BO(X,\tau)$ (resp. $BC(X,\tau)$). In [4], the subset A^{Λ_b} (resp. A^{V_b}) is defined as the intersection (resp. union) of all b-open (resp. b-closed) subsets of X containing (resp. contained in) A. It is noticeable that A^{Λ_b} is denoted as $b\operatorname{Ker}(A)$ in [3] and γ -Ker(A) in [6]. A is called a Λ_b -set (resp. V_b -set) [4] if $A^{\Lambda_b} = A$ (resp. $A^{V_b} = A$). Furthermore, the authors Caldas *et al.* in [4] have shown that for subsets A and B of a space X, (i) $A \subseteq B$ implies $A^{V_b} \subseteq B^{V_b}$; (ii) $(X \setminus A)^{\Lambda_b} = X \setminus A^{V_b}$; (ii) for $A \in BO(X,\tau)$; A is a Λ_b -set and (iv) A is a Λ_b -set if and only if $X \setminus A$ is a V_b -set.

In this paragraph we discuss some notations and terminologies of [2]. A subset A of a space X is called (Λ, b) -closed if $A = T \cap C$, where T is a Λ_b -set and C is b-closed set. Complement of a (Λ, b) -closed set is called (Λ, b) open. The family of (Λ, b) -closed (resp. (Λ, b) -open) subsets of X is denoted as $\Lambda_b C(X, \tau)$ (resp. $\Lambda_b O(X, \tau)$). The (Λ, b) -closure (resp. (Λ, b) -interior) of A, denoted by $A^{(\Lambda,b)}$ (resp. $\Lambda_{(\Lambda,b)}$) is defined in analogous manner of Cl(A) (resp. Int(A)). The symbol $\Lambda_b C(X, x)$ (resp. $\Lambda_b O(X, x)$) denotes the family of all (Λ, b) -closed (resp. (Λ, b) -open) sets containing x. The subset $\Lambda_{(\Lambda,b)}(A)$ is defined as $\Lambda_{(\Lambda,b)}(A) = \bigcap \{U \in \Lambda_b O(X, \tau) : A \subseteq U\}$. Again, we learnt from [2] that every Λ_b -set (resp. b-closed set) is (Λ, b) -closed; and for subsets A and B of a space X, (i) $A \subseteq B$ implies $A^{(\Lambda,b)} \subseteq B^{(\Lambda,b)}$; (ii) $[A^{(\Lambda,b)}]^{(\Lambda,b)} = A^{(\Lambda,b)}$; (iii) A is (Λ, b) -closed if and only if $A = A^{(\Lambda,b)}$; (iv) A is (Λ, b) -open if and only if $A = A_{(\Lambda,b)}$; and (v) $A^{(\Lambda,b)}$ (resp. $A_{(\Lambda,b)}$) is (Λ, b) -closed (resp. (Λ, b) -open).

PROPOSITION 2.1. The following statements are valid for a space X:

- (1) Every b-open set is (Λ, b) -open.
- (2) Every b-closed set is (Λ, b) -open.
- (3) Every V_b -set is (Λ, b) -open.

THEOREM 2.2. For a subset A of a space X, the following are equivalent:

- (1) A is (Λ, b) -open;
- (2) $A = P \cup Q$, where P is a V_b-set and Q is a b-open set;
- (3) $A = P \cup \operatorname{Int}_b(A);$
- (4) $A = A^{V_b} \cup \operatorname{Int}_b(A);$
- (5) $A = A^{V_b} \cup A_{(\Lambda,b)}.$

PROPOSITION 2.3. Let A be a subset of a space X and $x \in X$. Then $x \in \Lambda_{(\Lambda,b)}(A)$ if and only if $A \cap F \neq \emptyset$ for every $F \in \Lambda_b C(X,x)$.

COROLLARY 2.4. For a subset A of a space X, $\Lambda_{(\Lambda,b)}(A) = \{x \in X : \{x\}^{(\Lambda,b)} \cap A \neq \emptyset\}.$

PROPOSITION 2.5. Let X be a space and $x \in X$. Then $y \in \Lambda_{(\Lambda,b)}(\{x\})$ if and only if $x \in \{y\}^{(\Lambda,b)}$.

PROPOSITION 2.6. Let X be a space. Then for every $x \in X$, $\Lambda_{(\Lambda,b)}(\{x\}) \neq$ X if and only if $\bigcap \{ \{x\}^{(\Lambda,b)} : x \in X \} = \emptyset$.

We close our this short section with the following theorem:

THEOREM 2.7. For any two points x and y of a space X, the following are equivalent:

- (1) $\Lambda_{(\Lambda,b)}(\{x\}) \neq \Lambda_{(\Lambda,b)}(\{y\});$ (2) $\{x\}^{(\Lambda,b)} \neq \{y\}^{(\Lambda,b)}.$

Proof. Let $\Lambda_{(\Lambda,b)}(\{x\}) \neq \Lambda_{(\Lambda,b)}(\{y\})$. Then we can find $p \in X$ such that $p \in X$ $\Lambda_{(\Lambda,b)}(\{x\})$ but $p \notin \Lambda_{(\Lambda,b)}(\{y\})$. Using Proposition 2.5 from $p \in \Lambda_{(\Lambda,b)}(\{x\})$, we get $x \in \{p\}^{(\Lambda,b)}$ and hence $\{x\}^{(\Lambda,b)} \subseteq \{p\}^{(\Lambda,b)}$. Again using Proposition 2.5 from $p \notin \Lambda_{(\Lambda,b)}(\{y\})$, we get $y \notin \{p\}^{(\Lambda,b)}$ and hence $y \notin \{x\}^{(\Lambda,b)}$. Hence ${x}^{(\Lambda,b)} \neq {y}^{(\Lambda,b)}$. Conversely, let ${x}^{(\Lambda,b)} \neq {y}^{(\Lambda,b)}$. Then we can find $t \in X$ such that $t \in {x}^{(\Lambda,b)}$ but $t \notin {y}^{(\Lambda,b)}$. From $t \in {x}^{(\Lambda,b)}$ and Proposition 2.5, we have $x \in \Lambda_{(\Lambda,b)}(\{t\})$. Therefore $\{x\} \subseteq \Lambda_{(\Lambda,b)}(\{t\})$ implies $\Lambda_{(\Lambda,b)}(\{x\}) \subseteq$ $\Lambda_{(\Lambda,b)}[\Lambda_{(\Lambda,b)}(\{t\})] = \Lambda_{(\Lambda,b)}(\{t\}),$ by Lemma 3.36 of [2]. Now using Proposition 2.5 from $t \notin \{y\}^{(\Lambda,b)}$, we have $y \notin \Lambda_{(\Lambda,b)}(\{t\})$. Clearly $y \notin \Lambda_{(\Lambda,b)}(\{x\})$. Hence $\Lambda_{(\Lambda,b)}(\{x\}) \neq \Lambda_{(\Lambda,b)}(\{y\}).$

3. (Λ, b) -continuous, (Λ, b) -irresolute and quasi- (Λ, b) -irresolute FUNCTIONS

In this section we introduce (Λ, b) -continuous, (Λ, b) -irresolute and quasi- (Λ, b) -irresolute mappings and study some properties and characterizations.

DEFINITION 3.1. Let X and Y be two spaces. A function $f: X \to Y$ is said to be

- (1) (Λ, b) -continuous (resp. b-continuous or γ -continuous [9]) if for every open subset V of Y, $f^{-1}(V)$ is (Λ, b) -open (resp. b-open) in X.
- (2) (Λ, b) -irresolute (resp. b-irresolute or γ -irresolute [5, 8]) if for every (Λ, b) -open (resp. b-open) subset V of Y, $f^{-1}(V)$ is (Λ, b) -open (resp. *b*-open) in X.
- (3) quasi- (Λ, b) -irresolute if for every b-open subset V of Y, $f^{-1}(V)$ is (Λ, b) -open in X.

The following examples illustrate the existence of (Λ, b) -continuous, (Λ, b) irresolute and quasi- (Λ, b) -irresolute functions.

EXAMPLE 3.2. Consider the real line \mathbb{R} endowed with the usual topology τ_u . The well known Dirichlet's function $f: (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_u)$ defined by

(1)
$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

is (Λ, b) -continuous on \mathbb{R} .

3

EXAMPLE 3.3. Let $X = Y = \mathbb{R}$, τ_u and τ_d be respectively the usual and discrete topology on \mathbb{R} . The function $f : (X, \tau_u) \to (Y, \tau_d)$ defined in (1) is (Λ, b) -irresolute as well as quasi- (Λ, b) -irresolute.

THEOREM 3.4. For a function $f: X \to Y$, the following are equivalent:

- (1) f is (Λ, b) -continuous;
- (2) for every closed subset F of Y, $f^{-1}(F) \in \Lambda_b C(X, \tau)$;
- (3) for each $x \in X$ and for every $V \in \sigma(f(x))$, there is a $U \in \Lambda_b O(X, x)$ such that $f(U) \subseteq V$;
- (4) for every $A \subseteq X$, $f[A^{(\Lambda,b)}] \subseteq \operatorname{Cl}(f(A))$;
- (5) for every $B \subseteq Y$, $[f^{-1}(B)]^{(\Lambda,b)} \subseteq f^{-1}(\operatorname{Cl}(B))$;
- (6) for every $B \subseteq Y$, $f^{-1}(\operatorname{Int}(B)) \subseteq [f^{-1}(B)]_{(\Lambda,b)}$.

Proof. (1) \iff (2): Since $Y \setminus F$ is open and f is (Λ, b) -continuous, $X \setminus f^{-1}(F) = f^{-1}(Y \setminus F)$ is (Λ, b) -open, witnessing that $f^{-1}(F) \in \Lambda_b C(X, \tau)$. Conversely, let V be any open subset of Y. Then $Y \setminus V$ is closed in Y. By hypothesis, $X \setminus f^{-1}(V) = f^{-1}(Y \setminus V)$ is (Λ, b) -closed and hence $f^{-1}(V)$ is (Λ, b) -open in X. Hence f is (Λ, b) -continuous.

(1) \iff (3): Let V be an open subset of Y and $f(x) \in V$. Then $x \in f^{-1}(V)$. Consider $U = f^{-1}(V)$. Since f is (Λ, b) -continuous, U is a (Λ, b) -open subset of X such that $x \in U$ and $f(U) \subseteq V$. Conversely, let V be any open subset of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. By assumption, there exists a (Λ, b) -open subset U_x of X such that $x \in U_x$ and $f(U_x) \subseteq V$. Hence $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$. Therefore $f^{-1}(V)$ is (Λ, b) -open in X, by Theorem 3.5 of [2]. Hence f is (Λ, b) -continuous.

(2) \iff (4): Since $\operatorname{Cl}(f(A))$ is closed in Y, $f^{-1}(\operatorname{Cl}(f(A)))$ is (Λ, b) -closed in X, by (2). Now $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\operatorname{Cl}(f(A)))$ implies that $A^{(\Lambda,b)} \subseteq f^{-1}(\operatorname{Cl}(f(A)))$. Hence $f[A^{(\Lambda,b)}] \subseteq \operatorname{Cl}(f(A))$. Conversely, let F be a closed subset of Y. By hypothesis, $f([f^{-1}(F)]^{(\Lambda,b)}) \subseteq \operatorname{Cl}(f(f^{-1}(F))) \subseteq \operatorname{Cl}(F) = F$. Therefore $[f^{-1}(F)]^{(\Lambda,b)} \subseteq f^{-1}(F)$. Moreover, $f^{-1}(F) \subseteq [f^{-1}(F)]^{(\Lambda,b)}$. Thus $f^{-1}(F) = [f^{-1}(F)]^{(\Lambda,b)}$ and hence $f^{-1}(F)$ is (Λ, b) -closed in X.

(4) \iff (5): Let *B* be a subset of *Y*. By assumption, $f[(f^{-1}(B))^{(\Lambda,b)}] \subseteq$ $\operatorname{Cl}(f(f^{-1}(B))) \subseteq \operatorname{Cl}(B)$. Hence $[f^{-1}(B)]^{(\Lambda,b)} \subseteq f^{-1}(\operatorname{Cl}(B))$. Conversely, let *A* be a subset of *X*. Then by assumption, $[f^{-1}(f(A))]^{(\Lambda,b)} \subseteq f^{-1}(\operatorname{Cl}(f(A)))$. Since $A \subseteq f^{-1}(f(A)), A^{(\Lambda,b)} \subseteq [f^{-1}(f(A))]^{(\Lambda,b)}$. Thus $A^{(\Lambda,b)} \subseteq f^{-1}(\operatorname{Cl}(f(A)))$ and hence $f[A^{(\Lambda,b)}] \subseteq \operatorname{Cl}(f(A))$.

(1) \iff (6): For any $B \subseteq Y$, $\operatorname{Int}(B)$ is open in Y and hence by (1), $f^{-1}(\operatorname{Int}(B))$ is (Λ, b) -open in X and is contained in $f^{-1}(B)$. So $f^{-1}(\operatorname{Int}(B))$ $\subseteq [f^{-1}(B)]_{(\Lambda,b)}$. Conversely, let V be open in Y. Then $V = \operatorname{Int}(V)$ implies $f^{-1}(V) = f^{-1}(\operatorname{Int}(V)) \subseteq [f^{-1}(V)]_{(\Lambda,b)}$, by (6). Also $[f^{-1}(V)]_{(\Lambda,b)} \subseteq f^{-1}(V)$. Thus $f^{-1}(V) = [f^{-1}(V)]_{(\Lambda,b)}$ and hence $f^{-1}(V)$ is (Λ, b) -open in X. Therefore f is (Λ, b) -continuous. Recall that kernel of a subset A [13] of a space X is the set $\text{Ker}(A) = \bigcap \{U \in \tau : A \subseteq U\}$. In [12], Ker(A) is denoted by A^{Λ} .

LEMMA 3.5 ([10]). Let A be a subset of a space X. Then $x \in \text{Ker}(A)$ if and only if $A \cap F \neq \emptyset$ for every closed set F containing x.

THEOREM 3.6. Let $f : X \to Y$ be a (Λ, b) -continuous function. Then for every $A \subseteq X$, $f[\Lambda_{(\Lambda,b)}(A)] \subseteq \text{Ker}(f(A))$.

Proof. Suppose $y \notin \operatorname{Ker}(f(A))$. By Lemma 3.5, there exists a closed set F in Y such that $y \in F$ and $f(A) \cap F = \emptyset$. Now $A \cap f^{-1}(F) \subseteq f^{-1}(f(A)) \cap f^{-1}(F) = f^{-1}(f(A) \cap F) = \emptyset$ implies $A \cap f^{-1}(F) = \emptyset$. Since f is (Λ, b) -continuous function, $f^{-1}(F)$ is (Λ, b) -closed in X. Moreover, $f^{-1}(y) \subseteq f^{-1}(F)$. Therefore, by Proposition 2.3, $x \notin \Lambda_{(\Lambda,b)}(A)$ for all $x \in f^{-1}(y)$. Hence $y \notin f[\Lambda_{(\Lambda,b)}(A)]$. Therefore $f[\Lambda_{(\Lambda,b)}(A)] \subseteq \operatorname{Ker}(f(A))$.

DEFINITION 3.7 ([2]). A subset N of a space X is said to be (Λ, b) -neighborhood of a point $x \in X$ if there exists a (Λ, b) -open set U such that $x \in U \subseteq N$.

We denote the collection of all (Λ, b) -neighbourhoods of x as $\mathcal{N}_{(\Lambda, b)}(x)$.

Recall that a filter \mathcal{F} on a set S is a non-empty collection of non-empty subsets of S with the properties: (a) if F_1 , $F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$, and (b) if $F \in \mathcal{F}$ and $F \subseteq G$, then $G \in \mathcal{F}$.

DEFINITION 3.8 ([11]). Let $f: X \to Y$ be a function and \mathcal{F} be a filter on X. Then the filter on Y having $f(\mathcal{F}) = \{f(A) : A \in \mathcal{F}\}$ as a base is called the image filter of \mathcal{F} under f and is denoted by $f_{\sharp}(\mathcal{F})$.

DEFINITION 3.9. A filter \mathcal{F} on a space X is said to (Λ, b) -converge to $x_o \in X$ if every (Λ, b) -neighbourhood of x_o belongs to \mathcal{F} .

The following theorem characterizes (Λ, b) -continuous functions in terms of filter convergent.

THEOREM 3.10. A function $f : X \to Y$ is (Λ, b) -continuous at $x_o \in X$ if and only if whenever a filter \mathcal{F} , (Λ, b) -converges to x_o in X, then the image filter $f_{\sharp}(\mathcal{F})$ converges to $f(x_o)$ in Y.

Proof. Assume that f is (Λ, b) -continuous at x_o and \mathcal{F} is a filter (Λ, b) converging to x_o . Let $N \in \mathcal{N}_{f(x_o)}$, the collection of all neighbourhoods of $f(x_o)$. Then there exists an open set V in Y such that $f(x_o) \in V \subseteq N$. Since f is (Λ, b) -continuous at x_o , there exists a (Λ, b) -open set U in X such that $x_o \in U$ and $f(U) \subseteq V$. By (Λ, b) -convergence of \mathcal{F} to x_o in $X, U \in \mathcal{F}$. So $f(U) \in f(\mathcal{F})$. But $f(U) \subseteq N$ and so $N \in f_{\sharp}(\mathcal{F})$. It follows that $f_{\sharp}(\mathcal{F})$ converges to $f(x_o)$. Converse part: If possible, suppose that f is not (Λ, b) continuous at x_o . Then there exists an open set V in Y containing $f(x_o)$ such that $f(U) \cap (Y \setminus V) \neq \emptyset$, for all $U \in \Lambda_b O(X, x_o)$. Now $U \cap (X \setminus f^{-1}(V)) \subseteq$ $f^{-1}(f(U)) \cap f^{-1}(Y \setminus V) = f^{-1}(f(U) \cap (Y \setminus V)) \neq \emptyset$ implies $N \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for all $N \in \mathcal{N}_{(\Lambda, b)}(x_o)$. Therefore $\mathcal{S} = \mathcal{N}_{(\Lambda, b)}(x_o) \cup \{X \setminus f^{-1}(V)\}$ has the finite intersection property and hence generates a filter, say \mathcal{F} on X. Clearly \mathcal{F} , (Λ, b) -converges to x_o in X. Now $X \setminus f^{-1}(V) \in \mathcal{F}$ implies $f(X \setminus f^{-1}(V)) \in$ $f(\mathcal{F})$. Since $f(X \setminus f^{-1}(V)) \subseteq Y \setminus V, Y \setminus V \in f_{\sharp}(\mathcal{F})$. Since $f_{\sharp}(\mathcal{F})$ is a filter, $V \notin f_{\sharp}(\mathcal{F})$, where V is an open neighbourhood of $f(x_0)$. Thus $f_{\sharp}(\mathcal{F})$ does not converge to $f(x_o)$ in Y. This contradiction proves that f is (Λ, b) -continuous at x_o .

The following theorem represents an important characterization of (Λ, b) irresolute function.

THEOREM 3.11. The following are equivalent for a function $f: X \rightarrow Y$:

- (1) f is (Λ, b) -irresolute;
- (2) for every (Λ, b) -closed subset F of Y, $f^{-1}(F)$ is (Λ, b) -closed in X;
- (3) for each $x \in X$ and for every $V \in \Lambda_b O(Y, f(x))$, there is a $U \in$ $\Lambda_b O(X, x)$ such that $f(U) \subseteq V$;
- (4) for every $A \subseteq X$, $f[A^{(\Lambda,b)}] \subseteq [f(A)]^{(\Lambda,b)}$; (5) for every $B \subseteq Y$, $[f^{-1}(B)]^{(\Lambda,b)} \subseteq f^{-1}[B^{(\Lambda,b)}]$;
- (6) for every $B \subseteq Y$, $f^{-1}[B_{(\Lambda,b)}] \subseteq [f^{-1}(B)]_{(\Lambda,b)}$.

Proof. (1) \iff (2): Sine $Y \setminus F \in \Lambda_b O(Y, \sigma)$ and f is (Λ, b) -irresolute, $X \setminus f^{-1}(F) = f^{-1}(Y \setminus F) \in \Lambda_b O(X,\tau)$. Hence $f^{-1}(F) \in \Lambda_b C(X,\tau)$. For converse, let $V \in \Lambda_b O(Y, \sigma)$. Then $Y \setminus V$ is (Λ, b) -closed in Y. By hypothesis, $X \setminus f^{-1}(V) = f^{-1}(Y \setminus V)$ is (Λ, b) -closed and hence $f^{-1}(V)$ is (Λ, b) -open in X. Hence f is (Λ, b) -irresolute.

(1) \iff (3): Let $V \in \Lambda_b O(Y, f(x))$. Then $x \in f^{-1}(V)$. Consider U = $f^{-1}(V)$. Since f is (Λ, b) -irresolute, $U \in \Lambda_b O(X, x)$ and $f(U) \subseteq V$. Conversely, suppose that $V \in \Lambda_b O(Y, \sigma)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$. By assumption, there exists $U_x \in \Lambda_b O(X, x)$ such that $f(U_x) \subseteq V$. Hence $f^{-1}(V) = \bigcup \{ U_x : x \in f^{-1}(V) \}$. Therefore $f^{-1}(V)$ is (Λ, b) -open in X. Hence f is (Λ, b) -irresolute.

(2) \iff (4): Let A be a subset of X. Then $[f(A)]^{(\Lambda,b)}$ is (Λ,b) -closed in Y and hence $f^{-1}([f(A)]^{(\Lambda,b)})$ is (Λ, b) -closed in X, by (2). Now $A \subseteq f^{-1}(f(A)) \subseteq$ $f^{-1}([f(A)]^{(\Lambda,b)})$ implies $A^{(\Lambda,b)} \subseteq f^{-1}([f(A)]^{(\Lambda,b)})$. So $f[A^{(\Lambda,b)}] \subseteq [f(A)]^{(\Lambda,b)}$. For converse, let F be any (Λ, b) -closed subset of Y. By assumption, we have $f([f^{-1}(F)]^{(\Lambda,b)}) \subseteq [f(f^{-1}(F))]^{(\Lambda,b)} \subseteq F^{(\Lambda,b)} = F$. Then $[f^{-1}(F)]^{(\Lambda,b)} \subseteq$ $f^{-1}(F)$. Moreover, $f^{-1}(F) \subseteq [f^{-1}(F)]^{(\Lambda,b)}$. Thus $f^{-1}(F) = [f^{-1}(F)]^{(\Lambda,b)}$. Hence $f^{-1}(F)$ is (Λ, b) -closed in X.

(4) \iff (5): Let B be a subset of Y. By assumption, $f([f^{-1}(B)]^{(\Lambda,b)}) \subseteq$ $[f(f^{-1}(B))]^{(\Lambda,b)} \subseteq B^{(\Lambda,b)}$. Hence $[f^{-1}(B)]^{(\Lambda,b)} \subseteq f^{-1}[B^{(\Lambda,b)}]$. For converse, let *A* be a subset of *X*. By assumption, $[f^{-1}(f(A))]^{(\Lambda,b)} \subseteq f^{-1}([f(A)]^{(\Lambda,b)})$. Since $A \subseteq f^{-1}(f(A)), A^{(\Lambda,b)} \subseteq [f^{-1}(f(A))]^{(\Lambda,b)}$. Thus $A^{(\Lambda,b)} \subseteq f^{-1}([f(A)]^{(\Lambda,b)})$ and hence $f[A^{(\Lambda,b)}] \subseteq [f(A)]^{(\Lambda,b)}$.

(1) \iff (6): For any $B \subseteq Y$, $B_{(\Lambda,b)}$ is (Λ,b) -open in Y and hence by (1), $f^{-1}[B_{(\Lambda,b)}]$ is (Λ, b) -open in X and is contained in $f^{-1}(B)$. Therefore

 $f^{-1}[B_{(\Lambda,b)}] \subseteq [f^{-1}(B)]_{(\Lambda,b)}$. For converse, let V be (Λ, b) -open in Y. Then V = $V_{(\Lambda,b)}$ implies $f^{-1}(V) = f^{-1}[V_{(\Lambda,b)}] \subseteq [f^{-1}(V)]_{(\Lambda,b)}$, by (6). Also $[f^{-1}(V)]_{(\Lambda,b)}$ $\subseteq f^{-1}(V)$. Thus $f^{-1}(V) = [f^{-1}(V)]_{(\Lambda,b)}$ and hence $f^{-1}(V)$ is (Λ, b) -open in X. Therefore f is (Λ, b) -irresolute.

THEOREM 3.12. Let $f: X \to Y$ be a (Λ, b) -irresolute function. Then for any $A \subseteq X$, $f[\Lambda_{(\Lambda,b)}(A)] \subseteq \Lambda_{(\Lambda,b)}(f(A))$.

Proof. Assume $y \notin \Lambda_{(\Lambda,b)}(f(A))$. By Preposition 2.3, there exists a (Λ, b) closed set V in Y such that $y \in V$ and $f(A) \cap V = \emptyset$. Then $A \cap f^{-1}(V) \subseteq$ $f^{-1}(f(A)) \cap f^{-1}(V) = f^{-1}(f(A) \cap V) = \emptyset$ implies $A \cap f^{-1}(V) = \emptyset$. Since f is (Λ, b) -irresolute function, $f^{-1}(V)$ is (Λ, b) -closed in X. Moreover, $f^{-1}(y) \subseteq$ $f^{-1}(V)$. Therefore, by Proposition 2.3, $x \notin \Lambda_{(\Lambda,b)}(A)$ for all $x \in f^{-1}(y)$. Hence $y \notin f[\Lambda_{(\Lambda,b)}(A)]$. Therefore $f[\Lambda_{(\Lambda,b)}(A)] \subseteq \Lambda_{(\Lambda,b)}(f(A))$.

The next theorem characterizes (Λ, b) -irresoluteness of functions in terms of filter convergent.

THEOREM 3.13. A function $f: X \to Y$ is (Λ, b) -irresolute at $x_o \in X$ if and only if whenever a filter \mathcal{F} , (Λ, b) -converges to x_o in X, then the image filter $f_{\sharp}(\mathcal{F}), (\Lambda, b)$ -converges to $f(x_o)$ in Y.

Proof. Proof is similar to Theorem 3.10.

THEOREM 3.14. For a function $f: X \to Y$, the following are equivalent:

- (1) f is quasi- (Λ, b) -irresolute;
- (2) for every b-closed subset F of Y, $f^{-1}(F)$ is (Λ, b) -closed in X;
- (3) for every $A \subseteq X$, $f[A^{(\Lambda,b)}] \subseteq \operatorname{Cl}_b(f(A))$;
- (4) for every $B \subseteq Y$, $[f^{-1}(B)]^{(\overline{\Lambda},b)} \subseteq f^{-1}[\operatorname{Cl}_b(B)];$ (5) for every $B \subseteq Y$, $f^{-1}[\operatorname{Int}_b(B)] \subseteq [f^{-1}(B)]_{(\Lambda,b)}.$

Proof. (1) \iff (2): Since $Y \setminus V$ is b-open in Y and f is quasi- (Λ, b) irresolute, $X \setminus f^{-1}(V) = f^{-1}(Y \setminus V)$ is (Λ, b) -open. Hence $f^{-1}(V)$ is (Λ, b) closed in X. Conversely, let V be any b-open subset of Y. Then $Y \setminus V$ is b-closed in Y. By hypothesis, $X \setminus f^{-1}(V) = f^{-1}(Y \setminus V)$ is (Λ, b) -closed and hence $f^{-1}(V) \in \Lambda_b O(X, \tau)$. Hence f is quasi- (Λ, b) -irresolute.

(2) \iff (3): Let A be a subset of X. Then $\operatorname{Cl}_b(f(A))$ is b-closed in Y and hence $f^{-1}[\operatorname{Cl}_b(f(A))]) \in \Lambda_b C(X, \tau)$, by (2). Now $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}[\operatorname{Cl}_b(f(A))]$ implies $A^{(\Lambda,b)} \subseteq f^{-1}[\operatorname{Cl}_b(f(A))]$. Hence $f[A^{(\Lambda,b)}] \subseteq \operatorname{Cl}_b(f(A))$. Conversely, let F be a b-closed subset of Y. Now , we have $f([f^{-1}(F)]^{(\Lambda,b)})$ $\subseteq \operatorname{Cl}_b([f(f^{-1}(F))]) \subseteq \operatorname{Cl}_b(F) = F$. Then $[f^{-1}(F)]^{(\Lambda,b)} \subseteq f^{-1}(F)$. Moreover, $f^{-1}(F) \subseteq [f^{-1}(F)]^{(\Lambda,b)}$. Thus $f^{-1}(F) = [f^{-1}(F)]^{(\Lambda,b)}$. Hence $f^{-1}(V)$ is (Λ, b) -closed in X.

(3) \iff (4): Let B be a subset of Y. By (3), we have $f([f^{-1}(B)]^{(\Lambda,b)}) \subseteq$ $\operatorname{Cl}_b([f(f^{-1}(B))]) \subseteq \operatorname{Cl}_b(B)$. Hence $[f^{-1}(B)]^{(\Lambda,b)} \subseteq f^{-1}[\operatorname{Cl}_b(B)]$. Conversely, let A be a subset of X. By (4), $[f^{-1}(f(A))]^{(\Lambda,b)} \subseteq f^{-1}[\operatorname{Cl}_b(f(A))]$. Since

 $A \subseteq f^{-1}(f(A)), A^{(\Lambda,b)} \subseteq [f^{-1}(f(A))]^{(\Lambda,b)}$. Thus $A^{(\Lambda,b)} \subseteq f^{-1}[\operatorname{Cl}_b(f(A))]$ and hence $f[A^{(\Lambda,b)}] \subseteq \operatorname{Cl}_b(f(A))$.

(1) \iff (5): For any $B \subseteq Y$, $\operatorname{Int}_b(B)$ is b-open in Y and hence by (1), $f^{-1}(\operatorname{Int}_b(B))$ is (Λ, b) -open in X and is contained in $f^{-1}(B)$. Hence $f^{-1}(\operatorname{Int}_b(B)) \subseteq [f^{-1}(B)]_{(\Lambda,b)}$. Conversely, let $V \in BO(Y, \sigma)$. Then V = $\operatorname{Int}_b(V)$ implies $f^{-1}(V) = f^{-1}(\operatorname{Int}_b(V)) \subseteq [f^{-1}(V)]_{(\Lambda,b)}$, by (5). Also we have $[f^{-1}(V)]_{(\Lambda,b)} \subseteq f^{-1}(V)$. Thus $f^{-1}(V) = [f^{-1}(V)]_{(\Lambda,b)}$ and hence $f^{-1}(V)$ is (Λ, b) -open in X. Therefore f is quasi- (Λ, b) -irresolute.

The following is an immediate consequence of Lemma 3.2 of [3]:

LEMMA 3.15. Let A be a subset of a space X and $x \in X$. Then $x \in b\text{Ker}(A)$ if and only if $A \cap F \neq \emptyset$ for every b-closed set F containing x.

THEOREM 3.16. Let $f : X \to Y$ be a quasi- (Λ, b) -irresolute function. Then for every $A \subseteq X$, $f[\Lambda_{(\Lambda, b)}(A)] \subseteq b \operatorname{Ker}(f(A))$.

Proof. Assume $y \notin b\operatorname{Ker}(f(A))$. Then there exists a *b*-closed set F in Y such that $y \in V$ and $f(A) \cap V = \emptyset$. Now, $A \cap f^{-1}(V) \subseteq f^{-1}(f(A)) \cap f^{-1}(V) = f^{-1}(f(A) \cap V) = \emptyset$ and its imply $A \cap f^{-1}(V) = \emptyset$. Since f is quasi- (Λ, b) -irresolute function, $f^{-1}(V)$ is (Λ, b) -closed in X. Moreover, $f^{-1}(y) \subseteq f^{-1}(V)$. Therefore, by Proposition 2.3, $x \notin \Lambda_{(\Lambda,b)}(A)$ for all $x \in f^{-1}(y)$. Hence $y \notin f[\Lambda_{(\Lambda,b)}(A)]$. Therefore $f[\Lambda_{(\Lambda,b)}(A)] \subseteq b\operatorname{Ker}(f(A))$.

THEOREM 3.17. Let $f: X \to Y$ be a function. Then

- (1) f is b-continuous implies f is (Λ, b) -continuous.
- (2) f is b-irresolute implies f is quasi- (Λ, b) -irresolute.
- (3) f is (Λ, b) -irresolute implies f is quasi- (Λ, b) -irresolute.
- (4) f is (Λ, b) -irresolute implies f is (Λ, b) -continuous.

To show that converses of the results (1) and (2) of Theorem 3.17 are not true, we consider the following example.

EXAMPLE 3.18. Consider $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Then $BO(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, \Lambda_b O(X, \tau) = \wp(X)$, the power set of X; $BO(Y, \sigma) = \{\emptyset, \{a, \}, \{a, b\}, \{a, c\}, X\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = b and f(c) = a. Then f is both (Λ, b) -continuous and quasi- (Λ, b) -irresolute but neither b-continuous nor b-irresolute. Because $V = \{a\}$ is open and hence b-open but $f^{-1}(V) = \{c\}$ is not b-open.

THEOREM 3.19. Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then:

- (1) If f is (Λ, b) -continuous and g is continuous, then $g \circ f : X \to Z$ is (Λ, b) -continuous.
- (2) If f is quasi- (Λ, b) -irresolute and g is b-continuous, then $g \circ f : X \to Z$ is (Λ, b) -continuous.
- (3) If f is (Λ, b) -irresolute and g is (Λ, b) -continuous, then $g \circ f : X \to Z$ is (Λ, b) -continuous.

- (4) If f is (Λ, b) -irresolute and g is (Λ, b) -irresolute, then $g \circ f : X \to Z$ is (Λ, b) -irresolute.
- (5) If f is quasi- (Λ, b) -irresolute and g is b-irresolute, then $g \circ f : X \to Z$ is quasi- (Λ, b) -irresolute.
- (6) If f is (Λ, b) -irresolute and g is quasi- (Λ, b) -irresolute, then $g \circ f : X \to Z$ is quasi- (Λ, b) -irresolute.

LEMMA 3.20. Let A be a subset of a space X. Then

- (1) $X \setminus A^{(\Lambda,b)} = [X \setminus A]_{(\Lambda,b)}.$
- (2) $X \setminus A_{(\Lambda,b)} = [X \setminus A]^{(\Lambda,b)}$.

Proof. (1) Let $x \in X \setminus A^{(\Lambda,b)}$. Then $x \notin A^{(\Lambda,b)}$ and by Lemma 3.8 of [2], $A \cap U = \emptyset$ for some $U \in \Lambda_b O(X, x)$. Thus U is a (Λ, b) -open set contained in $X \setminus A$ and hence $U \subseteq [X \setminus A]_{(\Lambda,b)}$. Therefore $x \in [X \setminus A]_{(\Lambda,b)}$. Conversely, let $y \in [X \setminus A]_{(\Lambda,b)}$. If possible, let $y \notin X \setminus A^{(\Lambda,b)}$. Then $y \in A^{(\Lambda,b)}$ and $A \cap U \neq \emptyset$ for all $U \in \Lambda_b O(X, y)$. Since $[X \setminus A]_{(\Lambda,b)}$ is a (Λ, b) -open set containing y, $A \cap [X \setminus A]_{(\Lambda,b)} \neq \emptyset$, a contradiction.

(2) Follows from (1).

DEFINITION 3.21 ([2]). Let A be a subset of a space X. The (Λ, b) -frontier of A is denoted as $\Lambda_b Fr(A)$ and defined as: $\Lambda_b Fr(A) = A^{(\Lambda,b)} \cap (X \setminus A)^{(\Lambda,b)}$.

In the following theorem we use the notation $D_{(\Lambda,b)}(f)$ to stand the set of points x of X at which $f: X \to Y$ is not (Λ, b) -continuous.

THEOREM 3.22. $D_{(\Lambda,b)}(f)$ is the union of the (Λ, b) -frontiers of the inverse images of open sets containing f(x).

Proof. Let $x \in X$. Then the proof follows from the following two facts:

(i). Let f be not (Λ, b) -continuous at x. By Theorem 3.4, there exists an open set V of Y containing f(x) such that $f(U) \cap (Y \setminus V) \neq \emptyset$ for all $U \in \Lambda_b O(X, x)$. Obviously $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$. By Theorem 3.8 of [2], $x \in [X \setminus A]^{(\Lambda, b)}$. Also $x \in f^{-1}(V) \subseteq [f^{-1}(V)]^{(\Lambda, b)}$. Therefore $x \in \Lambda_b Fr(f^{-1}(V))$.

(ii). Let f be (Λ, b) -continuous at x. Let V be any open set of Y containing f(x). Then $x \in f^{-1}(V)$, a (Λ, b) -open set of X. Then $f^{-1}(V) = [f^{-1}(V)]_{(\Lambda, b)}$, and by Lemma 3.20, $x \notin [X \setminus f^{-1}(V)]^{(\Lambda, b)}$. Hence $x \notin \Lambda_b Fr(f^{-1}(V))$. \Box

In Topology, homeomorphism plays an important role. We now define two important homeomorphisms via (Λ, b) -continuous and (Λ, b) -irresolute functions as weak form of homeomorphism.

DEFINITION 3.23. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is said to be Λ_b -homeomorphism (resp. $\Lambda_b r$ - homeomorphism) if f and f^{-1} are (Λ, b) -continuous (resp. (Λ, b) -irresolute).

For a space (X, τ) , we consider the following two important collections: $\Lambda_b - h(X, \tau) = \{f \mid f : (X, \tau) \to (X, \tau) \text{ is } \Lambda_b \text{-homeomorphism}\};$ $\Lambda_b r \cdot h(X,\tau) = \{ f \mid f : (X,\tau) \to (X,\tau) \text{ is } \Lambda_b r \cdot \text{homeomorphism} \}.$ From 3.17(4), it is follows that $\Lambda_b r \cdot h(X,\tau) \subseteq \Lambda_b \cdot h(X,\tau).$

THEOREM 3.24. The collection $\Lambda_b r \cdot h(X, \tau)$ forms a group under composition of functions.

Proof. Obvious from Theorem 3.19.

4. (Λ, b) -COMPACTNESS AND (Λ, b) -CONNECTEDNESS

In this section, we study properties of (Λ, b) -compactness and (Λ, b) -connectedness. We start by defining the notion of (Λ, b) -open cover in a space.

DEFINITION 4.1. A collection \mathcal{A} of subsets of a space (X, τ) is said to be a (Λ, b) -open covering of X if the union of the elements of \mathcal{A} is X and the elements of \mathcal{A} are (Λ, b) -open in X.

DEFINITION 4.2. A space X is said to be (Λ, b) -compact (resp. b-compact [9]) if every (Λ, b) -open (resp. b-open) cover of X has a finite cover.

LEMMA 4.3. Every (Λ, b) -compact space is b-compact.

Proof. Suppose X is a (Λ, b) -compact space, and let $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ is a b-open cover of X. By Proposition 2.1(1), \mathcal{A} is a (Λ, b) -open cover of X. Since X is (Λ, b) -compact, there is a finite subset Δ_o of Δ such that $\{A_{\alpha} : \alpha \in \Delta_o\}$ covers X and consequently, X is b-compact.

COROLLARY 4.4. Every (Λ, b) -compact space is compact.

THEOREM 4.5. If $f : X \to Y$ is an onto (Λ, b) -continuous function and X is (Λ, b) -compact, then Y is compact.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be an open cover of Y. Since f is (Λ, b) -continuous, $\{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is a (Λ, b) -open cover of X. Since X is (Λ, b) -compact, there exists a finite subset Δ_o of Δ such that $X = \bigcup \{f^{-1}(U_{\alpha}) : \alpha \in \Delta_o\}$. Since f is onto, $Y = f(X) = \bigcup \{f(f^{-1}(U_{\alpha})) : \alpha \in \Delta_o\} = \bigcup \{U_{\alpha} : \alpha \in \Delta_o\}$. Hence Y is compact. \Box

THEOREM 4.6. If $f : X \to Y$ is an onto (Λ, b) -irresolute function and X is (Λ, b) -compact, then so is Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a (Λ, b) -open cover of Y. Since f is (Λ, b) irresolute, $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ is a (Λ, b) -open cover of X. Since X is (Λ, b) compact, there exists a finite subset Δ_o of Δ such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_o\}$. Since f is onto, $Y = f(X) = \bigcup \{V_{\alpha} : \alpha \in \Delta_o\}$. Hence Y is (Λ, b) -compact. \Box

THEOREM 4.7. If $f : X \to Y$ is an onto quasi- (Λ, b) -irresolute function and X is (Λ, b) -compact, then Y is b-compact.

Proof. Let $\{W_{\alpha} : \alpha \in \Delta\}$ be a *b*-open cover of *Y*. Since *f* is quasi- (Λ, b) irresolute, $\{f^{-1}(W_{\alpha}) : \alpha \in \Delta\}$ is a (Λ, b) -open cover of *X*. Since *X* is (Λ, b) compact, there exists a finite subset Δ_o of Δ such that $X = \bigcup \{f^{-1}(W_{\alpha}) : \alpha \in \Delta_o\}$. Since *f* is onto, $Y = f(X) = \bigcup \{W_{\alpha} : \alpha \in \Delta_o\}$. Hence *Y* is *b*-compact.

DEFINITION 4.8. A space X is said to be (Λ, b) -connected (resp. b-connected [7]) if X cannot be expressed as the union of two non-empty disjoint (Λ, b) -open (resp. b-open) sets of X.

LEMMA 4.9. Every (Λ, b) -connected space is b-connected.

Proof. Suppose X is a (Λ, b) -connected space. If possible, let X is not bconnected. Then there exists a pair A, B of disjoint non-empty b-open subsets of X such that $X = A \cup B$. By Proposition 2.1(1), A and B are (Λ, b) -open. Therefore X is not (Λ, b) -connected, a contradiction.

Reverse implication is considered in the following examples.

EXAMPLE 4.10. Consider the real line \mathbb{R} endowed with the usual topology \mathbb{R}_u . Then \mathbb{R} is connected but not (Λ, b) -connected because \mathbb{Q} , the set of rationals and $\mathbb{R} \setminus \mathbb{Q}$ together form a pair of non-empty disjoint (Λ, b) -open sets of \mathbb{R} with $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$.

EXAMPLE 4.11. Suppose \mathcal{F} is an ultrafilter on an infinite set X and $\tau = \mathcal{F} \cup \{\emptyset\}$. Then X is b-connected but not (Λ, b) -connected.

It is noticeable that there is no Hausdorff (Λ, b) -connected space.

THEOREM 4.12. A space X is (Λ, b) -connected if and only if $A^{(\Lambda, b)} = X$ for every non-empty (Λ, b) -open subset A.

Proof. Let X is (Λ, b) -connected. If possible, suppose A is a non-empty (Λ, b) -open subset of X such that $A^{(\Lambda, b)} \neq X$. Set $X \setminus A^{(\Lambda, b)} = B$. Then B is a non-empty (Λ, b) -open subset of X. Moreover, $A \cap B = \emptyset$. This is a contradiction. Converse part: If possible, suppose A, B is a pair of non-empty (Λ, b) -open sets of X such that $X = A \cup B$ and $A \cap B = \emptyset$. Then $A^{(\Lambda, b)} = (X \setminus B)^{(\Lambda, b)} = X \setminus B$, since $X \setminus B$ is (Λ, b) -closed. By assumption, $B = \emptyset$ which is a contradiction.

THEOREM 4.13. A space X is (Λ, b) -connected if and only if there is no non-empty proper subset of X which is both (Λ, b) -open and (Λ, b) -closed.

Proof. If possible, suppose A is a non-empty proper (Λ, b) -open as well as (Λ, b) -closed subset of X. Take $B = X \setminus A$. Then $B \neq \emptyset$, B is (Λ, b) open, $A \cap B = \emptyset$ and $A \cup B = X$. This implies X is not (Λ, b) -connected, a contradiction. Converse part: If possible, suppose $X = A \cup B$, where Aand B are non-empty disjoint (Λ, b) -open subsets of X. Then $A = X \setminus B$ is (Λ, b) -closed and $A \neq X$. Thus A is a non-empty proper (Λ, b) -open as well as (Λ, b) -closed set in X. This is a contradiction. \Box THEOREM 4.14. If $f : X \to Y$ is an onto (Λ, b) -continuous function and X is (Λ, b) -connected, then Y is connected.

Proof. If possible, suppose Y is not connected. Then there exists a pair A, B of non-empty disjoint open subsets of Y such that $Y = A \cup B$. Then $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Since f is a (Λ, b) -continuous and onto, $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty (Λ, b) -open subsets of X. Thus X is not (Λ, b) -connected. This is a contradiction. \Box

THEOREM 4.15. If $f : X \to Y$ is an onto (Λ, b) -irresolute function and X is (Λ, b) -connected, then so is Y.

THEOREM 4.16. If $f : X \to Y$ is an onto quasi- (Λ, b) -irresolute function and X is (Λ, b) -connected, then Y is b-connected.

REFERENCES

- [1] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59–64.
- [2] C. Boonpok, Generalized (Λ, b)-closed sets in topological spaces, Korean J. Math., 25 (2017), 437–453.
- [3] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math., 2 (2007), 11–19.
- [4] M. Caldas, S. Jafari and T. Noiri, On Λ_b-sets and the associated topology τ^{Λ_b}, Acta Math. Hungar., **110** (2006), 337–345.
- [5] E. Ekici, On contra-continuity, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 47 (2004), 127–137.
- [6] E. Ekici, On R spaces, International Journal of Pure and Applied Mathematics, 25 (2005), 163–172.
- [7] E. Ekici, On separated sets and connected spaces, Demonstr. Math., XL (2007), 209–217.
- [8] E. Ekici and M. Caldas, Slightly γ-continuous functions, Bol. Soc. Parana. Mat. (3), 22 (2004), 63–74.
- [9] A. A. El-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, Tanta University, Egypt, 1997.
- [10] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 42 (1999), 27–34.
- [11] K. D. Joshi, Introduction to General Topology, Wiley, 1983.
- [12] H. Maki, Generalized Λ-sets and the associated closure operator, in Special issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1 (1986), 139–146.
- [13] M. Mršević, On pairwise R₀ and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), **30(78)** (1986), 141–148.

Received August 23, 2020 Accepted March 18, 2021 *University of Gour Banga Department of Mathematics Malda-732 103, West Bengal, India E-mail:* jiarul8435@gmail.com https://orcid.org/0000-0003-1055-9820 *E-mail:* spmodak2000@yahoo.co.in https://orcid.org/0000-0002-0226-2392