SOME (Λ, b)-TYPE MAPPINGS IN TOPOLOGICAL SPACES

JIARUL HOQUE and SHYAMAPADA MODAK

Abstract

In this paper, the authors introduce and study (Λ, b)-continuous, (Λ, b)-irresolute and quasi- (Λ, b)-irresolute mappings. Some characterizations and several properties concerning aforesaid mappings are obtained. The authors also introduce (Λ, b)-compactness and (Λ, b)-connectedness. It is proved that (Λ, b)-compactness (resp. ($\Lambda, b)$-connectedness) is preserved under (Λ, b) irresolute mappings. The paper also touches the topics frontier points, Dirichlet's function, filter and algebraic structure of some functions.

MSC 2010. 54C08, 54D05, 54D30.
Key words. Λ_{b}-set, (Λ, b)-closed set, (Λ, b)-open set, b-continuous function, b irresolute function.

1. INTRODUCTION

Maki [12] introduced the notion of Λ-sets and Andrijevic [1] introduced the b-open sets in topological spaces. In [4], Caldas et al. defined and investigated Λ_{b}-sets using b-open sets. Via Λ_{b}-sets and b-closed sets, Boonpok [2] introduced (Λ, b)-closed sets and investigated several properties in topological spaces. In this paper, we introduce concepts of (Λ, b)-continuous, (Λ, b) irresolute, quasi- (Λ, b)-irresolute mappings and study several behaviours and characterizations. We also introduce (Λ, b)-compactness and (Λ, b)-connectedness and relate them with (Λ, b)-continuous, (Λ, b)-irresolute mappings. We show that (Λ, b)-irresolute image of (Λ, b)-compact (resp. (Λ, b)-connected) space is (Λ, b)-compact (resp. ($\Lambda, b)$-connected).

2. PRELIMINARIES

Throughout this paper, by $(X, \tau),(Y, \sigma)$ and (Z, η) (or simply X, Y and Z) we mean topological spaces in which, unless explicitly mentioned, any kind of separation axioms are not considered. From now, by space we understood topological space. For $A \subseteq X, \operatorname{Int}(A), \mathrm{Cl}(A)$ and $X \backslash A$ are used to denote interior, closure and complement of A respectively. For $x \in X, \tau(x)$ stands for the collection of all open sets containing x.

A subset A of a space X is called b-open [1] or γ-open [9] if $A \subseteq \operatorname{Cl}(\operatorname{Int}(A)) \cup$ $\operatorname{Int}(\mathrm{Cl}(A))$. Complement of a b-open set is called b-closed. The b-closure (resp.

[^0]b-interior) of A, denoted by $b \mathrm{Cl}(A)[1]$ or $\mathrm{Cl}_{b}(A)[3]\left(\right.$ resp. $b \operatorname{Int}(A)[1]$ or $\operatorname{Int}_{b}(A)$ $[3])$, is the smallest (resp. largest) b-closed (resp. b-open) set containing (resp. contained in) A. The family of all b-open (resp. b-closed) sets in X is denoted as $B O(X, \tau)$ (resp. $B C(X, \tau))$. In [4], the subset $A^{\Lambda_{b}}\left(\right.$ resp. $A^{V_{b}}$) is defined as the intersection (resp. union) of all b-open (resp. b-closed) subsets of X containing (resp. contained in) A. It is noticeable that $A^{\Lambda_{b}}$ is denoted as $b \operatorname{Ker}(A)$ in [3] and $\gamma-\operatorname{Ker}(A)$ in [6]. A is called a Λ_{b}-set (resp. V_{b}-set) [4] if $A^{\Lambda_{b}}=A\left(\right.$ resp. $\left.A^{V_{b}}=A\right)$. Furthermore, the authors Caldas et al. in [4] have shown that for subsets A and B of a space X, (i) $A \subseteq B$ implies $A^{V_{b}} \subseteq B^{V_{b}}$; (ii) $(X \backslash A)^{\Lambda_{b}}=X \backslash A^{V_{b}}$; (ii) for $A \in B O(X, \tau) ; A$ is a Λ_{b}-set and (iv) A is a Λ_{b}-set if and only if $X \backslash A$ is a V_{b}-set.

In this paragraph we discuss some notations and terminologies of [2]. A subset A of a space X is called (Λ, b)-closed if $A=T \cap C$, where T is a Λ_{b}-set and C is b-closed set. Complement of a (Λ, b)-closed set is called (Λ, b)open. The family of (Λ, b)-closed (resp. (Λ, b)-open) subsets of X is denoted as $\Lambda_{b} C(X, \tau)$ (resp. $\Lambda_{b} O(X, \tau)$). The (Λ, b)-closure (resp. (Λ, b)-interior) of A, denoted by $A^{(\Lambda, b)}$ (resp. $\left.A_{(\Lambda, b)}\right)$ is defined in analogous manner of $\mathrm{Cl}(A)$ (resp. $\operatorname{Int}(A))$. The symbol $\Lambda_{b} C(X, x)$ (resp. $\left.\Lambda_{b} O(X, x)\right)$ denotes the family of all (Λ, b)-closed (resp. (Λ, b)-open) sets containing x. The subset $\Lambda_{(\Lambda, b)}(A)$ is defined as $\Lambda_{(\Lambda, b)}(A)=\bigcap\left\{U \in \Lambda_{b} O(X, \tau): A \subseteq U\right\}$. Again, we learnt from [2] that every Λ_{b}-set (resp. b-closed set) is ($\left.\Lambda, b\right)$-closed; and for subsets A and B of a space X, (i) $A \subseteq B$ implies $A^{(\Lambda, b)} \subseteq B^{(\Lambda, b)} ;$ (ii) $\left[A^{(\Lambda, b)}\right]^{(\Lambda, b)}=A^{(\Lambda, b)}$; (iii) A is (Λ, b)-closed if and only if $A=A^{(\Lambda, b)}$; (iv) A is (Λ, b)-open if and only if $A=A_{(\Lambda, b)}$; and (v) $A^{(\Lambda, b)}$ (resp. $\left.A_{(\Lambda, b)}\right)$ is ($\left.\Lambda, b\right)$-closed (resp. ($\left.\Lambda, b\right)$-open).

Proposition 2.1. The following statements are valid for a space X :
(1) Every b-open set is (Λ, b)-open.
(2) Every b-closed set is (Λ, b)-open.
(3) Every V_{b}-set is (Λ, b)-open.

Theorem 2.2. For a subset A of a space X, the following are equivalent:
(1) A is (Λ, b)-open;
(2) $A=P \cup Q$, where P is a V_{b}-set and Q is a b-open set;
(3) $A=P \cup \operatorname{Int}_{b}(A)$;
(4) $A=A^{V_{b}} \cup \operatorname{Int}_{b}(A)$;
(5) $A=A^{V_{b}} \cup A_{(\Lambda, b)}$.

Proposition 2.3. Let A be a subset of a space X and $x \in X$. Then $x \in \Lambda_{(\Lambda, b)}(A)$ if and only if $A \cap F \neq \emptyset$ for every $F \in \Lambda_{b} C(X, x)$.

Corollary 2.4. For a subset A of a space $X, \Lambda_{(\Lambda, b)}(A)=\{x \in X$: $\left.\{x\}^{(\Lambda, b)} \cap A \neq \emptyset\right\}$.

Proposition 2.5. Let X be a space and $x \in X$. Then $y \in \Lambda_{(\Lambda, b)}(\{x\})$ if and only if $x \in\{y\}^{(\Lambda, b)}$.

Proposition 2.6. Let X be a space. Then for every $x \in X, \Lambda_{(\Lambda, b)}(\{x\}) \neq$ X if and only if $\bigcap\left\{\{x\}^{(\Lambda, b)}: x \in X\right\}=\emptyset$.

We close our this short section with the following theorem:
Theorem 2.7. For any two points x and y of a space X, the following are equivalent:
(1) $\Lambda_{(\Lambda, b)}(\{x\}) \neq \Lambda_{(\Lambda, b)}(\{y\})$;
(2) $\{x\}^{(\Lambda, b)} \neq\{y\}^{(\Lambda, b)}$.

Proof. Let $\Lambda_{(\Lambda, b)}(\{x\}) \neq \Lambda_{(\Lambda, b)}(\{y\})$. Then we can find $p \in X$ such that $p \in$ $\Lambda_{(\Lambda, b)}(\{x\})$ but $p \notin \Lambda_{(\Lambda, b)}(\{y\})$. Using Proposition 2.5 from $p \in \Lambda_{(\Lambda, b)}(\{x\})$, we get $x \in\{p\}^{(\Lambda, b)}$ and hence $\{x\}^{(\Lambda, b)} \subseteq\{p\}^{(\Lambda, b)}$. Again using Proposition 2.5 from $p \notin \Lambda_{(\Lambda, b)}(\{y\})$, we get $y \notin\{p\}^{(\Lambda, b)}$ and hence $y \notin\{x\}^{(\Lambda, b)}$. Hence $\{x\}^{(\Lambda, b)} \neq\{y\}^{(\Lambda, b)}$. Conversely, let $\{x\}^{(\Lambda, b)} \neq\{y\}^{(\Lambda, b)}$. Then we can find $t \in X$ such that $t \in\{x\}^{(\Lambda, b)}$ but $t \notin\{y\}^{(\Lambda, b)}$. From $t \in\{x\}^{(\Lambda, b)}$ and Proposition 2.5, we have $x \in \Lambda_{(\Lambda, b)}(\{t\})$. Therefore $\{x\} \subseteq \Lambda_{(\Lambda, b)}(\{t\})$ implies $\Lambda_{(\Lambda, b)}(\{x\}) \subseteq$ $\Lambda_{(\Lambda, b)}\left[\Lambda_{(\Lambda, b)}(\{t\})\right]=\Lambda_{(\Lambda, b)}(\{t\})$, by Lemma 3.36 of [2]. Now using Proposition 2.5 from $t \notin\{y\}^{(\Lambda, b)}$, we have $y \notin \Lambda_{(\Lambda, b)}(\{t\})$. Clearly $y \notin \Lambda_{(\Lambda, b)}(\{x\})$. Hence $\Lambda_{(\Lambda, b)}(\{x\}) \neq \Lambda_{(\Lambda, b)}(\{y\})$.

3. (Λ, b)-CONTINUOUS, (Λ, b)-IRRESOLUTE AND QUASI-($\Lambda, b)$-IRRESOLUTE FUNCTIONS

In this section we introduce (Λ, b)-continuous, (Λ, b)-irresolute and quasi(Λ, b)-irresolute mappings and study some properties and characterizations.

Definition 3.1. Let X and Y be two spaces. A function $f: X \rightarrow Y$ is said to be
(1) (Λ, b)-continuous (resp. b-continuous or γ-continuous [9]) if for every open subset V of $Y, f^{-1}(V)$ is ($\left.\Lambda, b\right)$-open (resp. b-open) in X.
(2) (Λ, b)-irresolute (resp. b-irresolute or γ-irresolute [5, 8]) if for every (Λ, b)-open (resp. b-open) subset V of $Y, f^{-1}(V)$ is (Λ, b)-open (resp. b-open) in X.
(3) quasi- (Λ, b)-irresolute if for every b-open subset V of $Y, f^{-1}(V)$ is (Λ, b)-open in X.

The following examples illustrate the existence of (Λ, b)-continuous, (Λ, b) irresolute and quasi- (Λ, b)-irresolute functions.

Example 3.2. Consider the real line \mathbb{R} endowed with the usual topology τ_{u}. The well known Dirichlet's function $f:\left(\mathbb{R}, \tau_{u}\right) \rightarrow\left(\mathbb{R}, \tau_{u}\right)$ defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \tag{1}\\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

is (Λ, b)-continuous on \mathbb{R}.

Example 3.3. Let $X=Y=\mathbb{R}, \tau_{u}$ and τ_{d} be respectively the usual and discrete topology on \mathbb{R}. The function $f:\left(X, \tau_{u}\right) \rightarrow\left(Y, \tau_{d}\right)$ defined in (1) is (Λ, b)-irresolute as well as quasi- (Λ, b)-irresolute.

Theorem 3.4. For a function $f: X \rightarrow Y$, the following are equivalent:
(1) f is (Λ, b)-continuous;
(2) for every closed subset F of $Y, f^{-1}(F) \in \Lambda_{b} C(X, \tau)$;
(3) for each $x \in X$ and for every $V \in \sigma(f(x))$, there is a $U \in \Lambda_{b} O(X, x)$ such that $f(U) \subseteq V$;
(4) for every $A \subseteq X, f\left[A^{(\Lambda, b)}\right] \subseteq \mathrm{Cl}(f(A))$;
(5) for every $B \subseteq Y,\left[f^{-1}(B)\right]^{(\Lambda, b)} \subseteq f^{-1}(\mathrm{Cl}(B))$;
(6) for every $B \subseteq Y, f^{-1}(\operatorname{Int}(B)) \subseteq\left[f^{-1}(B)\right]_{(\Lambda, b)}$.

Proof. (1) $\Longleftrightarrow(2):$ Since $Y \backslash F$ is open and f is (Λ, b)-continuous, $X \backslash$ $f^{-1}(F)=f^{-1}(Y \backslash F)$ is (Λ, b)-open, witnessing that $f^{-1}(F) \in \Lambda_{b} C(X, \tau)$. Conversely, let V be any open subset of Y. Then $Y \backslash V$ is closed in Y. By hypothesis, $X \backslash f^{-1}(V)=f^{-1}(Y \backslash V)$ is (Λ, b)-closed and hence $f^{-1}(V)$ is (Λ, b)-open in X. Hence f is (Λ, b)-continuous.
$(1) \Longleftrightarrow(3)$: Let V be an open subset of Y and $f(x) \in V$. Then $x \in f^{-1}(V)$. Consider $U=f^{-1}(V)$. Since f is (Λ, b)-continuous, U is a (Λ, b)-open subset of X such that $x \in U$ and $f(U) \subseteq V$. Conversely, let V be any open subset of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. By assumption, there exists a (Λ, b)-open subset U_{x} of X such that $x \in U_{x}$ and $f\left(U_{x}\right) \subseteq V$. Hence $f^{-1}(V)=\bigcup\left\{U_{x}\right.$: $\left.x \in f^{-1}(V)\right\}$. Therefore $f^{-1}(V)$ is (Λ, b)-open in X, by Theorem 3.5 of [2]. Hence f is (Λ, b)-continuous.
$(2) \Longleftrightarrow(4)$: Since $\mathrm{Cl}(f(A))$ is closed in $Y, f^{-1}(\mathrm{Cl}(f(A)))$ is (Λ, b)-closed in X, by (2). Now $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\operatorname{Cl}(f(A)))$ implies that $A^{(\Lambda, b)}$ $\subseteq f^{-1}(\mathrm{Cl}(f(A)))$. Hence $f\left[A^{(\Lambda, b)}\right] \subseteq \operatorname{Cl}(f(A))$. Conversely, let F be a closed subset of Y. By hypothesis, $f\left(\left[f^{-1}(F)\right]^{(\Lambda, b)}\right) \subseteq \mathrm{Cl}\left(f\left(f^{-1}(F)\right)\right) \subseteq \mathrm{Cl}(F)=F$. Therefore $\left[f^{-1}(F)\right]^{(\Lambda, b)} \subseteq f^{-1}(F)$. Moreover, $f^{-1}(F) \subseteq\left[f^{-1}(F)\right]^{(\Lambda, b)}$. Thus $f^{-1}(F)=\left[f^{-1}(F)\right]^{(\Lambda, b)}$ and hence $f^{-1}(F)$ is (Λ, b)-closed in X.
$(4) \Longleftrightarrow(5)$: Let B be a subset of Y. By assumption, $f\left[\left(f^{-1}(B)\right)^{(\Lambda, b)}\right] \subseteq$ $\mathrm{Cl}\left(f\left(f^{-1}(B)\right)\right) \subseteq \mathrm{Cl}(B)$. Hence $\left[f^{-1}(B)\right]^{(\Lambda, b)} \subseteq f^{-1}(\mathrm{Cl}(B))$. Conversely, let A be a subset of X. Then by assumption, $\left[f^{-1}(f(A))\right]^{(\Lambda, b)} \subseteq f^{-1}(\mathrm{Cl}(f(A)))$. Since $A \subseteq f^{-1}(f(A)), A^{(\Lambda, b)} \subseteq\left[f^{-1}(f(A))\right]^{(\Lambda, b)}$. Thus $A^{(\Lambda, b)} \subseteq f^{-1}(\operatorname{Cl}(f(A)))$ and hence $f\left[A^{(\Lambda, b)}\right] \subseteq \operatorname{Cl}(f(A))$.
$(1) \Longleftrightarrow(6)$: For any $B \subseteq Y, \operatorname{Int}(B)$ is open in Y and hence by (1), $f^{-1}(\operatorname{Int}(B))$ is (Λ, b)-open in X and is contained in $f^{-1}(B)$. So $f^{-1}(\operatorname{Int}(B))$ $\subseteq\left[f^{-1}(B)\right]_{(\Lambda, b)}$. Conversely, let V be open in Y. Then $V=\operatorname{Int}(V)$ implies $f^{-1}(V)=f^{-1}(\operatorname{Int}(V)) \subseteq\left[f^{-1}(V)\right]_{(\Lambda, b)}$, by (6). Also $\left[f^{-1}(V)\right]_{(\Lambda, b)} \subseteq f^{-1}(V)$. Thus $f^{-1}(V)=\left[f^{-1}(V)\right]_{(\Lambda, b)}$ and hence $f^{-1}(V)$ is (Λ, b)-open in X. Therefore f is (Λ, b)-continuous.

Recall that kernel of a subset A [13] of a space X is the set $\operatorname{Ker}(A)=\bigcap\{U \in$ $\tau: A \subseteq U\}$. In [12], $\operatorname{Ker}(A)$ is denoted by A^{Λ}.

Lemma 3.5 ([10]). Let A be a subset of a space X. Then $x \in \operatorname{Ker}(A)$ if and only if $A \cap F \neq \emptyset$ for every closed set F containing x.

Theorem 3.6. Let $f: X \rightarrow Y$ be a (Λ, b)-continuous function. Then for every $A \subseteq X, f\left[\Lambda_{(\Lambda, b)}(A)\right] \subseteq \operatorname{Ker}(f(A))$.

Proof. Suppose $y \notin \operatorname{Ker}(f(A))$. By Lemma 3.5, there exists a closed set F in Y such that $y \in F$ and $f(A) \cap F=\emptyset$. Now $A \cap f^{-1}(F) \subseteq f^{-1}(f(A)) \cap f^{-1}(F)=$ $f^{-1}(f(A) \cap F)=\emptyset$ implies $A \cap f^{-1}(F)=\emptyset$. Since f is (Λ, b)-continuous function, $f^{-1}(F)$ is (Λ, b)-closed in X. Moreover, $f^{-1}(y) \subseteq f^{-1}(F)$. Therefore, by Proposition 2.3, $x \notin \Lambda_{(\Lambda, b)}(A)$ for all $x \in f^{-1}(y)$. Hence $y \notin f\left[\Lambda_{(\Lambda, b)}(A)\right]$. Therefore $f\left[\Lambda_{(\Lambda, b)}(A)\right] \subseteq \operatorname{Ker}(f(A))$.

Definition 3.7 ([2]). A subset N of a space X is said to be (Λ, b)-neighborhood of a point $x \in X$ if there exists a (Λ, b)-open set U such that $x \in U \subseteq N$.

We denote the collection of all (Λ, b)-neighbourhoods of x as $\mathcal{N}_{(\Lambda, b)}(x)$.
Recall that a filter \mathcal{F} on a set S is a non-empty collection of non-empty subsets of S with the properties: (a) if $F_{1}, F_{2} \in \mathcal{F}$, then $F_{1} \cap F_{2} \in \mathcal{F}$, and (b) if $F \in \mathcal{F}$ and $F \subseteq G$, then $G \in \mathcal{F}$.

Definition 3.8 ([11]). Let $f: X \rightarrow Y$ be a function and \mathcal{F} be a filter on X. Then the filter on Y having $f(\mathcal{F})=\{f(A): A \in \mathcal{F}\}$ as a base is called the image filter of \mathcal{F} under f and is denoted by $f_{\sharp}(\mathcal{F})$.

Definition 3.9. A filter \mathcal{F} on a space X is said to (Λ, b)-converge to $x_{o} \in X$ if every (Λ, b)-neighbourhood of x_{o} belongs to \mathcal{F}.

The following theorem characterizes (Λ, b)-continuous functions in terms of filter convergent.

Theorem 3.10. A function $f: X \rightarrow Y$ is (Λ, b)-continuous at $x_{o} \in X$ if and only if whenever a filter $\mathcal{F},(\Lambda, b)$-converges to x_{o} in X, then the image filter $f_{\sharp}(\mathcal{F})$ converges to $f\left(x_{o}\right)$ in Y.

Proof. Assume that f is (Λ, b)-continuous at x_{o} and \mathcal{F} is a filter (Λ, b) converging to x_{o}. Let $N \in \mathcal{N}_{f\left(x_{o}\right)}$, the collection of all neighbourhoods of $f\left(x_{o}\right)$. Then there exists an open set V in Y such that $f\left(x_{o}\right) \in V \subseteq N$. Since f is (Λ, b)-continuous at x_{o}, there exists a (Λ, b)-open set U in X such that $x_{o} \in U$ and $f(U) \subseteq V$. By (Λ, b)-convergence of \mathcal{F} to x_{o} in $X, U \in \mathcal{F}$. So $f(U) \in f(\mathcal{F})$. But $f(U) \subseteq N$ and so $N \in f_{\sharp}(\mathcal{F})$. It follows that $f_{\sharp}(\mathcal{F})$ converges to $f\left(x_{o}\right)$. Converse part: If possible, suppose that f is not (Λ, b) continuous at x_{o}. Then there exists an open set V in Y containing $f\left(x_{o}\right)$ such that $f(U) \cap(Y \backslash V) \neq \emptyset$, for all $U \in \Lambda_{b} O\left(X, x_{o}\right)$. Now $U \cap\left(X \backslash f^{-1}(V)\right) \subseteq$ $f^{-1}(f(U)) \cap f^{-1}(Y \backslash V)=f^{-1}(f(U) \cap(Y \backslash V)) \neq \emptyset$ implies $N \cap\left(X \backslash f^{-1}(V)\right) \neq \emptyset$ for all $N \in \mathcal{N}_{(\Lambda, b)}\left(x_{o}\right)$. Therefore $\mathcal{S}=\mathcal{N}_{(\Lambda, b)}\left(x_{o}\right) \cup\left\{X \backslash f^{-1}(V)\right\}$ has the finite
intersection property and hence generates a filter, say \mathcal{F} on X. Clearly \mathcal{F}, (Λ, b)-converges to x_{o} in X. Now $X \backslash f^{-1}(V) \in \mathcal{F}$ implies $f\left(X \backslash f^{-1}(V)\right) \in$ $f(\mathcal{F})$. Since $f\left(X \backslash f^{-1}(V)\right) \subseteq Y \backslash V, Y \backslash V \in f_{\sharp}(\mathcal{F})$. Since $f_{\sharp}(\mathcal{F})$ is a filter, $V \notin f_{\sharp}(\mathcal{F})$, where V is an open neighbourhood of $f\left(x_{o}\right)$. Thus $f_{\sharp}(\mathcal{F})$ does not converge to $f\left(x_{o}\right)$ in Y. This contradiction proves that f is (Λ, b)-continuous at x_{o}.

The following theorem represents an important characterization of (Λ, b) irresolute function.

Theorem 3.11. The following are equivalent for a function $f: X \rightarrow Y$:
(1) f is (Λ, b)-irresolute;
(2) for every (Λ, b)-closed subset F of $Y, f^{-1}(F)$ is (Λ, b)-closed in X;
(3) for each $x \in X$ and for every $V \in \Lambda_{b} O(Y, f(x))$, there is a $U \in$ $\Lambda_{b} O(X, x)$ such that $f(U) \subseteq V$;
(4) for every $A \subseteq X, f\left[A^{(\Lambda, b)}\right] \subseteq[f(A)]^{(\Lambda, b)}$;
(5) for every $B \subseteq Y,\left[f^{-1}(B)\right]{ }^{(\Lambda, b)} \subseteq f^{-1}\left[B^{(\Lambda, b)}\right]$;
(6) for every $B \subseteq Y, f^{-1}\left[B_{(\Lambda, b)}\right] \subseteq\left[f^{-1}(B)\right]_{(\Lambda, b)}$.

Proof. (1) $\Longleftrightarrow(2)$: Sine $Y \backslash F \in \Lambda_{b} O(Y, \sigma)$ and f is (Λ, b)-irresolute, $X \backslash f^{-1}(F)=f^{-1}(Y \backslash F) \in \Lambda_{b} O(X, \tau)$. Hence $f^{-1}(F) \in \Lambda_{b} C(X, \tau)$. For converse, let $V \in \Lambda_{b} O(Y, \sigma)$. Then $Y \backslash V$ is (Λ, b)-closed in Y. By hypothesis, $X \backslash f^{-1}(V)=f^{-1}(Y \backslash V)$ is (Λ, b)-closed and hence $f^{-1}(V)$ is (Λ, b)-open in X. Hence f is (Λ, b)-irresolute.
(1) $\Longleftrightarrow(3)$: Let $V \in \Lambda_{b} O(Y, f(x))$. Then $x \in f^{-1}(V)$. Consider $U=$ $f^{-1}(V)$. Since f is (Λ, b)-irresolute, $U \in \Lambda_{b} O(X, x)$ and $f(U) \subseteq V$. Conversely, suppose that $V \in \Lambda_{b} O(Y, \sigma)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$. By assumption, there exists $U_{x} \in \Lambda_{b} O(X, x)$ such that $f\left(U_{x}\right) \subseteq V$. Hence $f^{-1}(V)=\bigcup\left\{U_{x}: x \in f^{-1}(V)\right\}$. Therefore $f^{-1}(V)$ is (Λ, b)-open in X. Hence f is (Λ, b)-irresolute.
$(2) \Longleftrightarrow(4)$: Let A be a subset of X. Then $[f(A)]^{(\Lambda, b)}$ is (Λ, b)-closed in Y and hence $f^{-1}\left([f(A)]^{(\Lambda, b)}\right)$ is (Λ, b)-closed in X, by (2). Now $A \subseteq f^{-1}(f(A)) \subseteq$ $f^{-1}\left([f(A)]^{(\Lambda, b)}\right)$ implies $A^{(\Lambda, b)} \subseteq f^{-1}\left([f(A)]^{(\Lambda, b)}\right)$. So $f\left[A^{(\Lambda, b)}\right] \subseteq[f(A)]^{(\Lambda, b)}$. For converse, let F be any (Λ, b)-closed subset of Y. By assumption, we have $f\left(\left[f^{-1}(F)\right]^{(\Lambda, b)}\right) \subseteq\left[f\left(f^{-1}(F)\right)\right]^{(\Lambda, b)} \subseteq F^{(\Lambda, b)}=F$. Then $\left[f^{-1}(F)\right]^{(\Lambda, b)} \subseteq$ $f^{-1}(F)$. Moreover, $f^{-1}(F) \subseteq\left[f^{-1}(F)\right]^{(\bar{\Lambda}, b)}$. Thus $f^{-1}(F)=\left[f^{-1}(F)\right]^{(\Lambda, b)}$. Hence $f^{-1}(F)$ is (Λ, b)-closed in X.
$(4) \Longleftrightarrow(5)$: Let B be a subset of Y. By assumption, $f\left(\left[f^{-1}(B)\right]^{(\Lambda, b)}\right) \subseteq$ $\left[f\left(f^{-1}(B)\right)\right]^{(\Lambda, b)} \subseteq B^{(\Lambda, b)}$. Hence $\left[f^{-1}(B)\right]^{(\Lambda, b)} \subseteq f^{-1}\left[B^{(\Lambda, b)}\right]$. For converse, let A be a subset of X. By assumption, $\left[f^{-1}(f(A))\right]^{(\Lambda, b)} \subseteq f^{-1}\left([f(A)]^{(\Lambda, b)}\right)$. Since $A \subseteq f^{-1}(f(A)), A^{(\Lambda, b)} \subseteq\left[f^{-1}(f(A))\right]^{(\Lambda, b)}$. Thus $A^{(\Lambda, b)} \subseteq f^{-1}\left([f(A)]^{(\Lambda, b)}\right)$ and hence $f\left[A^{(\Lambda, b)}\right] \subseteq[f(A)]^{(\Lambda, b)}$.
(1) $\Longleftrightarrow(6)$: For any $B \subseteq Y, B_{(\Lambda, b)}$ is (Λ, b)-open in Y and hence by (1), $f^{-1}\left[B_{(\Lambda, b)}\right]$ is (Λ, b)-open in X and is contained in $f^{-1}(B)$. Therefore
$f^{-1}\left[B_{(\Lambda, b)}\right] \subseteq\left[f^{-1}(B)\right]_{(\Lambda, b)}$. For converse, let V be (Λ, b)-open in Y. Then $V=$ $V_{(\Lambda, b)}$ implies $f^{-1}(V)=f^{-1}\left[V_{(\Lambda, b)}\right] \subseteq\left[f^{-1}(V)\right]_{(\Lambda, b)}$, by (6). Also $\left[f^{-1}(V)\right]_{(\Lambda, b)}$ $\subseteq f^{-1}(V)$. Thus $f^{-1}(V)=\left[f^{-1}(V)\right]_{(\Lambda, b)}$ and hence $f^{-1}(V)$ is (Λ, b)-open in X. Therefore f is (Λ, b)-irresolute.

Theorem 3.12. Let $f: X \rightarrow Y$ be a (Λ, b)-irresolute function. Then for any $A \subseteq X, f\left[\Lambda_{(\Lambda, b)}(A)\right] \subseteq \Lambda_{(\Lambda, b)}(f(A))$.

Proof. Assume $y \notin \Lambda_{(\Lambda, b)}(f(A))$. By Preposition 2.3, there exists a (Λ, b) closed set V in Y such that $y \in V$ and $f(A) \cap V=\emptyset$. Then $A \cap f^{-1}(V) \subseteq$ $f^{-1}(f(A)) \cap f^{-1}(V)=f^{-1}(f(A) \cap V)=\emptyset$ implies $A \cap f^{-1}(V)=\emptyset$. Since f is (Λ, b)-irresolute function, $f^{-1}(V)$ is (Λ, b)-closed in X. Moreover, $f^{-1}(y) \subseteq$ $f^{-1}(V)$. Therefore, by Proposition 2.3, $x \notin \Lambda_{(\Lambda, b)}(A)$ for all $x \in f^{-1}(y)$. Hence $y \notin f\left[\Lambda_{(\Lambda, b)}(A)\right]$. Therefore $f\left[\Lambda_{(\Lambda, b)}(A)\right] \subseteq \Lambda_{(\Lambda, b)}(f(A))$.

The next theorem characterizes (Λ, b)-irresoluteness of functions in terms of filter convergent.

Theorem 3.13. A function $f: X \rightarrow Y$ is (Λ, b)-irresolute at $x_{o} \in X$ if and only if whenever a filter $\mathcal{F},(\Lambda, b)$-converges to x_{o} in X, then the image filter $f_{\sharp}(\mathcal{F}),(\Lambda, b)$-converges to $f\left(x_{o}\right)$ in Y.

Proof. Proof is similar to Theorem 3.10.
Theorem 3.14. For a function $f: X \rightarrow Y$, the following are equivalent:
(1) f is quasi- (Λ, b)-irresolute;
(2) for every b-closed subset F of $Y, f^{-1}(F)$ is (Λ, b)-closed in X;
(3) for every $A \subseteq X, f\left[A^{(\Lambda, b)}\right] \subseteq \mathrm{Cl}_{b}(f(A))$;
(4) for every $B \subseteq Y,\left[f^{-1}(B)\right]^{(\Lambda, b)} \subseteq f^{-1}\left[\mathrm{Cl}_{b}(B)\right]$;
(5) for every $B \subseteq Y, f^{-1}\left[\operatorname{Int}_{b}(B)\right] \subseteq\left[f^{-1}(B)\right]_{(\Lambda, b)}$.

Proof. (1) $\Longleftrightarrow(2)$: Since $Y \backslash V$ is b-open in Y and f is quasi- (Λ, b) irresolute, $X \backslash f^{-1}(V)=f^{-1}(Y \backslash V)$ is (Λ, b)-open. Hence $f^{-1}(V)$ is (Λ, b) closed in X. Conversely, let V be any b-open subset of Y. Then $Y \backslash V$ is b-closed in Y. By hypothesis, $X \backslash f^{-1}(V)=f^{-1}(Y \backslash V)$ is (Λ, b)-closed and hence $f^{-1}(V) \in \Lambda_{b} O(X, \tau)$. Hence f is quasi- (Λ, b)-irresolute.
$(2) \Longleftrightarrow(3)$: Let A be a subset of X. Then $\mathrm{Cl}_{b}(f(A))$ is b-closed in Y and hence $\left.f^{-1}\left[\mathrm{Cl}_{b}(f(A))\right]\right) \in \Lambda_{b} C(X, \tau)$, by (2). Now $A \subseteq f^{-1}(f(A)) \subseteq$ $f^{-1}\left[\mathrm{Cl}_{b}(f(A))\right]$ implies $A^{(\Lambda, b)} \subseteq f^{-1}\left[\mathrm{Cl}_{b}(f(A))\right]$. Hence $f\left[A^{(\Lambda, b)}\right] \subseteq \mathrm{Cl}_{b}(f(A))$. Conversely, let F be a b-closed subset of Y. Now, we have $f\left(\left[f^{-1}(F)\right]^{(\Lambda, b)}\right)$ $\subseteq \mathrm{Cl}_{b}\left(\left[f\left(f^{-1}(F)\right)\right]\right) \subseteq \mathrm{Cl}_{b}(F)=F$. Then $\left[f^{-1}(F)\right]^{(\Lambda, b)} \subseteq f^{-1}(F)$. Moreover, $f^{-1}(F) \subseteq\left[f^{-1}(F)\right]^{(\Lambda, b)}$. Thus $f^{-1}(F)=\left[f^{-1}(F)\right]^{(\Lambda, b)}$. Hence $f^{-1}(V)$ is (Λ, b)-closed in X.
$(3) \Longleftrightarrow(4)$: Let B be a subset of Y. By (3), we have $f\left(\left[f^{-1}(B)\right]^{(\Lambda, b)}\right) \subseteq$ $\mathrm{Cl}_{b}\left(\left[f\left(f^{-1}(B)\right)\right]\right) \subseteq \mathrm{Cl}_{b}(B)$. Hence $\left[f^{-1}(B)\right]^{(\Lambda, b)} \subseteq f^{-1}\left[\mathrm{Cl}_{b}(B)\right]$. Conversely, let A be a subset of X. By (4), $\left[f^{-1}(f(A))\right]^{(\Lambda, b)} \subseteq f^{-1}\left[\mathrm{Cl}_{b}(f(A))\right]$. Since
$A \subseteq f^{-1}(f(A)), A^{(\Lambda, b)} \subseteq\left[f^{-1}(f(A))\right]^{(\Lambda, b)}$. Thus $A^{(\Lambda, b)} \subseteq f^{-1}\left[\mathrm{Cl}_{b}(f(A))\right]$ and hence $f\left[A^{(\Lambda, b)}\right] \subseteq \mathrm{Cl}_{b}(f(A))$.
$(1) \Longleftrightarrow(5):$ For any $B \subseteq Y, \operatorname{Int}_{b}(B)$ is b-open in Y and hence by (1), $f^{-1}\left(\operatorname{Int}_{b}(B)\right)$ is (Λ, b)-open in X and is contained in $f^{-1}(B)$. Hence $f^{-1}\left(\operatorname{Int}_{b}(B)\right) \subseteq\left[f^{-1}(B)\right]_{(\Lambda, b)}$. Conversely, let $V \in B O(Y, \sigma)$. Then $V=$ $\operatorname{Int}_{b}(V)$ implies $f^{-1}(V)=f^{-1}\left(\operatorname{Int}_{b}(V)\right) \subseteq\left[f^{-1}(V)\right]_{(\Lambda, b)}$, by (5). Also we have $\left[f^{-1}(V)\right]_{(\Lambda, b)} \subseteq f^{-1}(V)$. Thus $f^{-1}(V)=\left[f^{-1}(V)\right]_{(\Lambda, b)}$ and hence $f^{-1}(V)$ is (Λ, b)-open in X. Therefore f is quasi- (Λ, b)-irresolute.

The following is an immediate consequence of Lemma 3.2 of [3]:
Lemma 3.15. Let A be a subset of a space X and $x \in X$. Then $x \in b \operatorname{Ker}(A)$ if and only if $A \cap F \neq \emptyset$ for every b-closed set F containing x.

THEOREM 3.16. Let $f: X \rightarrow Y$ be a quasi- (Λ, b)-irresolute function. Then for every $A \subseteq X, f\left[\Lambda_{(\Lambda, b)}(A)\right] \subseteq b \operatorname{Ker}(f(A))$.

Proof. Assume $y \notin b \operatorname{Ker}(f(A))$. Then there exists a b-closed set F in Y such that $y \in V$ and $f(A) \cap V=\emptyset$. Now, $A \cap f^{-1}(V) \subseteq f^{-1}(f(A)) \cap f^{-1}(V)=$ $f^{-1}(f(A) \cap V)=\emptyset$ and its imply $A \cap f^{-1}(V)=\emptyset$. Since f is quasi- (Λ, b) irresolute function, $f^{-1}(V)$ is (Λ, b)-closed in X. Moreover, $f^{-1}(y) \subseteq f^{-1}(V)$. Therefore, by Proposition 2.3, $x \notin \Lambda_{(\Lambda, b)}(A)$ for all $x \in f^{-1}(y)$. Hence $y \notin$ $f\left[\Lambda_{(\Lambda, b)}(A)\right]$. Therefore $f\left[\Lambda_{(\Lambda, b)}(A)\right] \subseteq b \operatorname{Ker}(f(A))$.

Theorem 3.17. Let $f: X \rightarrow Y$ be a function. Then
(1) f is b-continuous implies f is (Λ, b)-continuous.
(2) f is b-irresolute implies f is quasi- (Λ, b)-irresolute.
(3) f is (Λ, b)-irresolute implies f is quasi-($\Lambda, b)$-irresolute.
(4) f is (Λ, b)-irresolute implies f is (Λ, b)-continuous.

To show that converses of the results (1) and (2) of Theorem 3.17 are not true, we consider the following example.

Example 3.18. Consider $X=Y=\{a, b, c\}, \tau=\{\emptyset,\{a, b\}, X\}$ and $\sigma=$ $\{\emptyset,\{a\}, Y\}$. Then $B O(X, \tau)=\{\emptyset,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X\}, \Lambda_{b} O(X, \tau)$ $=\wp(X)$, the power set of $X ; B O(Y, \sigma)=\{\emptyset,\{a\},,\{a, b\},\{a, c\}, X\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=c, f(b)=b$ and $f(c)=a$. Then f is both (Λ, b)-continuous and quasi- (Λ, b)-irresolute but neither b-continuous nor b irresolute. Because $V=\{a\}$ is open and hence b-open but $f^{-1}(V)=\{c\}$ is not b-open.

Theorem 3.19. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Then:
(1) If f is (Λ, b)-continuous and g is continuous, then $g \circ f: X \rightarrow Z$ is (Λ, b)-continuous.
(2) If f is quasi- (Λ, b)-irresolute and g is b-continuous, then $g \circ f: X \rightarrow Z$ is (Λ, b)-continuous.
(3) If f is (Λ, b)-irresolute and g is (Λ, b)-continuous, then $g \circ f: X \rightarrow Z$ is (Λ, b)-continuous.
(4) If f is (Λ, b)-irresolute and g is (Λ, b)-irresolute, then $g \circ f: X \rightarrow Z$ is (Λ, b)-irresolute.
(5) If f is quasi-($\Lambda, b)$-irresolute and g is b-irresolute, then $g \circ f: X \rightarrow Z$ is quasi- (Λ, b)-irresolute.
(6) If f is (Λ, b)-irresolute and g is quasi- (Λ, b)-irresolute, then $g \circ f: X \rightarrow$ Z is quasi- (Λ, b)-irresolute.

Lemma 3.20. Let A be a subset of a space X. Then
(1) $X \backslash A^{(\Lambda, b)}=[X \backslash A]_{(\Lambda, b)}$.
(2) $X \backslash A_{(\Lambda, b)}=[X \backslash A]^{(\Lambda, b)}$.

Proof. (1) Let $x \in X \backslash A^{(\Lambda, b)}$. Then $x \notin A^{(\Lambda, b)}$ and by Lemma 3.8 of [2], $A \cap U=\emptyset$ for some $U \in \Lambda_{b} O(X, x)$. Thus U is a (Λ, b)-open set contained in $X \backslash A$ and hence $U \subseteq[X \backslash A]_{(\Lambda, b)}$. Therefore $x \in[X \backslash A]_{(\Lambda, b)}$. Conversely, let $y \in[X \backslash A]_{(\Lambda, b)}$. If possible, let $y \notin X \backslash A^{(\Lambda, b)}$. Then $y \in A^{(\Lambda, b)}$ and $A \cap U \neq \emptyset$ for all $U \in \Lambda_{b} O(X, y)$. Since $[X \backslash A]_{(\Lambda, b)}$ is a (Λ, b)-open set containing y, $A \cap[X \backslash A]_{(\Lambda, b)} \neq \emptyset$, a contradiction.
(2) Follows from (1).

Definition 3.21 ([2]). Let A be a subset of a space X. The (Λ, b)-frontier of A is denoted as $\Lambda_{b} F r(A)$ and defined as: $\Lambda_{b} F r(A)=A^{(\Lambda, b)} \cap(X \backslash A)^{(\Lambda, b)}$.

In the following theorem we use the notation $D_{(\Lambda, b)}(f)$ to stand the set of points x of X at which $f: X \rightarrow Y$ is not (Λ, b)-continuous.

THEOREM 3.22. $D_{(\Lambda, b)}(f)$ is the union of the (Λ, b)-frontiers of the inverse images of open sets containing $f(x)$.

Proof. Let $x \in X$. Then the proof follows from the following two facts:
(i). Let f be not (Λ, b)-continuous at x. By Theorem 3.4, there exists an open set V of Y containing $f(x)$ such that $f(U) \cap(Y \backslash V) \neq \emptyset$ for all $U \in \Lambda_{b} O(X, x)$. Obviously $U \cap\left(X \backslash f^{-1}(V)\right) \neq \emptyset$. By Theorem 3.8 of $[2], x \in$ $[X \backslash A]^{(\Lambda, b)}$. Also $x \in f^{-1}(V) \subseteq\left[f^{-1}(V)\right]^{(\Lambda, b)}$. Therefore $x \in \Lambda_{b} \operatorname{Fr}\left(f^{-1}(V)\right)$.
(ii). Let f be (Λ, b)-continuous at x. Let V be any open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$, a (Λ, b)-open set of X. Then $f^{-1}(V)=\left[f^{-1}(V)\right]_{(\Lambda, b)}$, and by Lemma $3.20, x \notin\left[X \backslash f^{-1}(V)\right]^{(\Lambda, b)}$. Hence $x \notin \Lambda_{b} \operatorname{Fr}\left(f^{-1}(V)\right)$.

In Topology, homeomorphism plays an important role. We now define two important homeomorphisms via (Λ, b)-continuous and (Λ, b)-irresolute functions as weak form of homeomorphism.

Definition 3.23. A bijective function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be Λ_{b}-homeomorphism (resp. $\Lambda_{b} r$ - homeomorphism) if f and f^{-1} are (Λ, b) continuous (resp. (Λ, b)-irresolute).

For a space (X, τ), we consider the following two important collections: $\Lambda_{b} h(X, \tau)=\left\{f \mid f:(X, \tau) \rightarrow(X, \tau)\right.$ is Λ_{b}-homeomorphism $\} ;$
$\Lambda_{b} r-h(X, \tau)=\left\{f \mid f:(X, \tau) \rightarrow(X, \tau)\right.$ is $\Lambda_{b} r$-homeomorphism $\}$.
From 3.17(4), it is follows that $\Lambda_{b} r-h(X, \tau) \subseteq \Lambda_{b}-h(X, \tau)$.
Theorem 3.24. The collection $\Lambda_{b} r-h(X, \tau)$ forms a group under composition of functions.

Proof. Obvious from Theorem 3.19.

4. (Λ, b)-COMPACTNESS AND (Λ, b)-CONNECTEDNESS

In this section, we study properties of (Λ, b)-compactness and (Λ, b)-connectedness. We start by defining the notion of (Λ, b)-open cover in a space.

Definition 4.1. A collection \mathcal{A} of subsets of a space (X, τ) is said to be a (Λ, b)-open covering of X if the union of the elements of \mathcal{A} is X and the elements of \mathcal{A} are (Λ, b)-open in X.

Definition 4.2. A space X is said to be (Λ, b)-compact (resp. b-compact [9]) if every (Λ, b)-open (resp. b-open) cover of X has a finite cover.

Lemma 4.3. Every (Λ, b)-compact space is b-compact.
Proof. Suppose X is a (Λ, b)-compact space, and let $\mathcal{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ is a b-open cover of X. By Proposition 2.1(1), \mathcal{A} is a (Λ, b)-open cover of X. Since X is (Λ, b)-compact, there is a finite subset Δ_{o} of Δ such that $\left\{A_{\alpha}: \alpha \in \Delta_{o}\right\}$ covers X and consequently, X is b-compact.

Corollary 4.4. Every (Λ, b)-compact space is compact.
Theorem 4.5. If $f: X \rightarrow Y$ is an onto (Λ, b)-continuous function and X is (Λ, b)-compact, then Y is compact.

Proof. Let $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ be an open cover of Y. Since f is (Λ, b)-continuous, $\left\{f^{-1}\left(U_{\alpha}\right): \alpha \in \Delta\right\}$ is a (Λ, b)-open cover of X. Since X is (Λ, b)-compact, there exists a finite subset Δ_{o} of Δ such that $X=\bigcup\left\{f^{-1}\left(U_{\alpha}\right): \alpha \in \Delta_{o}\right\}$. Since f is onto, $Y=f(X)=\bigcup\left\{f\left(f^{-1}\left(U_{\alpha}\right)\right): \alpha \in \Delta_{o}\right\}=\bigcup\left\{U_{\alpha}: \alpha \in \Delta_{o}\right\}$. Hence Y is compact.

Theorem 4.6. If $f: X \rightarrow Y$ is an onto (Λ, b)-irresolute function and X is (Λ, b)-compact, then so is Y.

Proof. Let $\left\{V_{\alpha}: \alpha \in \Delta\right\}$ be a (Λ, b)-open cover of Y. Since f is (Λ, b) irresolute, $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in \Delta\right\}$ is a (Λ, b)-open cover of X. Since X is (Λ, b) compact, there exists a finite subset Δ_{o} of Δ such that $X=\bigcup\left\{f^{-1}\left(V_{\alpha}\right)\right.$: $\left.\alpha \in \Delta_{o}\right\}$. Since f is onto, $Y=f(X)=\bigcup\left\{V_{\alpha}: \alpha \in \Delta_{o}\right\}$. Hence Y is (Λ, b)-compact.

Theorem 4.7. If $f: X \rightarrow Y$ is an onto quasi-(Λ, b)-irresolute function and X is (Λ, b)-compact, then Y is b-compact.

Proof. Let $\left\{W_{\alpha}: \alpha \in \Delta\right\}$ be a b-open cover of Y. Since f is quasi- (Λ, b) irresolute, $\left\{f^{-1}\left(W_{\alpha}\right): \alpha \in \Delta\right\}$ is a (Λ, b)-open cover of X. Since X is (Λ, b) compact, there exists a finite subset Δ_{o} of Δ such that $X=\bigcup\left\{f^{-1}\left(W_{\alpha}\right)\right.$: $\left.\alpha \in \Delta_{o}\right\}$. Since f is onto, $Y=f(X)=\bigcup\left\{W_{\alpha}: \alpha \in \Delta_{o}\right\}$. Hence Y is b-compact.

Definition 4.8. A space X is said to be (Λ, b)-connected (resp. b-connected [7]) if X cannot be expressed as the union of two non-empty disjoint (Λ, b) open (resp. b-open) sets of X.

Lemma 4.9. Every (Λ, b)-connected space is b-connected.
Proof. Suppose X is a (Λ, b)-connected space. If possible, let X is not b connected. Then there exists a pair A, B of disjoint non-empty b-open subsets of X such that $X=A \cup B$. By Proposition 2.1(1), A and B are ($\Lambda, b)$-open. Therefore X is not (Λ, b)-connected, a contradiction.

Reverse implication is considered in the following examples.
Example 4.10. Consider the real line \mathbb{R} endowed with the usual topology \mathbb{R}_{u}. Then \mathbb{R} is connected but not (Λ, b)-connected because \mathbb{Q}, the set of rationals and $\mathbb{R} \backslash \mathbb{Q}$ together form a pair of non-empty disjoint (Λ, b)-open sets of \mathbb{R} with $\mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})=\mathbb{R}$.

Example 4.11. Suppose \mathcal{F} is an ultrafilter on an infinite set X and $\tau=$ $\mathcal{F} \cup\{\emptyset\}$. Then X is b-connected but not (Λ, b)-connected.

It is noticeable that there is no Hausdorff (Λ, b)-connected space.
Theorem 4.12. A space X is (Λ, b)-connected if and only if $A^{(\Lambda, b)}=X$ for every non-empty (Λ, b)-open subset A.

Proof. Let X is (Λ, b)-connected. If possible, suppose A is a non-empty (Λ, b)-open subset of X such that $A^{(\Lambda, b)} \neq X$. Set $X \backslash A^{(\Lambda, b)}=B$. Then B is a non-empty (Λ, b)-open subset of X. Moreover, $A \cap B=\emptyset$. This is a contradiction. Converse part: If possible, suppose A, B is a pair of nonempty (Λ, b)-open sets of X such that $X=A \cup B$ and $A \cap B=\emptyset$. Then $A^{(\Lambda, b)}=(X \backslash B)^{(\Lambda, b)}=X \backslash B$, since $X \backslash B$ is (Λ, b)-closed. By assumption, $B=\emptyset$ which is a contradiction.

Theorem 4.13. A space X is (Λ, b)-connected if and only if there is no non-empty proper subset of X which is both (Λ, b)-open and (Λ, b)-closed.

Proof. If possible, suppose A is a non-empty proper (Λ, b)-open as well as (Λ, b)-closed subset of X. Take $B=X \backslash A$. Then $B \neq \emptyset, B$ is $(\Lambda, b)-$ open, $A \cap B=\emptyset$ and $A \cup B=X$. This implies X is not (Λ, b)-connected, a contradiction. Converse part: If possible, suppose $X=A \cup B$, where A and B are non-empty disjoint (Λ, b)-open subsets of X. Then $A=X \backslash B$ is (Λ, b)-closed and $A \neq X$. Thus A is a non-empty proper (Λ, b)-open as well as (Λ, b)-closed set in X. This is a contradiction.

Theorem 4.14. If $f: X \rightarrow Y$ is an onto (Λ, b)-continuous function and X is (Λ, b)-connected, then Y is connected.

Proof. If possible, suppose Y is not connected. Then there exists a pair A, B of non-empty disjoint open subsets of Y such that $Y=A \cup B$. Then $X=f^{-1}(Y)=f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B)=\emptyset$. Since f is a (Λ, b)-continuous and onto, $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty (Λ, b) open subsets of X. Thus X is $\operatorname{not}(\Lambda, b)$-connected. This is a contradiction.

Theorem 4.15. If $f: X \rightarrow Y$ is an onto (Λ, b)-irresolute function and X is (Λ, b)-connected, then so is Y.

Theorem 4.16. If $f: X \rightarrow Y$ is an onto quasi-((Λ, b)-irresolute function and X is (Λ, b)-connected, then Y is b-connected.

REFERENCES

[1] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
[2] C. Boonpok, Generalized (Λ, b)-closed sets in topological spaces, Korean J. Math., 25 (2017), 437-453.
[3] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math., 2 (2007), 11-19.
[4] M. Caldas, S. Jafari and T. Noiri, On Λ_{b}-sets and the associated topology $\tau^{\Lambda_{b}}$, Acta Math. Hungar., 110 (2006), 337-345.
[5] E. Ekici, On contra-continuity, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 47 (2004), 127-137.
[6] E. Ekici, On R spaces, International Journal of Pure and Applied Mathematics, 25 (2005), 163-172.
[7] E. Ekici, On separated sets and connected spaces, Demonstr. Math., XL (2007), 209-217.
[8] E. Ekici and M. Caldas, Slightly γ-continuous functions, Bol. Soc. Parana. Mat. (3), 22 (2004), 63-74.
[9] A. A. El-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, Tanta University, Egypt, 1997.
[10] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 42 (1999), 27-34.
[11] K. D. Joshi, Introduction to General Topology, Wiley, 1983.
[12] H. Maki, Generalized Λ-sets and the associated closure operator, in Special issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1 (1986), 139-146.
[13] M. Mršević, On pairwise R_{0} and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 30(78) (1986), 141-148.

Received August 23, 2020
Accepted March 18, 2021

> University of Gour Banga Department of Mathematics
> Malda-732 103, West Bengal, India
> E-mail: jiarul8435@gmail.com https://orcid.org/0000-0003-1055-9820
> E-mail: spmodak2000@yahoo.co.in
> https://orcid.org/0000-0002-0226-2392

[^0]: The authors thank the referee for his helpful comments and suggestions.

