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FIXED POINTS AND STABILITY OF A CLASS OF NONLINEAR
DIFFERENTIAL SYSTEMS WITH SEVERAL DELAYS

OF FEEDBACK CONTROL

HOCINE GABSI, ABDELOUAHEB ARDJOUNI, and AHCENE DJOUDI

Abstract. In this work we offer existence criteria and sufficient conditions, so
that the trivial solution of the differential system with several delays of feedback
control is asymptotically stable. Here the fixed point technique is a practical
method for this purpose. When these results are applied to some special delay
mathematics models, some new results are obtained, and many known results
are improved. Lastly, we provide an example that illustrates our results.

MSC 2010. 54H25, 35B09, 35B10, 47H10.

Key words. Fixed points, stability, several delays, nonlinear differential sys-
tems.

1. INTRODUCTION

Delay differential equations (DDEs) have long played important roles in
the real systems.Various delay differential equations, primarily taken from the
biological sciences literature, are presented, along with necessary background
from the application area, in order to motivate our study of delay differential
equations. These range from models in population biology, physiology, epi-
demiology, economics, and neural networks, to control of mechanical systems
also two-body problems of electrodynamics. For details of the derivation of
these equations can be found in Mackey and Glass (1977), [1, 4, 15]. Exis-
tence, uniqueness, stability and positivity of solutions of DDEs and DDNSs
are of great interest in mathematics and its applications, see [1]–[15]. For more
examples on the use of Liapunov functionals, one can find them in Gopalsamy
(1989), Burton (1985), Hale (1977) and the references cited therein. In this
work we consider the following nonlinear systems modeling the dynamics of
one predator species feeding exclusively on one prey species

du

dt
(t) + a (t) f1 (u (t− τ (t))) + g1 (t, u (t) , v (t− r (t))) = 0,(1)

dv

dt
(t) + b (t) f2 (v (t− r (t))) + g2 (t, v (t) , u (t− τ (t))) = 0.(2)
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Along with (1)–(2), we have to specify initial conditions as follows

u (t) = ψ1 (t) on [m (t0) , t0] ,(3)

v (t) = ψ2 (t) on [m (t0) , t0] ,(4)

where f1, f2 : C (R,R) → R, g1, g2 : R × C (R,R) × C (R,R) → R and a, b
are positive continuous functions. Here the functions t − τ (t), t − r (t) are
continuous and tend to infinity as t → +∞. For an elaborate discussion of
the prey-predator association we refer to the (see [10, p. 197]). As before in
[6, 8] we proved the existence of positive periodic solutions of the same class
system. In the main results we will use a fixed point theorem to present a
theorem that is very useful in obtaining stability of the zero solution.

2. PRELIMINARIES

In this section we begin our stability investigation with some preliminary
definitions and notations.

2.1. DEFINITIONS AND NOTATIONS

For each t0 ≥ 0, define

m1 (t0) = : inf {t− τ (t) , t ⩾ t0} ,
m2 (t0) = : inf {t− r (t) , t ⩾ t0} ,
m (t0) = min{m1 (t0) ,m2 (t0)}.

The functions p1 and p2 denote respectively, the inverse of t−τ1 (t) and t−τ2 (t).
Let

C (t0) := C ([m (t0) , t0] ,R) ,
be the space of continuous functions endowed with function supremum norm
∥·∥0, that is, for ψ ∈ C (t0) ,

∥ψ∥0 := sup {|ψ (t)| : m (t0) ≤ t ≤ t0} .

We will also use

∥φ∥0 := sup {|φ (s)| : s ∈ [m (t0) ,∞)} ,

to express the supremum of continuous bounded functions on [m (t0) ,∞) later.
It is well known (see [12]) that, for given continuous functions ψ1 and ψ2 there
exists a solution for equation (1) on an interval [m (t0) , T ), and if the solution
remains bounded, then T = ∞. To obtain stability of the zero solution of
(1)–(4), we need the mapping P to map bounded functions into bounded
functions. For that, we let (C, ∥·∥0) to be the Banach space of real-valued
bounded continuous functions on [m(t0),∞) with the supremum norm ∥·∥0,
that is for φ ∈ C

∥φ∥0 := sup {|φ (t)| , t ∈ [m (t0) ,∞)} .



3 Nonlinear differential systems 65

Our investigations will be carried out on the complete metric space (C, ρ),
where ρ is the uniform metric. That is, for φ, ϕ ∈ C we set

ρ (φ, ϕ) = ∥φ− ϕ∥0 .

Let ψ ∈ C([m(t0), t0],R) be fixed and define

Sψ := {φ : [m(t0),∞) → R | φ ∈ C, φ(t) = ψ(t) for t ∈ [m(t0), t0]},

being closed in C, (Sψ, ρ) is itself complete. There is no confusion if we use
the norm ∥·∥0 on [m(t0), t0] or on [m(t0),∞).

Our definitions follow ones in Hale and Lunel [12]. Let the system of delay
differential equations

(5) x′(t) = f(t, xt), x ≡ ψ on [t0 − τ (t0) , t0] .

We denote by x (t) the solution x(t, t0, ψ). Suppose that f satisfies f(t, 0) = 0,
t ∈ R so that x(t) = 0 is a solution.

Remark 2.1. The stability of any other solution of (5) can be defined by
changing variables such that the given solution is the zero solution. More
precisely, given a solution y of (5) defined on t ∈ R, its stability properties are
those of the zero solution of

(6) z′(t) = f(t, z + y)− f(t, y).

Indeed, if x(t) is another solution of (5) and if we let z(t) = x(t) − y(t) then
zt = xt − yt so z satisfies (6). The special case that solution y(t) = e, an
equilibrium, is of primary interest. In that case, let ê be the constant function
identically equal to e. Then equation (6) for the perturbation z(t) = x(t)− e
becomes

z′(t) = f(t, zt + ê).

Note that by the change of variables the equilibrium y(t) = e now becomes
z(t) = 0.

Stability definitions, fixed point technique and more details on delay differ-
ential equations can be found in [11, 12, 14].

Definition 2.2. The zero solution of (2) is stable if for each ε > 0 there
exists δ = δ (ε, t0) > 0 such that [ψ1, ψ2 ∈ C (t0) and ∥ψ1∥0 + ∥ψ2∥0 < δ]
implies that |u (t, t0, ψ1)|+ |v (t, t0, ψ2)| < ε for t ≥ t0.

Definition 2.3. The zero solution of (2) is asymptotically stable if it is
stable and there is a δ1 = δ1 (t0) > 0 such that [ψ1, ψ2 ∈ C (t0) and ∥ψ1∥0 +
∥ψ2∥0 < δ1] implies that |u (t, t0, ψ1)|+ |v (t, t0, ψ2)| −→ 0 as t −→ ∞.

Definition 2.4. The zero solution is unstable if it is not stable.
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2.2. BASIC IDEAS OF THE PROOF

To investigate the stability for both EDOs and DDEs by technique fixed
point we need transform the problem into an abstract fixed point equation (as
Pφ = φ) in an appropriate normed. In order to apply this idea, one can use
methods of the variation of parameters formula to our problem. A difficulty
of this class of nonlinear system is the absence of a linear term in (1)–(4). So,
for this situation we will now perturb the two terms fj (u (t− τ (t))), j = 1, 2
in several different ways. On the other hand, to make (1)–(4) more tractable
for this purpose, we transform it into a neutral functional differential equation
of the form

u′ (t) +A (t)u (t) =
d

dt

∫ p1(t)

t
f̂ (s, u (s)) ds− g1 (t, u (t) , v (t− r (t))) ,(7)

v′ (t) +B (t) v (t) =
d

dt

∫ p2(t)

t
f̃2 (s, v (s)) ds− g2 (t, v (t) , u (t− r (t))) .(8)

Next, from (7)–(8) we introduce a mapping P associated to (7)–(8) can be
defined on a carefully chosen complete metric space X0 in which P possesses
a unique fixed point. The final result is an asymptotic stability theorem for
the zero solution with a necessary and sufficient condition.

Lemma 2.5. Let ψ1, ψ2 ∈ C([m(0), 0],R) are a given continuous initial
functions. Then, (u (t) , v (t)) is a solution of equation (1)–(4) on an inter-
val [m(0), T ) satisfying the initial condition (u (t) , v (t)) = (ψ1 (t) , ψ2 (t)) on
[m(0), 0] if and only if (u (t) , v (t)) is a solution of the following integral equa-
tion.

(9) (u, v) = (P1 (u, v) , P2 (u, v)) ,

where

u (t) = −

(
u (0) +

∫ p1(0)

0
a (s) f (ψ1 (s− τ (s))) ds

)
e−

∫ t
0 A1(t)dt

+

∫ p1(t)

t
a (s) f1 (u (s− τ (s))) ds

−
∫ t

0
A1 (s) e

−
∫ t
s A1(θ)dθ

∫ p1(s)

s
a (y) f1 (u (y − τ (y))) dy ds

−
∫ t

0
e−

∫ t
s A1(θ)dθg1 (s, v (s− r (s))) ds

= P1 (u, v) ,

(10)
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and

v (t) = −

(
v (0) +

∫ p2(0)

0
a (s) f (ψ2 (s− τ (s))) ds

)
e−

∫ t
0 A2(t)dt

+

∫ p2(t)

t
a (s) f2 (u (s− τ (s))) ds

−
∫ t

0
A2 (s) e−

∫ t

s
A2 (θ) dθ

∫ p2(s)

s
b (y) f2 (u (y − τ (y))) dy ds

−
∫ t

0
e−

∫ t
s A2(θ)dθg2 (s, v (s− r (s))) ds

= P2 (u, v) .

(11)

Proof. Let the function p1 denotes the inverse of t− τ1 (t). We have

d

dt

∫ p1(t)

t
a (s) f1 (u (s− τ (s))) ds− p′1 (t) a (p1 (t)) f1 (u (t))

= −a (t) f1 (u (t− τ1 (t))) .

Then, the equation (1) can be written as

u′ (t) +A1 (t)u (t)

=
d

dt

∫ p1(t)

t
a (s) f1 (u (s− r (s))) ds− g1 (t, u (t) , v (t− r (t))) ,

with

A1 (t) = p′1 (t) a (p1 (t))
f1 (u (t))

u (t)
.

Applying the variation of parameters formula to the second equation of (14),
we get

u (t) = −

(
u (0) +

∫ p1(0)

0
a (s) f1 (ψ1 (s− τ (s))) ds

)
e−

∫ t
0 A1(t)dt

+

∫ p1(t)

t
a (s) f1 (u (s− τ (s))) ds

−
∫ t

0
A (s) e−

∫ t
s A1(θ)dθ

∫ p1(s)

s
a (y) f1 (u (y − τ (y))) dy ds

−
∫ t

0
e−

∫ t
s A1(θ)dθg1 (s, v (s− r (s))) ds

= P1 (u, v) .

(12)

A similar argumentation like in (12) we can deduce that v = P2 (u, v). □

For that reason we assume that the followings conditions hold.
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H1) There exist some functions R1, R2 ∈ C (R,R+) and constants L1 > 0,
L2 > 0, l > 0 such that for x, y ∈ [−l, l]

|f1 (x)− f1 (y)| ≤ L1 |x− y| and |f2 (x)− f2 (y)| ≤ L2 |x− y| ,
f1 (0) = f2 (0) = g1 (t, 0) = g2 (t, 0) = 0 for t ∈ R+,

|g1 (t, x)− g1 (t, y)| ≤ R1 (t) ∥x− y∥ for all t ∈ R,
|g2 (t, x)− g2 (t, y)| ≤ R2 (t) ∥x− y∥ for all t ∈ R.

H2) There is a constant 0 < α < 1 satisfying

2L1 sup

∫ p1(t)

t
a (s) ds+ sup

∫ t

0
R1 (s) e

−
∫ t
s A1(θ)dθds ≤ α1,

2L2 sup

∫ p2(t)

t
b (s) ds+ sup

∫ t

0
R2 (s) e

−
∫ t
s A2(θ)dθ ≤ α2,

α = max {α1, α2} < 1.

H3) There exist constants β1 > 0 and β2 > 0 such that

lim
f1 (x)

x
≥ β1 > 0 and lim

f2 (x)

x
≥ β2 > 0 as x→ 0.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF (1)–(4)

From (9) we shall derive a fixed point mapping P for (1)–(4). But the
challenge here is to choose a suitable metric space of functions on which the
map P can be defined on this set into itself but also is a contraction. Toward
this, let C be the space of all continuous functions φ : [m(0),+∞) → R. For
a given initial function ψj : [m(0), 0] → [−l, l], l > 0, j = 1, 2 define the set

Slψj
:= {φ ∈ Sψj

\ ∥φ(t)∥0 ≤ l}, j = 1, 2,

and we introduce the set

X = Slψ1
× Slψ2

,

with the norm

∥(φ, ϕ)∥X = max {∥φ∥0 , ∥ϕ∥0} , for all (φ, ϕ) ∈ X.

Next, we will define a mapping directly from (9). Remember that, by Lemma
2.5 a fixed point of that map will be a solution of the system (1)–(4). Define
the mapping P on X as follows, for t ≤ 0

P (φ1 (t) , φ2 (t)) := (ψ1 (t) , ψ2 (t)) on [m(0), 0],

while for t > 0

(13) P (φ1 (t) , φ2 (t)) = (P2 (φ1 (t) , φ2 (t)) , P1 (φ1 (t) , φ2 (t))) .

We now establish the existence and uniqueness of solutions by showing that
P : X → X if ∥ψ1∥ and ∥ψ2∥ are sufficiently small.
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Theorem 3.1. Assume that the hypotheses (H1)–(H3) hold. Then:
(i) P maps X into itself and is a contraction mapping.
(ii) the system (1)–(4) has a unique solution in X.

Proof. Obviously, for all φ, φ̃ ∈ X so that φ = (φ1, φ2) and φ̃ = (φ̃1, φ̃2) we
have

∥P1φ− P1φ̃∥ < α1 ∥φ− φ̃∥X ,
∥P2φ− P2φ̃∥ < α2 ∥φ− φ̃∥X .

Thus

∥Pφ− Pφ̃∥X
= ∥(P1 (φ1, φ2)− P1 (φ̃1, φ̃2)) , (P2 (φ1, φ2)− P2 (φ̃1, φ̃2))∥
= max {∥(P1 (φ1, φ2)− P1 (φ̃1, φ̃2))∥ , ∥(P2 (φ1, φ2)− P2 (φ̃1, φ̃2))∥}
< max {α1 ∥(φ1, φ2)− (φ̃1, φ̃2)∥X , α2 ∥(φ1, φ2)− (φ̃1, φ̃2)∥X}
< max {α1, α2} ∥(φ1, φ2)− (φ̃1, φ̃2)∥X
< α ∥φ− φ̃∥X .

Nevertheless, if φ ∈ X and we can always find

∥P1φ (t)∥ ≤

(
|u (0)|+

∫ p1(0)

0
a (s) |f (ψ1 (s− τ (s)))|ds

)
+ α1 ∥φ∥X .

We now establish the existence and uniqueness of solutions by showing that
P : X → X if ∥ψ1∥ and ∥ψ2∥ are sufficiently small. Indeed, for δ > 0 we
choose ∥ψ1∥0 + ∥ψ2∥0 ≤ δ so that(

δ + L1δ

∫ p1(0)

0
a (s) ds

)
< (1− α) l,(14) (

δ + L2δ

∫ p2(0)

0
b (s) ds

)
< (1− α) l.(15)

We have

∥P1φ (t)∥ ≤

(
|u (0)|+

∫ p1(0)

0
|a (s) f (ψ1 (s− τ (s)))| ds

)
+ α ∥φ∥X

≤

(
δ + L1δ

∫ p1(0)

0
a (s) ds

)
+ αl < l.

Also, from (14) we have

∥P2φ (t)∥ ≤

(
δ + L2δ

∫ p2(0)

0
b (s) ds

)
+ αl < l.

it is clear that
∥Pφ∥X = max {∥P1φ∥0 , ∥P2φ∥0} ≤ l
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P is a contraction on the complete space (X, ∥·∥X). Therefore P maps X
into itself then, P has a unique fixed point (u, v) ∈ X such that P (u, v) =
(P1 (u, v) , P2 (u, v)) = (u, v) it follows from Lemma 2.5 this fixed point is a
solution of (9) and (1)–(4). □

4. ASYMPTOTIC STABILITY OF THE ZERO SOLUTION

Now we will show that the zero solution of (1)–(4) is stable at t = 0 is exactly
like the one given for the next theorem. For this purpose, let us denote

X0 := {φ ∈ X such that φ (t) → 0 as t→ 0} .
Since X0 is closed in X and (X, ∥·∥X) is complete, then the metric space(
X0, ∥·∥X

)
is also complete.

Theorem 4.1. Under the hypotheses of Theorem 3.1 we have:
i) The zero solution of the system (1)–(4) is stable at t = 0.
ii) If, in addition

(16) lim
t→+∞

∫ t

0
A1 (t) = lim

t→+∞

∫ t

0
A2 (t) = +∞.

then the zero solution of the system (1-4) is asymptotically stable.

Proof. Step one: Stability

Firstly, the results of Theorem 3.1 holds also when the l is replaced by ε
4

for ε > 0. Choose ψ = (ψ1, ψ2) satisfying ∥ψ1∥0 + ∥ψ2∥0 ≤ δ (δ ≤ ε/2), with
δ such that (

δ + L1δ

∫ p1(0)

0
a (s) ds

)
< (1− α)

ε

2
,(

δ + L2δ

∫ p2(0)

0
b (s) ds

)
< (1− α)

ε

2
.

Notice that with such a ∥Pφ (t)∥ = ∥ψ (t)∥ ≤ ∥ψ1∥0 + ∥ψ2∥0 ≤ δ on [m(0), 0].
We claim that ∥(u, v)∥ ≤ ε for all t ≥ 0. If (u, v) is a solution of (1)–(4), we
have

∥(u, v)∥X = ∥P (u, v)∥X ≤ ∥P1 (u, v)∥+ ∥P1 (u, v)∥

≤

(
δ + L1δ

∫ p1(0)

0
a (s) ds

)

+

(
δ + L2δ

∫ p2(0)

0
b (s) ds

)
+ α2 ∥(u, v)∥X

< (1− α)
ε

2
+ (1− α)

ε

2
+ 2α (∥u∥0 + ∥v∥0)

= ε− αε+ 2α (∥u∥0 + ∥v∥0)
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≤ ε− αε+ 2α
ε

2
= ε.

Thus
∥(u, v)∥X = ∥P (u, v)∥X ≤ ∥u∥0 + ∥v∥0 ≤ ε.

The zero solution of the system (1)–(4) is stable at t = 0.

Step two: Stability asymptotic

Now we will show that for every φ = (φ1, φ2) ∈ X0 we have Pφ (t) → 0 as
t → +∞ that is (P1φ (t) , P2φ (t)) → (0, 0) as t → +∞. We begin by proving
that P1φ (t) → 0. So, recalling (10), and denote the four terms on the right
hand side of (10) by I1, I2, I3, I4 respectively. for any functions φ ∈ X0 be
fixed, we prove that each term of Pφ (t) tends to 0 as t → 0. Obviously, the
first term I1 tends to zero by condition (16) as t → +∞. For the terms I2,
I3 and I4. Let ε > 0 be any positive number be given and choose T ≥ J
large enough so that for t > J , |φ1 (t− τ (t))| ≤ ε and |φ2 (t− τ (t))| ≤ ε. by
making use conditions (10) the term I2 satisfies

|I2| ≤
∫ p1(t)

t
|a (s) f1 (φ1 (s− τ (s)))| ds ≤ εαL1.

Also, the term I3 satisfies

|I3| ≤
∫ t

0
|A1 (s)| e−

∫ t
s A1(θ)dθ

∫ p1(y)

y
|a (y) f1 (φ1 (y − τ (y)))| dy ds

≤ e−
∫ t
J A1(θ)dθ

(
L1 ∥φ1∥

∫ J

0
|A1 (s)| e−

∫ J
s A1(θ)dθ

×
∫ p1(y)

y
|a (y)|dy ds

)

+ ε

(
L1

∫ t

J
|A1 (s)| e−

∫ t
s A1(θ)dθ

∫ p1(y)

y
|a (y)| dy ds

)
≤ e−

∫ t
J A1(θ)dθ ∥φ1∥α+ εα.

(17)

By condition (16) the first factor on the r.h.s of (17) tends to 0, as t →
+∞, while the second is arbitrarily small. Thus, I2 tends to 0, as t → +∞.
Nevertheless,

|I4| ≤ e−
∫ t
J A1(θ)dθ

(
∥φ2∥

∫ J

0
e−

∫ J
s A1(θ)dθ |R1 (s)|ds

)
+ ε

(∫ t

J
e−

∫ t
s A1(θ)dθ |R1 (s)| ds

)
≤ εα+ e−

∫ t
J A1(θ)dθM.

Then,
P1φ (t) → 0, as t→ +∞.
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One can take the same way to prove that P2φ (t) → 0, as t → +∞. thus
Pφ (t) ∈ X0. Consequently, P maps X0 into itself. That is P : X0 → X0.
However by Theorem 3.1 P has a unique fixed point in X0. It is clear in view
of Lemma 2.5 that the existence of solutions for (1)–(4) is equivalent to the ex-
istence of solutions for the operator equation P (u, v) = (P1 (u, v) , P2 (u, v)) =
(u, v). Finally, there is a unique continuous function (u, v) ∈ X0 satisfying
(u (t) , v (t)) = (ψ1 (t) , ψ2 (t)) on [m (0) , 0], which is a solution of (1)–(4) on
[0,+∞). Since we have obtained the stability of the zero solution in step one,
it follows that the zero solution is asymptotically stable at 0. □

5. APPLICATION

Let us consider the following system with a delay of the form

x′ (t) +
1

2

0.5

1 + t
sin (x (t− 0.5t)) +

δ

1 + t2
y (t− 0.5t)

y2 (t) + 1
= 0,(18)

y′ (t) +
1

2

t

1 + t2
tan (y (t− 0.5t)) +

µ cos (x (t− 0.5t))

5 + t2
= 0,(19)

with the following assumptions (µ, δ < 0, 3). Then, the trivial solution of
(18)–(19) is asymptotically stable.

Proof. It is not difficult to verify that the hypotheses (H1), (H2) and (H3)
are possible.

H1) It is clear that for x, y ∈ R we have

|f1 (x)− f1 (y)| = |sin y − sinx| ≤ L1 |y − x| , L1 = 1,

f1 (0) = g1 (t, 0, 0) = 0 for t ∈ R+.

|g1 (t, x)− g1 (t, y)| =
δ

1 + t2
|yx− 1|

(x2 + 1) (y2 + 1)
|y − x|

≤ δ

1 + t2
∥y − x∥ = R1 (t) ∥x− y∥ for all t ∈ R,

where

sup
x,y∈R

∣∣∣∣ (yx− 1)

(x2 + 1) (y2 + 1)

∣∣∣∣ ≤ 1.

H2) There is a constant 0 < α1 < 1 satisfying

2L1 sup

∫ p1(t)

t
a (s) ds+ sup

∫ t

0
R1 (s) e

−
∫ t
s A1(θ)dθds ≤ α1.

Indeed, firstly we have

a (p1 (t)) = a (2t) =
1

2

0.5

1 + 2t
and p′1 (t) = 2,

A1 (t) = p′1 (t) a (p1 (t))
f1 (u (t))

u (t)
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=
1

1 + 2t

f1 (u (t))

u (t)
≥ 1

1 + 2t
,

2L1

∫ p1(t)

t
a (s) ds =

∫ 2t

t

0.5ds

1 + s
= 0.5 ln

1 + 2t

1 + t
≤ 0.5 ln 2,

and

I =

∫ t

0
R1 (s) e

−
∫ t
s A1(θ)dθds ≤

∫ t

0

δ

1 + s2
e−

∫ t
s

dθ
1+2θ ds.

Also, for t ≥ 2 we have
1

1 + t2
≤ 1

1 + 2t
.

Then

I ≤
∫ 2

0

δ

1 + s2
e−

∫ 2
s

dθ
1+2θ ds+

∫ t

2

δ

1 + 2s
e−

∫ t
s

dθ
1+2θ ds,

in fact that

δ

∫ 2

0

1

1 + s2
e−

∫ 2
s

dθ
1+2θ ds =

δ√
5

∫ 2

0

√
1 + 2s

1 + s2
ds ≤ 1.7,∫ t

2

δ

1 + 2s
e−

∫ t
s

dθ
1+2θ ds = 1− e−

∫ t
0

dθ
1+2θ ≤ 1.

Thus

0.5 ln 2 + I ≤ ln 2

2
+ δ

(
1.7√
5
+ 1

)
≤ 0.88 = α1 < 1.

H3) β1 = 1,

lim
f1 (x)

x
≥ β1 = 1 > 0 as x→ 0.

As before, a direct calculation shows that R2 (t) =
µ

1+t2
, L2 = 1.083, β2 = 1,

l ≤ π
8 and α2 = 0.9. We have from Theorem 4.1 that the zero solution is

asymptotically stable. □

Remark 5.1. We assume that f1, f2, g1 and g2 are linear functions and a1,
b1, a2, b2, τ , r are positive constants satisfy the appropriate condition

α = max

{
2a1τ +

a2
a1
, 2b1r +

b2
b1

}
< 1.

Then the trivial solution of (1)–(4) is asymptotically stable.
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